
Factoring Polynomials via Polytopes

Fatima Abu Salem
Computing Laboratory

Oxford University
Wolfson Building, Parks Road

Oxford, OX1 3QD, UK
fatima.abusalem@comlab.ox.ac.uk

Shuhong Gao
Dept. of Mathematical Sciences

Clemson University
Clemson, South Carolina

29634-0975, USA
sgao@ces.clemson.edu

Alan G. B. Lauder
Mathematical Institute

Oxford University
St Giles, Oxford
OX1 3LB, UK

lauder@maths.ox.ac.uk

ABSTRACT
We introduce a new approach to multivariate polynomial
factorisation which incorporates ideas from polyhedral ge-
ometry, and generalises Hensel lifting. Our main contribu-
tion is to present an algorithm for factoring bivariate poly-
nomials which is able to exploit to some extent the sparsity
of polynomials. We give details of an implementation which
we used to factor randomly chosen sparse and composite
polynomials of high degree over the binary field.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
algorithms, experimentation

Keywords
multivariate polynomial, factorisation, Newton polytope

1. INTRODUCTION
Factoring polynomials is a fundamental problem in alge-

bra and number theory and it is a basic routine in all major
computer algebra systems. There is an extensive literature
on this problem — we refer the reader to the references in
[6]. Most of these papers deal with dense polynomials, two
notable exceptions being [7, 9]. These two papers reduce
sparse polynomials with more than two variables to bivariate
or univariate polynomials which are then treated as dense
polynomials. It is still open whether there is an efficient
algorithm for factoring sparse bivariate or univariate poly-
nomials. Our goal in this paper is to study sparse bivariate
polynomials using their connection to integral polytopes.

∗
Fatima Abu Salem is supported by the EPSRC, Shuhong Gao is

partially supported by the NSF, NSA and ONR, and Alan Lauder
is a Royal Society University Research Fellow. Mathematics Subject
Classification 2000: Primary 11Y05, 68Q25.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’04,July 4–7, 2004, Santander, Spain.
Copyright 2004 ACM 1-58113-827-X/04/0007 ...$5.00.

Newton polytopes of multivariate polynomials reflect to a
certain extent the sparsity of polynomials and they carry a
lot of information about the factorisation patterns of poly-
nomials as demonstrated in our recent work [2, 3]. In [5],
we deal with irreducibility of random sparse polynomials.
In this paper our focus is on the more difficult problem of
factoring sparse polynomials. We do not solve this prob-
lem completely. However, our approach is a practical new
method which generalises Hensel lifting; its running time
will in general improve upon that of Hensel lifting and sparse
bivariate polynomials can often be processed significantly
more quickly. As with Hensel lifting, it has an exponential
worst-case running time. Also, our method does not work
for all polynomials, but only for those that are squarefree on
certain subsets of the edges of their Newton polytopes (see
Theorem 7).

Here is a brief outline of the paper. In Section 2 we
present a brief introduction to Newton polytopes and their
relation to multivariate polynomials, and in Section 3 we
state our central problem. Section 4 contains an outline of
our method, and highlights the theoretical problems we need
to address. The main theorem underpinning our method is
proved in Section 6, after a key geometric lemma in Section
5. Section 7 contains a concise description of the algorithm.
Finally in Section 8 we present a small example, as well as
details of our computer implementation of the algorithm.
We believe the main achievements of this paper are the the-
oretical results in Section 6, and the high degree polynomials
we have factored using the method, as presented in Subsec-
tion 8.2.

2. OSTROWSKI’S THEOREM
This paper considers polynomial factorisation over a field

F of arbitrary characteristic. We denote by N the non-
negative integers, and Z, Q and R the integers, rationals
and reals.

Let F[X1, X2, . . . , Xn] be the ring of polynomials in n
variables over the field F. For any vector e = (e1, . . . , en)
of non-negative integers define Xe := Xe1

1 . . . Xen
n . Let

f ∈ F[X1, . . . , Xn] be given by

f :=
X

e

aeX
e (1)

where the sum is over finitely many points e in N
n, and

ae ∈ F. The Newton polytope of f , Newt(f), plays an essen-
tial role in all that follows. It is the polytope in Rn obtained
as the convex hull of all exponents e for which the corre-
sponding coefficient ae is non-zero. It has integer vertices,

since all the e are integral points; we call such polytopes in-
tegral. Given two polytopes Q and R their Minkowski sum
is defined to be the set

Q + R := {q + r | q ∈ Q, r ∈ R}.
When Q and R are integral polytopes, so is Q+R. If we can
write an integral polytope P as a Minkowski sum Q + R for
integral polytopes Q and R then we call this an (integral)
decomposition. The decomposition is trivial if Q or R has
only one point. For an example of nontrivial decomposition,
see the figures in Section 8 where Newt(f) = Q + R. The
motivating theorem behind our investigation is (see [2]):

Theorem 1 (Ostrowski). Let f, g, h ∈ F[X1, . . . , Xn].
If f = gh then Newt(f) = Newt(g) + Newt(h).

An immediate result of this theorem relates to testing
polynomial irreducibility: In the simplest case in which the
polytope does not decompose, one immediately deduces that
the polynomial must be irreducible. This was explored in [2,
3, 5], in particular a quasi-polynomial time algorithm is pre-
sented in [5] for finding all the decompositions of any given
integral polytope in a plane. In this paper, we address the
more difficult problem: Given a decomposition of the poly-
tope, how can we recover a factorisation of the polynomial
whose factors have Newton polytopes of that shape, or show
that one does not exist?

