
11

MTHSC 985 Fall 2001 Clemson University
Fast Fourier Transforms and
sparse linear systems over finite fields Instructor: Shuhong Gao
Lecture 3, September 6,11,13 Scribe: Jeff Farr

3. Fast Fourier Transforms

Recall the interpolation problem.

Problem 3.1 (Interpolation). Given n pairs (ai, bi) ∈ F2, where a1, . . . an are distinct, find
a polynomial f ∈ F[x] of degree less than n such that f(ai) = bi, 1 ≤ i ≤ n.

The inverse of the interpolation problem is that of evaluation of polynomials.

Problem 3.2 (Evaluation). Given n points a1, . . . , an ∈ F and a polynomial f ∈ F[x] of
degree less than m, compute the values f(a1), . . . , f(an) as fast as possible.

For fixed a1, . . . , an ∈ F, the transform from f ∈ F[x] to its values f(a1), . . . , f(an) is
called the discrete Fourier transform, denoted by DFT(f), i.e.,

DFT(f) = (f(a1), . . . , f(an)).

Here and hereafer we shall identify a polynomial f = f0 + f1x + · · · + fn−1xn−1 ∈ F[x]
of degree < n with its coefficient vector (f0, f1, . . . , fn−1). Hence, for any fixed elements
a1, . . . , an ∈ F, DFT is a bijection from Fn to Fn. The inverse transform (i.e. interpolation)
is called the inverse discrete Fourier transform, denoted by iDFT or DFT−1.

The interpolation problem can be solved by Garner’s algorithm from last lecture. For the
evaluation problem, there is a simple method, called Horner’s Rule.

Horner’s Rule. Consider the small example in which f = f0 + f1x+ f2x
2 + f3x

3. Then

f(a) = ((f3 · a+ f2) · a+ f1) · a+ f0.

The following algorithm applies to an arbitrary polynomial.

Algorithm 1 : Horner’s Rule

Input: f =
∑m−1
i=0 fix

i ∈ F[x] and a ∈ F
Output: f(a).

1. u := fm−1;
2. for i = m− 2 downto 0 do u := u · a+ fi;
3. return u.

This algorithm uses at most (m − 1) multiplications and (m − 1) additions in F. Hence
Problem 3.2 can be solved using at most n ·m multiplications and n ·m additions in F.

Exercise. Find the number of operations used by Algorithm 4 from the last lecture (Using
Horner’s rule for evaluation).

12

We shall focus on special cases when the set of points a1, . . . , an has special structures:

(i) n = 2k and a1, . . . , an form a multiplicative group of order n.
(ii) n = 3k and a1, . . . , an form a multiplicative group of order n.
(iii) n = 2k and a1, . . . , an form an additive subgroup of F2e for some e.

In the first two cases, the elements a1, . . . , an are the roots of x
n − 1. For an integer n,

we say F supports DFT for xn − 1 if xn − 1 has n distinct roots in F, that is, F contains
all nth roots of unity and the characteristic of F is relatively prime to n. In the following
we shall discuss fast algorithms for computing DFT, and any of these algorithms is called
a fast Fourier transform (FFT). An FFT algorithm usually uses some divide-and-conquer
technique, that is, reducing a problem of large size to several similar problems of smaller sizes,
and apply the procedure recursively to the latter. For convenience, we shall use DFT(f, n)
to indicate the length of the input/output length n.

3.1. Binary FFT. First consider (i). Suppose for a moment n = 2t where t ≥ 1 is an
arbitrary integer. Then

xn − 1 = x2t − 1 = (xt + 1)(xt − 1).

Assume that F supports DFT for xn − 1, hence F must have odd characteristic. Let
ω1, . . . , ωt ∈ F be the t distinct roots of xt − 1 (in any order). Then

xt − 1 =
t∏
i=1

(x− ωi). (22)

Let ω ∈ F be any root of xt + 1. Then

xt + 1 =
t∏
i=1

(x− ω · ωi). (23)

The reason is that wt = −1 and

xt + 1 = xt − ωt = ωt ·

((x
ω

)t
− 1

)
= ωt ·

t∏
i=1

(x
ω
− ωi

)
=

t∏
i=1

(x− ω · ωi).

