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2. Chinese Remainder Theorem (CRT) and Interpolation

Let us start with an ancient Chinese problem:

There is a certain number. When divided by three this number has remainder
two; when divided by five, it has remainder three; when divided by seven, it
has remainder two. What is the number?

This problem appears in Sunzi Suanjing (Sunzi’s Computational Canon), a mathematical
book written during the period from 280 to 483 AD. (Note that the Sunzi is the same person
as in Sunzi Bingfa (Master Sun’s Art of War).) In modern notation, the problem is to find
an integer x such that

x ≡ 2 (mod 3),

x ≡ 3 (mod 5),

x ≡ 2 (mod 7).

The answer is given in Sunzi Suanjing, and in 1592 Dawei Cheng put it as a poem:

Three septuagenarians walking together, ’tis rare!
Five plum trees with twenty one branches in flower,
Seven disciples gathering right by the half-moon,
One hundred and five taken away, lo the result shall appear!

Note that in Chinese calendar, each month has thirty days, so half-moon means fifteen.
The poem also indicates that the gathering takes place at mid August, which is a tradi-
tional Chinese festival (called Mid Autumn Festival) for family gathering and for celebrating
harvest. The result is

x ≡ 2 · 70 + 3 · 21 + 2 · 15 (mod 105).

The solution also indicates that if one is given three integers r1, r2, r3 and is asked to find a
number x such that

x ≡ r1 (mod 3),

x ≡ r2 (mod 5),

x ≡ r3 (mod 7).

Then the answer is

x ≡ r1 · 70 + r2 · 21 + r3 · 15 (mod 105).
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In the above problem the moduli 3, 5, 7 are pairwise coprime. The ancient Chinese also
solved the problem for an arbitrary set of moduli (not necessarily pairwise coprime). The
rules (or procedures) for solving any system of simultaneous congruences are given explicitly
by Jiushao Qin in 1247 AD in his book Shushu Jiuzhang (Mathematical Treatise in Nine
Chapters). Some of the rules show how to compute modular inverses and lcm of several
integers. More details can be found at
http://www.math.sfu.ca/histmath/China/13thCenturyAD/QinTa.html.

In the above solution, 105 = 3 · 5 · 7, and e1 = 70, e2 = 21, e3 = 15 satisfy

e1 ≡ 1 (mod 3), e1 ≡ 0 (mod 5), e1 ≡ 0 (mod 7),

e2 ≡ 0 (mod 3), e2 ≡ 1 (mod 5), e2 ≡ 0 (mod 7),

e3 ≡ 0 (mod 3), e3 ≡ 0 (mod 5), e3 ≡ 1 (mod 7),

so

e1 = 5 · 7 · ((5 · 7)−1 mod 3),

e2 = 3 · 7 · ((3 · 7)−1 mod 5),

e3 = 3 · 5 · ((3 · 5)−1 mod 7).

This shows how to find the solution in general. Also note that

e2i ≡ ei (mod 105), 1 ≤ i ≤ 3,

ei · ej ≡ 0 (mod 105), i 6= j.

That is, e1, e2, e3 are orthogonal idempotents in the ring Z/(105).

Theorem 2.1 (Chinese Remainder Theorem for integers). Letm1, . . . ,mt be positive integers
that are pairwise coprime. Let m = m1m2 . . .mt. Then for any integers r1, . . . , rt, there is a
unique integer x (mod m) such that

x ≡ ri (mod mi), 1 ≤ i ≤ t. (13)

Furthermore, any such solution x is of the form

x ≡ r1e1 + · · ·+ rtet (mod m) (14)

where

ei =
m

mi
·

((
m

mi

)−1
mod mi

)
, 1 ≤ i ≤ t. (15)

Note that m
mi
= m1 · · ·mi−1mi+1 · · ·mt is coprime to mi, as gcd(mi,mj) = 1 for i 6= j,

hence the inverse in (15) exists. One can check that x in (14) is indeed a solution to (13).
The formula (15) gives us an efficient algorithm for solving (13).

Algorithm 1: Chinese Remainder Theorem for integers.

Input: positive integers m1, . . . ,mt, pairwise coprime, and integers r1, . . . , rt.
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Output: an integer x such that

x ≡ ri (mod mi), 1 ≤ i ≤ t, and

0 ≤ x < m where m = m1 · · ·mt.

1. compute m = m1 · · ·mt and set x = 0.
2. for i = 1, 2, . . . , t do

compute yi =
m
mi
,

apply extended Euclidean algorithm to find si = y
−1
i mod mi,

set ci = ri · si mod mi,
set x = x+ ci · yi (mod m).

3. return x.

One can check that the number x computed is exactly the formula in (14). The numbers
in (15) are orthogonal idempotents in the ring Z/(m) where m = m1 · · ·mt, that is,

e2i ≡ ei (mod m), 1 ≤ i ≤ t,

ei · ej ≡ 0 (mod m), i 6= j.

The formula (14) also says that R = Z/(m) can be decomposed into a direct sum of rings

R = R1 ⊕R2 ⊕ · · · ⊕Rt

where

Ri = Rei = {a · ei (mod m) : a ∈ Z} ∼= Z/(mi), 1 ≤ i ≤ t.

So the Chinese Remainder Theorem tells us that

Z/(m) ∼= Z/(m1)× · · · × Z/(mt). (16)

The formula (14) gives the isomorphism map from the right side to the left in (16).