In the remainder of the paper, we restrict our attention
to bivariate polynomials, and f always denotes a bivariate
polynomial in the ring F[x, y]. For e = (e1, e2) ∈ N

2, we
redefine the notation Xe to mean xe1ye2 . We shall retain the
term “Newton polytope” for the polygon Newt(f) to avoid
confusion with other uses of the term “Newton polygon”.

3. PARTIAL FACTORISATIONS
Let Newt(f) = Q + R be a decomposition of the Newton

polytope of f into integral polytopes in the first quadrant.
For each lattice point q ∈ Q and r ∈ R we introduce inde-
terminates gq and hr. The polynomials g and h are then
defined as

g :=
P

q∈Q gqX
q

h :=
P

r∈R hrX
r.

We call g and h the generic polynomials given by the de-
composition Newt(f) = Q + R. Let #Newt(f) denote the
number of lattice points in Newt(f). The equation f = gh
defines a system of #Newt(f) quadratic equations in the
coefficient indeterminates obtained by equating coefficients
of each monomial Xe with e ∈ Newt(f) on both sides. The
aim is to find an efficient method of solving these equations
for field elements. Our approach, motivated by Hensel lift-
ing, is to assume that, along with the decomposition of the
Newton polytope, we are given appropriate factorisations
of the polynomials defined along its edges. This “bound-
ary factorisation” of the polynomial is then “lifted” into the
Newton polytope, and the coefficients of the possible factors
g and h revealed in successive layers. Unfortunately, to de-
scribe the algorithm properly we shall need a considerable
number of elementary definitions — the reader may find the
figures in Section 8.1 useful in absorbing them all.

Let S be a subset of Newt(f). An S-partial factorisation
of f is a specialisation of a subset of the indeterminates gq

and hr such that for each lattice point s ∈ S the coefficients

of monomials Xs in the polynomials gh and f are equal field
elements. (A specialisation is just a substitution of field ele-
ments in place of indeterminates.) The case S = Newt(f) is
equivalent to a factorisation of f in the traditional sense, and
we will call this a full factorisation. Now suppose we have an
S-partial factorisation and an S′-partial factorisation. Sup-
pose further S ⊆ S′ and the indeterminates specialised in
the S-partial factorisation have been specialised to the same
field elements as the corresponding ones in the S′-partial fac-
torisation. Then we say the S′-partial factorisation extends
the S-partial factorisation. We call this extension proper if
S′ has strictly more lattice points than S.

Let Edge(f) denote the set of all edges of Newt(f). Each
edge δ ∈ Edge(f) is viewed as directed so that Newt(f) lies
on the left hand side of the edge, and this directed edge
can be defined by an affine function ` as follows. Suppose
the edge δ is from (u1, v1) to (u2, v2), vertices with integral
coordinates; (u1, v1) is called the starting vertex of the edge.
Let d = gcd(u2 − u1, v2 − v1), u0 = (u2 − u1)/d, and v0 =
(v2 − v1)/d. Then (u0, v0) represents the direction of δ and
the integral points on δ are of the form

(u1, v1) + i(u0, v0), 0 ≤ i ≤ d.

Let (ν1, ν2) := (−v0, u0), a rotation of (u0, v0) by 90 degrees
counter clockwise, and let η = v0u1 − u0v1. Define

`(e) = ν1e1 + ν2e2 + η, for e = (e1, e2) ∈ R
2.

Then ` has the property that `(e) ≥ 0 for each point e ∈
Newt(f), with the equation holding iff e ∈ δ, that is, Newt(f)
lies in the positive side of the line ` = 0. We call this function
` the primitive affine function associated with δ, denoted by
`δ.

The function `δ has another nice property: Since
gcd(ν1, ν2) = 1, there exist integers ζ1 and ζ2 such that
ζ1ν1 + ζ2ν2 = 1, and they are unique under the requirement
that 0 ≤ ζ2 < ν1. Define the change of variables

z := xν2y−ν1 and w := xζ1yζ2 . (2)

Then any monomial of the form xe1ye2 can be written as
xe1ye2 = zi1wi2 , where„

i1
i2

«
=

„
ζ2 −ζ1

ν1 ν2

« „
e1

e2

«
.

Its inverse transform is„
e1

e2

«
=

„
ν2 ζ1

−ν1 ζ2

« „
i1
i2

«
.

This change of variables has the nice property that when
(e1, e2) moves along the direction (u0, v0) of the edge δ, then
the exponent of w remain constant (as i2 = `δ(e1, e2) − η),
while the exponent of z strictly increases (by 1 = ζ2u0−ζ1v0

for each increment of (u0, v0)).
For each δ ∈ Edge(f), there exists a unique pair of faces

(either edges or vertices) δ′ and δ′′ of Q and R, respectively,
such that δ = δ′ + δ′′. One can also easily show that there
exists a unique integer cδ such that

δ′ = {e ∈ Q | `δ(e) = cδ}
δ′′ = {e ∈ R | `δ(e) = −cδ + η}

where η is the constant coefficient of `δ.
Let Γ ⊆ Edge(f), and let K = (kγ)γ∈Γ be a vector of

positive integers, one for each edge γ ∈ Γ. Define

Newt(f)|Γ,K := {e ∈ Newt(f) | 0 ≤ `γ(e) < kγ for γ ∈ Γ}.