This means that all the roots of x2n − 1 are

ω1, . . . , ωt, ω · ω1, . . . , ω · ωt.

Let f =
∑n−1
i=0 fix

i ∈ F[x]. We want to compute

f(ω1), . . . , f(ωt), f(ω · ω1), . . . , f(ω · ωt). (24)

Write

f =
t−1∑
i=0

fix
i + xt ·

t−1∑
i=0

ft+ix
i = g + xt · h = (g, h),

where g denotes the lower half of f , and h the higher half. Then

f ≡ g + h (mod xt − 1), f ≡ g − h (mod xt + 1).

13

Now g + h has degree less than t, and has the same values as f at ωi, 1 ≤ i ≤ t.
Similarly, g − h has the same value as f at ω · ωi, 1 ≤ i ≤ t. To see the values of g − h, let
g − h =

∑t−1
j=0 ujx

j = u. Then

u(ω · ωi) =
t−1∑
j=0

(uj · ω
j)ωji , 1 ≤ i ≤ t.

Define

wt(u, ω) =
t−1∑
j=0

(uj · ω
j)xj = (u0 · 1, u1 · ω, . . . , uiω

i, . . . , ut−1 · ω
t−1),

which is called the weighted polynomial of u at ω. Then we have

DFT(f, 2t) = (DFT(g1, t),DFT(h1, t)) (25)

where
g1 = g + h, h1 = wt(g − h, ω), (26)

and g and h denote the lower and higher halves of f , respectively. So a problem of size 2t is
reduced to two similar problems of size t each. When t is even, one can apply this reduction
again to each of the smaller problems. In the special case when n = 2k, k = log2 n reductions
will reduce the problem to n problems of size 1 each, hence obtaining the values in (24).

We illustrate by an example. Consider F = F17. Note that w = 3 is a primitive 16
th root

of unity. So we can perform FFT for polynomials of degree < 16 over F17. The whole process
of FFT is illustrated by the diagram in Figure 2.

Certainly, the diagram in Figure 2 works over any field of odd characteristic that contains
a primitive 16th root of unity, or over any ring that has characteristic not divisible by 2 and
that contains a primitive 16th root of unity.

To see the total numbers of operations used, note that each of the k = log2 n reductions
needs at most 2t = n additions and t = n/2 multiplications in F. Hence the next theorem
follows immediately.

Theorem 3.1. Let n be a power of 2. Assume that F supports DFT for xn − 1. Then
DFT(f, n) over F can be computed using at most n log2 n additions and

1
2
n log2 n multiplica-

tions in F.

We summarize the algorithm as follows. For any array f = (f0, f1, . . . , fn−1) and integers
j ≥ i ≥ 0, we make the convention that f [i . . . j] = (fi, fi+1, . . . , fj).

Algorithm 2: Binary FFT (recursive)

Input: n = 2k, ω ∈ F of order n, and f = (f0, f1, . . . , fn−1) ∈ Fn.

Output: DFT(f, n, ω), the values of f at ωi, 0 ≤ i ≤ n− 1.

1. If n = 1 then return f .
2. t := n/2, g := f [0 . . . t− 1], and h := f [t . . . n− 1].
3. Compute

14

1 1 1 1w w w w4 4 4 4

+ −

f 0 f f f f f f f f f f f f f f f f1 2 3 4 5 6 7 8 9 10 11 12 1513 14

hg

− −+ +

w3 w4 w5 w6 w7w2w1

− − − − −+ + + +

1 w w 1 w w4 6 4 6w w22

+ − + − − − − − − −+ + + + + +

Figure 2. FFT for n = 16

g1 := g + h,
h1 := g − h, and h1 := wt(h1, ω).

4. Return (DFT(g1, t, ω
2),DFT(h1, t, ω

2)).

We can also present the algorithm without using recursion as follows.

Algorithm 3: Binary FFT (nonrecursive)

Input: n = 2k (k ≥ 1), ω ∈ F of order n, and f = (f0, f1, . . . , fn−1) ∈ Fn.

Output: the values of f at ωi, 0 ≤ i ≤ n− 1.