The Chinese Remainder Theorem also holds for any Euclidean domain. We state below
the analogous results for the ring of univariate polynomials over a field.

Theorem 2.2 (Chinese Remainder Theorem for polynomials). Let F be any field, f1, . . . , ft ∈
F[x] nonconstant polynomials, pairwise coprime, and let f = f1 · · · ft. Then for any polyno-
mials r1, . . . , rt ∈ F[x], there is a unique polynomial g ∈ F[x] (mod f) such that

g ≡ ri (mod fi), 1 ≤ i ≤ t. (17)

Furthermore, any such solution g is of the form

g ≡ r1e1 + · · ·+ rtet (mod f) (18)

where

ei =
f

fi
·

((
f

fi

)−1
mod fi

)
, 1 ≤ i ≤ t. (19)
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This is completely analogous to the integer case. The e1, . . . , et in (19) are orthogonal
idempotents in the ring F[x]/(f), and we have

F[x]/(f) ∼= F[x]/(f1)× · · · × F[x]/(ft). (20)

Slight modification of Algorithm 1 can be used to compute g.

Algorithm 2: Chinese Remainder Theorem for polynomials.

Input: f1, . . . , ft ∈ F[x], pairwise coprime, and r1, . . . , rt ∈ F[x].

Output: a polynomial g such that

g ≡ ri (mod fi), 1 ≤ i ≤ t, and

deg g < deg f, where f = f1 · · · ft.

1. compute f = f1 · · · ft and set g = 0.
2. for i = 1, 2, . . . , t do

compute yi =
f
fi
,

apply extended Euclidean algorithm to find si = y
−1
i mod fi,

set ci = ri · si mod fi,
set g = g + ci · yi (mod m).

3. return g.

Special case. Let fi = x− ai, and ri ∈ F, 1 ≤ i ≤ t, where a1, . . . , at are distinct.
We observe that for any v(x) ∈ F[x] and a ∈ F, we have v(x) mod (x− a) equals v(a), i.e.,
evaluation of v(x) at x = a. Then from (19), we obtain

ei =
∏
j 6=i

(x− aj) ·

(∏
j 6=i

(ai − aj)

)−1
, 1 ≤ i ≤ t.

So the solution is

g =
t∑
i=1

ri ·

∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

.

This is nothing but the Lagrange interpolation formula. This g is the unique polynomial in
F[x] of degree < t such that

g(ai) = ri, 1 ≤ i ≤ t.

Both Algorithm 1 and 2 have quadratic running time and are practical. One disadvantage
is that the algorithms need to know all the moduli in advance. We present next an ’online’
algorithm which finds a solution incrementally for any sequence of moduli and update it
whenever a new modulus is given.

We use mixed-radius representation for integers (and polynomials). Let m1, . . . ,mt be
integers greater than one (or nonconstant polynomials) withm = m1 · · ·mt. Then an integer
0 ≤ x < m can be represented uniquely as

x = x0 + x1m1 + x2m1m2 + · · ·+ xt−1m1m2 · · ·mt−1 (21)

where 0 ≤ xi < mi+1 for i = 0, 1, . . . , t− 1.
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To find an integer 0 ≤ x < m of the form (21) satisfying (13), we compute x0, x1, . . . , xt−1
iteratively. First, let x0 = r1 mod m1 so that x ≡ r1 (mod m1). Suppose x0, x1, . . . , xi−1
have been found for some i ≥ 1 so that

x ≡ rj (mod mj), 1 ≤ j ≤ i.

We want to find xi so that
x ≡ ri+1 (mod mi+1),

i.e.,
x0 + x1m1 + · · ·+ xi−1m1 · · ·mi−1 + xim1 · · ·mi ≡ ri+1 (mod mi+1).

It follows that

xi =
ri+1 − (x0 + x1m1 + · · ·+ xi−1m1 · · ·mi−1)

m1 · · ·mi
(mod mi+1).

Hence xi can be computed from x0, x1, . . . , xi−1 whenever (m1 . . .mi)
−1 mod mi+1 exists.

Algorithm 3: Garner’s algorithm for CRT.

Input: positive integers m1, . . . ,mt, pairwise coprime, and integers r1, . . . , rt.

Output: an integer g such that g ≡ ri (mod mi), 1 ≤ i ≤ t.

1. set g = r1 mod m1, and m = 1.
2. for i = 2, 3, . . . , t do

set m = m ·mi−1,
set u = (ri − g) ·m−1 mod mi,
set g = g + u ·m.

3. return g.

This algorithm also works for univariate polynomials: one just needs to switch integers to
polynomials in the above algorithm. We emphasize a special case for polynomials, namely,
when all moduli are linear.

Algorithm 4: Interpolation for univariate polynomials.

Input: (ai, bi) ∈ F2, 1 ≤ i ≤ t where a1, . . . , at are distinct.

Output: a polynomial g ∈ F[x] of degree < t such that g(ai) = bi, 1 ≤ i ≤ t.

1. set g = b1 and m = 1.
2. for i = 2, 3, . . . , t do

set m = m · (x− ai−1),
set u = (bi − g(ai))/m(ai),
set g = g + u ·m.

3. return g.

In the next lecture, we’ll discuss fast methods for evaluation of polynomials.