This defines a strip along the interior of Newt(f), or a union
of such strips. We denote by Q|Γ,K and R|Γ,K the subsets
of Q and R respectively given by

Q|Γ,K := {e ∈ Q | 0 ≤ `δ(e) < kδ + cδ for δ ∈ Γ}
R|Γ,K := {e ∈ R | 0 ≤ `δ(e) < kδ − cδ + η for δ ∈ Γ}.

Once again these denote strips along the inside of Q and R
whose sum contains the strip Newt(f)|Γ,K in Newt(f), as
indicated by Figures 2, 3 and 4.

We now come to the main definition of this section.

Definition 2. A Newt(f)|Γ,K-factorisation is called a
(Γ, K; Q,R)-factorisation if the following two properties hold:

• Exactly the indeterminate coefficients of g and h in-
dexed by lattice points in Q|Γ,K and R|Γ,K, respec-
tively, have been specialised.

• Let K′ = (k′γ)γ∈Γ be a vector of positive integers with
k′γ ≥ kγ for all γ ∈ Γ, with the inequality strict for
at least one γ. Then not all of the indeterminate co-
efficients of g indexed by lattice points in Q|Γ,K′ have
been specialised.

The second property will be used only once, in the proof
of Lemma 8. In most instances Q,R and Γ will be clear from
the context. If so we will omit them and refer simply to a
K-factorisation. Furthermore, if K is the all ones vector, de-
noted (1), of the appropriate length indexed by elements of
some set Γ, then we call this a (Γ;Q,R)-boundary factorisa-
tion. We shall simplify this to partial boundary factorisation
or (1)-factorisation when Γ, Q and R are evident from the
context. This special case will be the “lifting off” point for
our algorithm.

The central problem we address is

Problem 3 Let f ∈ F[x, y] have Newton polytope Newt(f)
and fix a Minkowski decomposition Newt(f) = Q+R where
Q and R are integral polygons in the first quadrant. Sup-
pose we have been given a (Γ; Q,R)-boundary factorisation
of f for some set Γ ⊆ Edge(f). Construct a full factorisation
of f which extends it, or show that one does not exist.

Moreover, one wishes to solve the problem in time bounded
by a small polynomial function of #Newt(f).

4. THE POLYTOPE METHOD

4.1 An outline of the method
We now give a basic sketch of our polytope factorisation

method for bivariate polynomials. Throughout this section
Γ will be a fixed subset of Edge(f) and Newt(f) = Q +
R a fixed decomposition. We shall need to place certain
conditions on Γ later on, but for the time being we will
ignore them. Since Γ, Q and R are fixed we shall use our
abbreviated notation when discussing partial factorisations.

We begin with K = (1) the all-ones vector of the appropri-
ate length and a K-factorisation (partial boundary factori-
sation). Recall this is a partial factorisation in which exactly
the coefficients in the sets Q|Γ,K and R|Γ,K , subsets of points
on the boundaries of Q and R, have been specialised.

At each step of the algorithm we either show that no full
factorisation of f exists which extends this partial factorisa-
tion, and halt, or that at most one can exist, and we find a

new K′-factorisation with K′ = (k′δ) such that

X
δ∈Γ

k′δ >
X
δ∈Γ

kδ.

(Usually the sum will be incremented by just one.) Iterat-
ing this procedure either we halt after some step, in which
case we know that no factorisation of f exists which extends
the original partial boundary factorisation, or we eventually
have Q ⊆ Q|Γ,K , say. At that point all of the indeterminates
in one of our partial factors have been specialised, and we
may check to see if we have found a factor by division.

Note that in the situation in which Newt(f) is just a tri-
angle with vertices (0, n), (n, 0) and (0, 0) for some n, our
method reduces to the standard Hensel lifting method for
bivariate polynomial factorisation. As such, our “polytope
method” is a natural generalisation of Hensel lifting from
the case of “generic” dense polynomials to arbitrary, possi-
bly sparse, polynomials.

4.2 Hensel lifting equations
In this section we derive the basic equations which are

used in our algorithm.
Let f be as in (1). For any δ ∈ Edge(f) recall that `δ is

the associated primitive affine function. For i ≥ 0 we define

fδ
i :=

X
`δ(e)=i

aeX
e.

Thus fδ
i is just the polynomial obtained from f by removing

all terms whose exponents do not lie on the “ith translate
of the supporting line of δ into the polytope Newt(f)”. We
call the polynomials fδ

0 edge polynomials.
Given the decomposition Newt(f) = Q + R let δ′ and δ′′

denote the unique faces of Q and R which sum to δ. As
before assume `δ(δ

′) = cδ and `δ(δ
′′) = −cδ + η. Let g and

h denote generic polynomials with respect to Q and R. For
i ≥ 0 define

gδ
i :=

X
q∈Q, `δ(q)=cδ+i

gqX
q

hδ
i :=

X
r∈R, `δ(r)=−cδ+η+i

hrX
r.

Once again gδ
i and hδ

i are obtained from g and h by con-
sidering only those terms which lie on particular lines. The
next result is elementary but fundamental.