15

1. T := f , m := n, s := 1, a = ω. (At each reduction level i below, T is the current
array to be updated, m is the current block length for DFT and s is the number of
blocks, so ms = n always holds.)

2. for i from k − 1 downto 0 do
2.1. t := m/2.
2.2. for j from 0 to s− 1 do

g := T [jm . . . jm+ t− 1],

T [jm . . . jm+ t− 1] := g + T [jm+ t . . . jm+m− 1],

T [jm+ t . . . jm+m− 1] := g − T [jm+ t . . . jm+m− 1],

T [jm+ t . . . jm+m− 1] := wt(T [jm+ t . . . jm+m− 1], a).

2.3. m := m/2, s := 2 · s, a := a2.
3. Return T .

In terms of the diagram in Figure 2, the outer loop i corresponds to the level from top to
bottom, and the inner loop j runs horizontally at each level from left to right. The steps in
the inner loop correspond to the computation in (26).

Remark. We have been vague about the order of values output by the above FFT algo-
rithms. It must be stressed that they are not in the (natural?) order

f(ω0), f(ω1), . . . , f(ωi), . . . , f(ωn−1). (27)

To state the correct order, we need to define a permutation σ on the set {0, 1, . . . , n − 1}
where n = 2k. For each integer 0 ≤ i < n, write i in binary form

i = i0 + i1 · 2 + · · ·+ ik−1 · 2
k−1 = (i0, i1, . . . , ik−1)2.

We insist that i has k bits, padding zeros if necessary. Define

σ(i) = (ik−1, . . . , i1, i0)2,

i.e., σ(i) obtained from i by reversing its k bits. For example, if n = 25 and i = 11 =
(1, 1, 0, 1, 0)2, then σ(i) = (0, 1, 0, 1, 1)2 = 26. Also, σ(i) = i for i = 0, or n− 1.

Exercise. Show that

DFT(f, n, ω) = (f(ωσ(0)), f(ωσ(1)), . . . , f(ωσ(i)), . . . , f(ωσ(n−1))). (28)

In practice, if the order (27) is desirable, one must permute (or scramble) the data by σ at
the end of the above algorithms.

In the following, we list several families of primes p for which the field Fp supports DFT
for various length n = 2k. Recall Fp has a primitive n

th root of unity if and only if n|(p− 1).

(a) Fermat primes Fi = 2
2i + 1 for i = 0, 1, 2, 3 or 4. That is,

p = 3, 5, 17, 257, 65537.

For each of these primes p, ω = 3 is a primitive element in Fp. Fermat conjectured that Fi
is prime for all i, but he was completely wrong, since it is now known to be composite for
all 5 ≤ i ≤ 32. In fact, the next number 22

5
+ 1 = 641 · 6700417, and complete factorization

16

of Fi is known for all i ≤ 11. Currently i = 33 is the smallest for which the compositeness
of Fi is unknown (by August 29, 2001; see http://www.prothsearch.net/fermat.html).

(b) p = 3 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534.

(c) p = 5 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 1, 3, 13, 15, 25, 39, 55, 75, 85, 127, 1947.

(d) p = 7 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 2, 4, 6, 14, 20, 26, 26, 50, 52, 92, 120, 174, 180, 190, 290, 320, 390, 432, 616, 830, 1804.

(e) p = 9 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 1, 2, 3, 6, 7, 11, 14, 17, 33, 42, 43, 63, 65, 67, 81, 134, 162, 206,

211, 366, 663, 782, 1305, 1411, 1494.

(f) Mersenne primes: p = 2k − 1. All known Mersenne primes come from

k = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,

4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,

132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593.

For a Mersenne prime p = 2k − 1,

p2 − 1 = (p+ 1)(p− 1) = 2k+1(2k−1 − 1)

is divisible by n = 2k+1. So one can apply FFT over Fp2 . Since p ≡ 3 (mod 4), we know
x2 + 1 is irreducible over Fp and

Fp2 = Fp[i] = {a+ bi : a, b ∈ Fp},

where i2 = −1. For explicit construction of elements of order n = 2k+1 in Fp2 , see the paper

Ian F. Blake, Shuhong Gao and Ronald C. Mullin, “Explicit factorization of
x2
k
+ 1 over Fp with prime p ≡ 3 mod 4,” Applicable Algebra in Engineering,

Communication and Computation 4 (1993), 89–94.

3.2. 3-adic FFT. Next consider (ii), in which n = 3k. Momentarily let n = 3t where t ≥ 1
is an arbitrary integer. Assume F supports DFT for xn−1, hence F must have characteristic
not divisible by 3. Let f ∈ F[x]. We want to compute f(a) for all roots a of xn − 1. Let
ω ∈ F be a primitive (3t)th root of unity. Then ω0 = ωt is a primitive third root of unity,
hence

x3 − 1 = (x− 1)(x− ω0)(x− ω
2
0),

and

xn − 1 = x3t − 1 = (xt − 1)(xt − ω0)(x
t − ω20).

17

Suppose

xt − 1 =
t∏
i=1

(x− ωi).

Then

xt − ω0 =
t∏
i=1

(x− ω · ωi), x
t − ω20 =

t∏
i=1

(x− ω2 · ωi).

The reason for the second equation is that

xt − ω20 = x
t − ω2t = ω2t

((x
ω2

)t
− 1

)
=

t∏
i=1

(x− ω2 · ωi),

similarly for the first. Hence, for any polynomial u ∈ F[x], DFT(u) for xt − ω0 is the same
as DFT(u1) for x

t − 1 where u1 = wt(u, ω), the weighted polynomial of u at ω, similarly
DFT(u) for xt − ω20 is equal to DFT(u2) for u2 = wt(u, ω

2).

To evaluate f , write

f = f0 + f1 · x
t + f2 · x

2t, fi ∈ F[x], deg fi(x) < t, i = 0, 1, 2.

Then

f ≡ f0 + f1 + f2 (mod xt − 1),

f ≡ f0 + ω0f1 + ω
2
0f2 (mod xt − ω0),

f ≡ f0 + ω
2
0f1 + ω0f2 (mod xt − ω20).

Computing

g0 =f0 + f1 + f2,

g1 =f0 + ω0f1 + ω
2
0f2, g1 =wt(g1, ω),

g2 =f0 + ω
2
0f1 + ω0f2, g2 =wt(g2, ω

2),

we have

DFT(f, 3t) = (DFT(g0, t),DFT(g1, t),DFT(g2, t)). (29)

So a DFT of size 3t (for x3t − 1) is reduced to three DFTs of size t (for xt − 1). Pictorially,
this reduction looks like the following:

When t is divisible by 3, one can apply this reduction again to each of the smaller problems.
In the case when n = 3k, the problem of size n can be reduced to n problems of size 1 each
in k = log3 n steps, hence obtaining the values of f . To see the numbers of operations used
in total, we note that each reduction uses 6t = 2n additions in F, 4t = 4

3
n multiplications

by ω0, and 2t =
2
3
n multiplications by powers of ω. Since ω0 is very special and is fixed in

each reduction, we may assume that multiplication by ω0 is equivalent to one addition in F
(e.g., when F = Fp2 where p is of the form 3

k · `− 1). Hence each reduction uses at most 10
3
n

additions in F and 2
3
n multiplications by powers of ω.

18

ω
 0

ω
 0

ω
 0

ω
 0

f
 0

f1 f
 2

+ + +

+ + +

1
t−12 2 2t−24ω ω ωω ω ω

gg
 0

g
1 2

1.

Figure 3. 3-adic FFT

Theorem 3.2. Let n be a power of 3. Assume that F supports DFT for xn − 1. Then DFT
over F can be computed using at most 10

3
n log3 n additions and

2
3
n log3 n multiplications in

F.

We omit the detailed description of the algorithm, but the reader is encouraged to supply
one here. We briefly compare 3-adic FFT with binary FFT. Note that

10

3
n log3 n > 2.1n log2 n,

2

3
n log3 n < 0.421n log2 n.

Hence 3-adic FFT uses at least twice as many additions in F as binary FFT, but slightly
fewer multiplications in F.