Lemma 4. Let f ∈ F[x, y] and Newt(f) = Q + R be an
integral decomposition with corresponding generic polynomi-
als g and h. Let Edge(f) denote the set of edges of Newt(f)
and δ ∈ Edge(f). The system of equations in the coefficient
indeterminates of g and h defined by equating monomials on
both sides of the equality f = gh has the same solutions as
the system of equations defined by the following:

fδ
0 = gδ

0h
δ
0, and gδ

0hδ
k + hδ

0g
δ
k = fδ

k −
k−1X
j=1

gδ
j hδ

k−j for k ≥ 1.

(3)
Thus any specialisation of coefficient indeterminates which
is a solution of equations (3) will give a full factorisation of
f .

Proof. In the equation f = gh gather together on each
side all monomials whose exponent vectors lie on the same
translate of the line supporting δ.

These are precisely the equations which are used in Hensel
lifting to try and reduce the non-linear problem of selecting
a specialisation of the coefficients of g and h to give a fac-
torisation of f , to a sequence of linear systems which may
be recursively solved. We recall precisely how this is done,
as our method is a generalisation.

We begin with a specialisation of the coefficients in the
polynomials gδ

0 and hδ
0 which gives a factorisation of the

polynomial fδ
0 . Equation (3) with k = 1 gives a linear sys-

tem for the indeterminate coefficients of gδ
1 and hδ

1. In the
special case in which standard Hensel lifting applies this
system may be solved uniquely, and thus a unique partial
factorisation of f is defined which extends the original one.
This process is iterated for k > 1 until all the indetermi-
nate coefficients in one of the generic polynomials have been
specialised, at which stage one checks whether a factor has
been found by division.

The problem with this method is that in general there
may not be a unique solution to each of the linear systems
encountered. There will be a unique solution in the dense bi-
variate case mentioned at the end of Section 4.1, subject to a
certain coprimality condition. General bivariate polynomi-
als may be reduced to ones of this form by randomisation,
but the substitutions involved destroy the sparsity of the
polynomial. Our approach avoids this problem, although
again is not universal in its applicability. As explained ear-
lier, our method extends a special kind of partial boundary
factorisation of f , rather than just the factorisation of one
of its edges. In this way uniqueness in the bivariate case is
restored.

5. A GEOMETRIC LEMMA
This section contains a geometric lemma which ensures

our method can proceed in a unique way at each step pro-
vided we start with a special type of partial boundary fac-
torisation. We begin with a key definition.

Definition 5. Let Λ be a set of edges of a polygon P in
R

2 and r a vector in R
2. We say that Λ dominates P in

direction r if the following two properties hold:

• P is contained in the Minkowski sum of the set Λ and
the infinite line segment rR≥0 (the positive hull of r).
Call this sum Mink(Λ, r).

• Each of the two infinite edges of Mink(Λ, r) contains
exactly one point of P .

Thus Mink(Λ, r) comprises a region bounded by the inte-
rior strip between its two infinite edges and the edges in Λ.
This definition is illustrated in Figure 1 where Λ consists of
all the bold edges on the boundary indicated by T .

We will call Λ an irredundant dominating set if it is a dom-
inating set (in direction r, say) that does not strictly contain
any other dominating set (in direction r). The edges in an
irredundant dominating set are necessarily connected. For
a polygon P in R

2 which is not a single point, it is obvi-
ous that there exists at least one irredundant dominating
set: pick a direction r which is not a slope of any edge, and
starting with the dominating set of all edges delete edges as
required.

T
1

s

r

r

T

0

P

Figure 1: Dominating set of edges

The next lemma is at the heart of our algorithm.

Lemma 6. Let P be an integral polygon and Λ an irredun-
dant dominating set of edges of P . Suppose Λ1 is a polygo-
nal line segment in P such that each edge of Λ1 is parallel
to some edge of Λ. If Λ1 is different from Λ then Λ has at
least one edge that has strictly more lattice points than the
corresponding edge of Λ1.

The lemma is illustrated in Figure 1, where T denotes the
union of the edges in Λ and T1 the union of the line segments
in Λ1.

Before proving this lemma we make one more definition.
We define a map πr onto the orthogonal complement 〈r〉⊥ :=

{s ∈ R
2 | (s · r) = 0} of the vector r as follows:

πr(v) = v −
“v · r

r · r
”

r.

We call this projection by r, and we have that πr(P) =
πr(Λ). Notice that if e1 and e2 are adjacent edges in an ir-
redundant dominating set, then the length of the projection
by r of the polygonal line segment e1e2 is just the sum of the
lengths of the projections by r of the individual edges e1 and
e2. For otherwise, we would have, say, πr(e1) ⊆ πr(e2) and
hence rR≥0 + e1 ⊆ rR≥0 + e2. Thus the edge e1 would be
redundant, a contradiction. The same is true if we replace
e1 and e2 by any adjacent line segments parallel to them —
we still obtain an “additivity” in the lengths, which shall be
used in the proof of the lemma.

Proof. We assume that Λ dominates P in the direction
r as shown in Figure 1. Let δ1, · · · , δk be the edges in Λ
and δ′1, · · · , δ′k the corresponding edges of Λ1. Let ni be the
number of lattice points on δi, and mi that on δ′i, 1 ≤ i ≤ k.
We want to show that ni > mi for at least one i, 1 ≤ i ≤ k.
Suppose otherwise, namely

ni ≤ mi, 1 ≤ i ≤ k. (4)

We derive a contradiction by considering the lengths of Λ
and Λ1 on the projection by πr. Note that if mi = 0 for

some i then certainly ni > mi and we are done; thus we
may assume that mi ≥ 1 for all i.

First, certainly π(Λ1) ⊆ π(Λ) as Λ is a dominating set.
Since Λ1 is different from Λ, their corresponding end points
must not coincide. Hence at least one end point of Λ1 will
not be on the infinite edges in the direction r. Hence πr(Λ1)
lies completely inside πr(Λ), so has length strictly shorter
than πr(Λ).

Now for 1 ≤ i ≤ k let εi be the length of the projection
of a primitive line segment on δi (which means that the line
segment has both end points on lattice points but no lattice
points in between). Certainly εi ≥ 0. Since the end points of
δi are lattice points, the length of πr(δi) is exactly (ni−1)εi

for 1 ≤ i ≤ k, hence πr(Λ) has length
Pk

i=1(ni−1)εi. (Here
we need the fact that the dominating set is irredundant, to
give us the necessary “additivity” in the lengths.) For δ′i,
since it is parallel to δi, the projected length of a primitive
line segment on it is also εi. Hence the length of πr(Λ1) is

at least
Pk

i=1(mi − 1)εi and from (4) we know that

kX
i=1

(mi − 1)εi ≥
kX

i=1

(ni − 1)εi.

This contradicts our previous observation that πr(Λ1) is
strictly shorter than πr(Λ). The lemma is proved.

6. THE MAIN THEOREM
Let Γ be an irredundant dominating set of Newt(f). We

call a (Γ; Q,R)-boundary factorisation of f a dominating
edges factorisation relative to Γ, Q and R. A coprime domi-
nating edges factorisation is a (Γ;Q, R)-boundary factorisa-
tion with the property that for each δ ∈ Γ the edge poly-
nomials gδ

0 and hδ
0 are coprime, up to monomial factors.

(In other words, they are coprime as Laurent polynomials.
Note that our factorisation method applies most naturally
to Laurent polynomials.)

We are now ready to state our main theoretical result.

Theorem 7. Let f ∈ F[x, y] and Newt(f) = Q + R be a
fixed Minkowski decomposition, where Q and R are integral
polygons in the first quadrant. Let Γ be an irredundant dom-
inating set of Newt(f) in direction r, and assume that Q is
not a single point or a line segment parallel to rR≥0. For
any coprime dominating edges factorisation of f relative to
Γ, Q and R, there exists at most one full factorisation of f
which extends it, and moreover this full factorisation may be
found or shown not to exist in time polynomial in #Newt(f).

We shall prove this theorem inductively through the next
two lemmas.

Lemma 8. Let f, Q,R and Γ be as in the statement of
Theorem 7. Suppose we are given a K-factorisation of f ,
where K = (kδ)δ∈Γ (more specifically, a (Γ, K; Q,R) - fac-
torisation). For each δ ∈ Γ, denote by δ′ the face of Q
supported by `δ − cδ. There exists δ ∈ Γ with the following
properties

• The face δ′ is an edge (rather than a vertex).

• The number of unspecialised coefficients of gδ
kδ

is non-
zero but strictly less than the number of integral points
on δ′.

• All the unspecialised terms of gδ
kδ

have exponents being
consecutive integral points on the line defined by `δ =
(cδ + kδ).

Proof. Let Q̄ be the polygon

Q̄ := {r ∈ Q | `δ(r) ≥ cδ + kδ for all δ ∈ Γ}.
Note that the lattice points in Q̄ correspond to unspecialised
coefficients of g. Let Λ denote the set of edges δ ∈ Γ of
Newt(f) such that the functional `δ−cδ supports an edge of
Q (rather than just a vertex). Note that Λ 6= ∅, for otherwise
Q must be a single point or a line segment in direction r,
contradicting our assumption. We denote the edge by δ′,
and write δ̄ for the face of Q̄ supported by `δ − (cδ + kδ).
Note that each δ̄ contains at least one lattice point. (This
follows from the second property in Definition 2.) Certainly,
δ̄ is parallel to δ′ for each δ ∈ Λ, and the edge sequence
{δ̄}δ∈Λ, forms a polygonal line segment in Q. Since Γ is
an irredundant dominating set for Newt(f), the set of edges
{δ′}δ∈Λ is an irredundant dominating set for Q. By Lemma
6, there is at least one edge δ ∈ Λ, such that δ′ has strictly
more lattice points than δ̄. This edge δ has the required
properties. This completes the proof.

Lemma 9. Let f, Q, R and Γ be as in the statement of
Theorem 7. Suppose we are given a K-factorisation of f ,
where K = (kδ)δ∈Γ. Moreover, assume this factorisation
extends a coprime dominating edges factorisation, i.e., the
polynomials gδ

0 and hδ
0 are coprime up to monomial factors

for all δ ∈ Γ. Then there exists δ ∈ Γ such that the coef-
ficients of gδ

kδ
are not all specialised, but they may be spe-

cialised in at most one way consistent with equations (3).
This specialisation may be computed in time polynomial in
#Newt(f).

Proof. The basic idea of proof is to first transform the
bivariate equation (3) into equations of univariate polyno-
mials determined by the individual edges, then to determine
the existence or uniqueness of solutions.