Exercise. Develop a 4-adic FFT. Let i ∈ F has order 4, so i2 = −1. Assume that multipli-
cation by i in F is equivalent to one addition (e.g. F = Fp2 where p is a Mersenne prime).
Show that your FFT uses at most 9

8
n log2 n additions and

3
8
n log2 n multiplications in F.

Hence 4-adic FFT can be more efficient than binary FFT.

Exercise. Let n = ` · h where `, h > 1. Suppose F contains a primitive nth root ω of unity
and has characteristic not dividing n. Denote ω` = ω

h and ωh = ω
`, which have orders `

and h, respectively. Let f ∈ F[x] of degree < n. Write f as

f =
`−1∑
i=0

h−1∑
j=0

fij x
`j+i.

For 0 ≤ k ≤ n−1, write k as k = u+hv where 0 ≤ u ≤ h−1 and 0 ≤ v ≤ `−1. Verify that

f(ωk) =
`−1∑
i=0

(
h−1∑
j=0

fijω
ju
h

)
· ωiu · ωiv` .

Use this equation to compute DFT(f, ω) using DFTs of lengths h and `.

19

3.2.1. Fast Interpolation. We have seen that interpolation is nothing but the inverse of DFT.
Fast algorithms for interpolation can be obtained by using the inverse reductions discussed
above. In terms of the diagrams, one essentially just needs to reverse the arrows and use
ω−1 in place of ω. We examine more carefully at the binary FFT, and leave the other FFTs
to the reader.

The reduction in (26) from (g, h) to (g1, h1) is

g1 := g + h, h1 := g − h, h1 := wt(h1, ω).

The reverse reduction is then

h := wt(h1, ω
−1), g := (g1 + h)/2 h := (g1 − h)/2.

Here the extra part is the division by 2. One may omit this division at each reduction step,
but divide by 2k = n at the end of the algorithm. Then the algorithm looks exactly the
same, except now from smaller blocks to large ones, and the number of operations are still
the same (plus n divisions by n). Algorithm 3 is now easily modified to compute the inverse
FFT. The map σ is the same as defined in (28).

Algorithm 4: Interpolation: inverse FFT (binary)

Input: n = 2k (k ≥ 1), ζ = ω−1 ∈ F of order n, and b = (b0, b1, . . . , fn−1) ∈ Fn.

Output: iDFT(b) = f such that f(ωσ(i)) = bi, 0 ≤ i ≤ n− 1.

1. T := b, m := 1, s := n. (At each reduction level i below, T is the current array to
be updated, m is the current block length for DFT and s is the number of blocks, so
ms = n always holds.)

2. for i from 0 to k − 1 do
2.1. s := s/2, t := m, m := 2 ·m, a := ζ2

k−1−i
.

2.2. for j from 0 to s− 1 do

T [jm+ t . . . jm+m− 1] := wt(T [jm+ t . . . jm+m− 1], a),

g := T [jm . . . jm+ t− 1],

T [jm . . . jm+ t− 1] := g + T [jm+ t . . . jm+m− 1],

T [jm+ t . . . jm+m− 1] := g − T [jm+ t . . . jm+m− 1].

3. Return T/n.

There is another elegant method for interpolation. Suppose that

(b0, b1, . . . , bn−1) = DFT((f0, f1, . . . , fn−1), ω, σ),

where σ indicates that the scramble σ of data is performed after the FFT. Then we have

f(ωi) = bi, 0 ≤ i ≤ n− 1,

20

or equivalently 

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω2·2 · · · ω2·(n−1)

...
...

...
...

1 ωn−1 ω(n−1)·2 · · · ω(n−1)·(n−1)






f0
f1
f2
...
fn−1


 =



b0
b1
b2
...
bn−1


 .

The inverse of the above matrix is known, in fact,

f0
f1
f2
...
fn−1


 =

1

n




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−2·2 · · · ω−2·(n−1)

...
...

...
...

1 ω−(n−1) ω−(n−1)·2 · · · ω−(n−1)·(n−1)






b0
b1
b2
...
bn−1


 .

Hence
(f0, f1, . . . , fn−1) = DFT((b0, b1, . . . , bn−1), ω

−1, σ)/n.

Therefore, interpolation is nothing more than a DFT with a data scrambling!