Select δ ∈ Γ such that the properties in Lemma 8 hold.
Let nδ and mδ be the number of integral points on the edges
δ′ and δ̄ respectively, where δ′ and δ̄ are defined as in the
proof of Lemma 8. Thus we have mδ < nδ and mδ ≥ 1.
With the notation from Section 3, write `δ(e1, e2) = ν1e1 +
ν2e2 + η, where ν1 and ν2 are coprime.

Let z and w be new variables. Using the transform (2),
any monomial of the form xe1ye2 can be written as

xe1ye2 = zi1wi2 (5)

where

i1 = e1ζ2 − e2ζ1, i2 = e1ν1 + e2ν2 = `δ(e1, e2)− η.

Every monomial in gδ
i is of the form xe1ye2 where `δ(e1, e2) =

cδ + i. Let the monomials s and t be the terms of g and h re-
spectively whose exponents vectors are the starting vertices
of the faces of Q and R defined by `δ − cδ and `δ + cδ − η,
respectively. Thus we have gδ

i (z, w) = swiGi(z) for some
univariate Laurent polynomial Gi(z). Similarly hδ

i (z, w) =
twiHi(z) and fδ

i (z, w) = stwiFi(z), where Hi(z) and Fi(z)
are univariate Laurent polynomials. With this construction,
G0(z), H0(z) and F0(z) have non-zero constant term and are
“ordinary polynomials”, i.e., contain no negative powers of

z. For i < kδ all of the coefficients in the polynomials Gi(z)
and Hi(z) have been specialised. Moreover G0(z) is of de-
gree nδ, and all but mδ of the coefficients of Gkδ

(z) have
been specialised. (By “degree” of a Laurent polynomial we
mean the difference in the exponents of the highest and low-
est terms, if the polynomial is non-zero, and −∞ otherwise).
Equations (3) with this change of variables may be written
as F0(z) = G0(z)H0(z), and for k ≥ 1

Gk(z)H0(z) + G0(z)Hk(z) = Fk(z)−
k−1X
j=1

Gj(z)Hk−j(z).

We know that all of the coefficients of Gi(z) and Hi(z) have
been specialised for 0 ≤ i < kδ in such a way as to give a
solution to F0 = G0H0 and the first kδ − 1 equations above.
Thus we need to try and solve

Gkδ
H0 + G0Hkδ

= Fkδ
−

kδ−1X
j=1

GjHkδ−j . (6)

for the unspecialised indeterminate coefficients of Gkδ
and

Hkδ
.

We first compute using Euclid’s algorithm ordinary poly-
nomials U(z) and V (z) such that

V (z)H0(z) + U(z)G0(z) = 1

where degz(U(z)) < degz(H0(z)) and degz(V (z))
< degz(G0(z)). (Note that G0(z) and H0(z) are coprime
since we have a coprime partial boundary factorisation.)
Any solution Gkδ

of Equation (6) must be of the form

Gkδ
= {V (Fkδ

−
kδ−1X
j=1

GjHkδ−j) mod G0}+ εG0 (7)

for some Laurent polynomial ε(z) with undetermined coef-
ficients.

We rearrange (7) as

Gkδ
− {V (Fkδ

−
kδ−1X
j=1

GjHkδ−j) mod G0} = εG0 (8)

Let the degree in z of the Laurent polynomial on the lefthand
side of this equation be d. Now the degree of the polynomial
G0(z) as a Laurent polynomial (and an ordinary polynomial)
is nδ − 1. If d < nδ − 1 then we must have d = 0. In other
words, (7) has a unique solution, namely that with ε = 0.
Otherwise d ≥ nδ−1 and the degree in z of ε(z) as a Laurent
polynomial is d − (nδ − 1). Hence in this case we need to
also solve for the d−nδ +2 unknown coefficients of ε(z). We
know that all but mδ coefficients of Gkδ

have already been
specialised, and these unspecialised ones are adjacent terms.
Hence exactly (d + 1)−mδ coefficients on the lefthand side
of (8) have been specialised, which are adjacent lowest and
highest terms. By assumption we have that mδ < nδ, and
hence (d + 1) −mδ ≥ d− nδ + 2.

All of the coefficients of the righthand side of Equation (8)
have been specialised, except those of the unknown polyno-
mial ε(z). On the lefthand side all but the middle mδ coeffi-
cients have been specialised. This defines a pair of triangular
systems from which one can either solve for the coefficients of
ε uniquely, or show that no solution exists (this may happen
when nδ > mδ + 1). We describe precisely how this is done:
Suppose that exactly r of the lowest terms on the lefthand

side have been specialised, and hence also (d+1)− (mδ + r)
of the highest terms. We can solve uniquely for the r lowest
terms of ε(z) using the triangular system defined by con-
sidering coefficients of the powers za, za+1, . . . , za+r−1 on
both sides of Equation (7), where za is the lowest mono-
mial occurring on the lefthand side. One may also solve
for the coefficients of the (d + 1) − (mδ + r) highest powers
uniquely using a similar triangular system. (Note that to
ensure the triangular systems each have unique solutions we
use here the fact that the constant term of G0 is non-zero,
and the polynomial is of degree exactly nδ − 1.) Noticing
that (d+1)−(mδ +r)+r = (d+1−mδ) ≥ d−nδ +2, we see
that all the coefficients of ε have been accounted for. How-
ever, if d+1−mδ > d−nδ +2 (i.e. nδ > mδ +1) there will be
some “overlap”, and the two triangular systems might not
have a common solution. In this case there can be no solu-
tion to the Equation (7). If an ε(z) does exist which satisfies
Equation (8) then the remaining coefficients of Gkδ

can now
be computed uniquely. Having computed the only possible
solution of (7) for Gkδ

we can substitute this into Equation
(6) and recover Hkδ

directly. More precisely compute

(Fkδ
− Pkδ−1

j=1 GjHkδ−j)−Gkδ
H0

G0
. (9)

If its coefficients match with the known coefficients of Hkδ

then we have successfully extended the partial factorisation;
otherwise we know no extension exists.

These computations can be done in time quadratic in the
degree of the largest polynomial occurring in the above equa-
tions. Since all polynomials are Newton polytopes which are
line segments lying within Newt(f) this is certainly quadratic
in #Newt(f). (In fact, the running time is most closely re-
lated to the length of the side nδ from which we are per-
forming the lifting step.) This completes the proof.

Theorem 7 may now be proved in a straightforward man-
ner: Specifically, one first shows that for any partial factori-
sation extending a coprime dominating edges factorisation,
there exists at most one full factorisation extending it, and
this may be efficiently found. This is proved by induction on
the number of unspecialised coefficients in the partial fac-
torisation using Lemma 9. Theorem 7 then follows easily as
a special case.

7. THE ALGORITHM
We now gather everything together and state our algo-

rithm. We shall present it in an unadorned form, omitting
detail on how to perform the more straightforward subrou-
tines.

Algorithm 10
Input: A polynomial f ∈ F[x, y].
Output: A factorisation of f or “failure”.

Step A: Compute an irredundant dominating set Γ of
Newt(f). For this choice of Γ, compute all coprime (Γ;Q, R)-
boundary factorisations of f , i.e., coprime partial boundary
factorisations relative to the summands Q and R and the
dominating set Γ. Here Q and R range over the summand
pairs of Newt(f).

Step B: By repeatedly applying the method in the proof of
Lemma 9, lift each coprime dominating edges factorisation of
f as far as possible. If any of these lift to a full factorisation

output this factorisation and halt. If none of them lift to a
full factorisation then output “failure”.

Step A can be accomplished using a summand finding al-
gorithm, an algorithm for finding dominating sets, and a
univariate polynomial factorisation algorithm. A detailed
description of these stages of the algorithm is given in the
report [1]. For now, we just note that the summand find-
ing algorithm is just a minor modification of the summand
counting algorithm given in [3, Algorithm 17].

The algorithm is certainly correct, for it fails except when
it finds a factor using the equations in Lemma 9. On the
running time, using Theorem 7 lifting from each coprime
dominating edges factorisation can be done in time polyno-
mial (in fact cubic) in #Newt(f). However, although one
can find such a dominating edges factorisation efficiently,
the number of them may be exponential in the degree. In
practice we recommend that a relative small number of dom-
inating edges factorisations are tried before the polynomial
is randomised and one resorts to other “dense polynomial”
techniques.

The algorithm will always succeed when one starts with
a dominating set Γ of Newt(f) such that the polynomials
fδ
0 , δ ∈ Γ, are all squarefree (up to a monomial factor).

Precisely, if the algorithm outputs “failure” one knows that
in fact the polynomial f is irreducible, and otherwise the
algorithm will output a factor. One might call polynomi-
als for which such sets exist nice. This algorithm should
be compared with the standard method of factoring “nice”
polynomials using Hensel lifting. Precisely, in the literature
a bivariate polynomial of total degree n which is square-
free upon reduction modulo y is often called “nice”. The
standard Hensel lifting algorithm will factor “nice” bivari-
ate polynomials, on average very quickly [4], although in
exponential time in the worst case. Notice a “nice” poly-
nomial would be one whose Newton polytope has “lower
boundary” a single edge of length n which is squarefree. The
above algorithm factors not just these polynomials, but also
any polynomials which have a “squarefree dominating set”.
(The algorithm also includes as a special case that given in
Wan [10], where one “lifts downward” from the edge joining
(n, 0) and (0, n)).

8. EXAMPLES AND IMPLEMENTATION

8.1 Example
Suppose we want to factor the following binary polynomial

f = x12 + x19 + (x10 + x11 + x13)y + (x8 + x9 + x12 + x17)y2

+x7y3 + (x4 + x11)y4 + (x2 + x5 + x10)y5 + y6 + x10y8

+(x8 + x11)y9 + x6y10 + x9y12 + x15y16, with Newton poly-
tope pictured in Figure 2, where a star indicates a nonzero
term of f . Newt(f) is found to have three non-trivial de-
compositions, and eight irredundant dominating sets. None
of these sets have edge polynomials which are all squarefree;
however, fortunately we are still able to lift successfully from
one of the coprime partial boundary factorisations. Specifi-
cally, consider the decomposition Newt(f) = Q + R, where
Q and R are as in Figures 3 and 4, with generic polynomials
g and h. The dominating edges of Newt(f) which allow a co-
prime edge factorisation are the two on the lower boundary
of the polygon. Details of the lifting process are given in [1].
For now, we just note that the lines drawn in the interior of
the polygons in Figures 3 and 4 indicate the first few layers

of coefficients which are revealed during the lifting, and the
lines in the interior of Newt(f) the known coefficients of f
which are used to do this.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

(0 6)

(12 0) (19 0)

(15 16)

Figure 2: Newton polytope of f

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

(0 2)

(4 0) (11 0)

(9 8)

Figure 3: Newton polytope Q of the generic polyno-
mial g

8.2 Implementation
We have developed a preliminary implementation of the

algorithm with the aim of demonstrating how it would work
for bivariate polynomials over F2. The work was carried out
at the Oxford University Supercomputing Centre (OSC) on
the Oswell machine, using an UltraSPARC III processor run-
ning at about 122 Mflop/s and with 2 GBytes of memory.
The implementation was written using a combination of C
and Magma programs, and was divided into three phases. In
the first phase, the input polynomial is read and its Newton

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

(0 4)

(8 0)

(6 8)

Figure 4: Newton polytope R of the generic polyno-
mial h

polytope computed using the asymptotically fast Graham’s
algorithm for computing convex hulls [8]. In that phase we
also compute all irredundant dominating sets, and output
the edge polynomials. In the second phase, a Magma pro-
gram invokes a univariate factorisation algorithm to perform
the partial boundary factorisations, and the results are di-
rected into the third phase program. In this last phase, a
search for coprime dominating edges factorisations is per-
formed, and when appropriate, the lifting process is started.
The polynomial arithmetic was performed using classical
multiplication and division, and the triangular systems were
solved using dense Gaussian elimination over F2.

We generated a number of random experiments with to-
tal degree reaching d = 2000. In all these cases, the input
polynomial f was constructed by multiplying two random
polynomials g and h of degree d/2 each with a given num-
ber of non-zero terms. Specifically, for each polynomial the
given number of exponent vectors (e1, e2) were chosen uni-
formly at random subject to 0 ≤ e1 + e2 ≤ d/2. These
vectors always included ones of the form (e1, 0), (0, e2) and
(e3, (d/2)− e3) to ensure the polynomial was of the correct
degree and had no monomial factor. As the polynomials
chosen were sparse the corresponding Newton polytopes had
very few edges. In all these cases, the components of edge
vectors of Newt(f) had a very small gcd, so that the edges
had few integral points and consequently the polygon itself
had very few summands. Table 1 gives the running times of
the total factorisation process to find at least one non-trivial
factor involving all three phases described above. Here s is
the number of non-zero terms of the input polynomial f ;
#Newt(f), #Newt(g), and #Newt(h) are the total number
of lattice points in Newt(f), Newt(g) and Newt(h) respec-
tively; and t is the total running time in seconds. The actual
polynomials f, g and h in each of the cases are listed in [1].

9. CONCLUSION
In this paper we have investigated a new approach for

bivariate polynomial factorisation based on a study of New-

Table 1: Run time data for random experiments.

d s #Newt(f) #Newt(g) #Newt(h) t
50 14 561 166 50 2.3
100 16 2234 472 222 11.6
500 15 52940 12758 11282 21.5
1000 30 206461 28582 56534 42.9
2000 28 848849 133797 132932 410.7

ton polytopes and generalised Hensel lifting. In standard
Hensel lifting, one lifts a factorisation from a single edge, and
uniqueness can be ensured by randomising the polynomial to
enforce coprimality conditions and by making sure the edge
being lifted from is sufficiently long. This randomisation is
by substitution of linear forms which destroys the sparsity
of the input polynomial. Our main theoretical contribution
is to show how uniqueness may be ensured in the bivariate
case, only under certain coprimality conditions, and with-
out restrictions on the lengths of the edges. For certain
classes of sparse polynomials, namely those whose Newton
polytopes have few Minkowski decompositions, this gives a
practical new approach which greatly improves upon Hensel
lifting. As with Hensel lifting, our method has an expo-
nential worst-case running time; however, we demonstrated
the practicality of our algorithm on several randomly chosen
composite and sparse binary polynomials of high degree.

10. REFERENCES
[1] F. Abu Salem, S. Gao, and A.G.B. Lauder

“Factoring polynomials via polytopes: extended
version”, Report PRG-RR-04-07, Oxford University
Computing Laboratory, 2004.

[2] S. Gao, “Absolute irreducibility of polynomials via
Newton polytopes,” J. of Algebra 237 (2001),
501–520.

[3] S. Gao and A.G.B. Lauder, “Decomposition of
polytopes and polynomials”, Discrete and
Computational Geometry 26 (2001), 89–104.

[4] S. Gao and A.G.B. Lauder, “Hensel lifting and
bivariate polynomial factorisation over finite fields”,
Mathematics of Computation 71 (2002), 1663-1676.

[5] S. Gao and A.G.B. Lauder, Fast absolute
irreducibility testing via Newton polytopes, preprint
2003.

[6] J. von zur Gathen and J. Gërhard, Modern
Computer Algebra, Cambridge University Press,
1999.

[7] J. von zur Gathen and E. Kaltofen, “Factoring
sparse multivariate polynomials”, J. of Comput.
System Sci. 31 (1985), 265–287.

[8] R. L. Graham, “An efficient algorithm for
determining the convex hull of a finite planar set”,
Inform. Process. Lett. 1 (1972), 132-3.

[9] E. Kaltofen and B. Trager, “Computing with
polynomials given by black boxes for their
evaluations: Greatest common divisors,
factorization, separation of numerators and
denominators”, J. Symbolic Comput. 9 (1990),
301-320.

[10] D. Wan, “Factoring polynomials over large finite
fields”, Math. Comp. 54 (1990), No. 190, 755–770.

