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ABSTRACT. A result on finite abelian groups is first proved and
then used to solve problems in finite fields. Particularly, all finite
fields that have normal bases generated by general Gauss periods
are characterized and it is shown how to find normal bases of low
complexity.

Dedicated to Professor Chao Ko on his 90th birthday.

1. INTRODUCTION AND MAIN RESULTS

We first prove a result on finite abelian groups. We use the standard
notation < S, K > for the subgroup generated by the elements in S
and K together, and G/K, or %, for the quotient group of G by K.

Theorem 1.1. Let G be any finite abelian group. Let S be a subset
and K a subgroup of G such that G =< S, K >. Then, for any direct
product G = G1 @ Gy ® - - - ® Gy, there is a subgroup H of the form

H:H1®H2®®Ht7 ngGza 1§Z§t7

such that o G
G=<S8H> and 7%

Next we apply this theorem to some problems in finite fields that
arise in the work of Feisel et al [7] on constructing normal bases from
Gauss periods.

Gauss periods were invented by C. F. Gauss in 1796 in his famous res-
olution of the problem of constructing regular polygons by straightedge
and compass (see [21]) and have been very useful in studying algebraic
structures and in number theory. In recent years, special Gauss periods
have been successfully used to construct normal bases of low complex-
ity [4, 7, 11, 17] and for implementation of finite fields [2, 3, 19]. While
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Gauss periods can be defined in any finite Galois extension of an ar-
bitrary field (see Pohst and Zassenhaus [20, pp. 171-173] and van der
Waerden [22, pp. 169]), we only consider them in finite fields.

Definition 1.2 (Feisel et al 1999). Let ¢ be a prime power and r a
positive integer with ged(r,q) = 1. Let Z, denote the ring of integers
modulo v, Z) the multiplicative group of Z, and ¢(r) = |Z)}| = nk.
Write r as r = riry where rq is the squarefree part of r and set

g(x) = z™ H Z 2" e 7z,

Lry 1<i<vy(ra)

where ¢ runs through all prime divisors of ro and ve(rs) denotes the
largest integer v such that (¥ | ro. For any subgroup K of Z) of order
k, a Gauss period of type (n, K) over F, is defined as

a=> g5

acK
where 3 is a primitive rth root of unity in IF k.

When r is a prime (or squarefree), o = 1 and g(z) = z. In this
case, the above definition agrees with Gauss’ original one [13, Article
356], and since there is only one subgroup K of order k in Z, we say a
Gauss period of type (n, k) instead of (n, K). To distinguish this case,
we sometime call the Gauss periods defined above em general Gauss
periods.

A normal basis for Fyn over IFy is a basis of the form o, af,... a4
for some o € Fyn. Any such « is called a normal element of Fyn over
F, and the corresponding basis is said to be generated by o.

Theorem 1.3 (Feisel et al 1999). A Gauss period of type (n, K) over
[F, generates a normal basis for Fyn over F, iff < ¢, K >=17.

n—1

The problem is to characterize the values of ¢ and n for which there
exist an integer r and a subgroup K as above such that a Gauss period
of type (n, K) is normal. The experimental results in [7] indicate that
such 7 may not exist for many values of ¢ and n. For example, when
q = 2 and n divisible by 8, no such r were found by computers. Our
Theorem 1.1 can now be applied to resolve this problem.

Theorem 1.4. Let ¢ = p™ where p is a prime. There exists an integer
r such that a Gauss period of type (n, K) is normal for Fgn over F, for
some subgroup K of Z) iff gcd(m,n) =1 and if p = 2 then 8 1 n.

In the special case, when r is required to be a prime, the above
theorem was previously proved by Wassermann (1993). Theorem 1.4
characterizes exactly which finite fields have normal bases generated



GROUPS, GAUSS PERIODS, AND NORMAL BASES 3

by general Gauss periods. For more information on how to perform
fast arithmetic under normal bases generated by Gauss periods, see
8,9, 10, 12, 18].

In practice, the size of r is extremely important: smaller r results
in smaller complexity for the normal bases. We present computational
results on the size of r. We shall see from the proof of Theorem 1.4
that whenever the required r exist, one can find squarefree r. Hence,
for simplicity, we only consider squarefree r. Note that there are some
theoretical bounds on prime r in [1, 5], however, the bounds are quite
bad compared to the experimental results presented in the tables below.

Suppose that r is given squarefree and nk = ¢(r). The question is
how to efficiently decide whether there is any subgroup K of order k
in Z) such that < ¢, K >= Z). It is possible that < ¢, K >= Z*
for some subgroups K of order k in Z while < q, K ># Z for other
subgroups K of the same cardinality. In general, if r = nk + 1 is not
a prime then Z* may have many subgroups of order k. For instance,
if £ = 2 and r has ¢ distinct odd prime factors then Z* has at least
2! subgroups of order 2. Searching through all subgroups of order k is
time consuming. We solve this problem by the next result.

Theorem 1.5. Suppose that r is squarefree, n|¢(r) and there is a sub-
group K C Z) of order k = ¢(r)/n with < q, K >= 7). Then n and
k factor as
n="n1Ng - "Ny, k:klkg"'kt, TL222,]€121
such that
(i) ny,ng, ... ,ng are pairwise relatively prime;
(i) for each 1 < @ < t, (n;k;) is a prime Gauss pair for q, and
r= Hle r; where r; = n;k; +1, 1 <1 <t, are distinct.
Conversely, if (i) and (ii) are satisfied then there is a Gauss period of
type (n, H) that generates a normal basis for Fyn over F, of complezity
at most Hle(nlla — 1) with k; = k; if p|k;, and k; = k; + 1 otherwise
where p is the characteristic of IF,.

Here and hereafter (n, k) is called a prime Gauss pair if r = nk + 1
is a prime and a Gauss period of type (n, k) is normal. The proof of
Theorem 1.5 also shows how to find a subgroup H of order k such that
a Gauss period of type (k, H) generates a normal basis of the required
complexity in the theorem.

The remainder of the paper is organized as follows. Theorem 1.1 is
first proved in Section 2. Theorems 1.4 and 1.5 are proved in Sections 3
and 4, respectively. In Section 5, we discuss how to efficiently search
for low complexity normal bases generated by Gauss periods for any



4 SHUHONG GAO

given n and q. We give a table of percentages of n < 3000 for which
F;» has a normal basis from Gauss periods with small complexity for
q€{2,3,5,7,11,13,17,19,23}. Our computation shows general Gauss
periods do yield many new normal bases of low complexity.

2. PROOF OF THEOREM 1.1

The properties we use on Abelian groups can be found in any stan-
dard textbook on modern algebra, see for example [14].

Without loss of generality, we may assume that S is a subgroup of
G. We first reduce the proof to the case where the order of G is a
prime power. Let n be the order of G. For a prime divisor p of n, let

G® denote the p-Sylow subgroup of G; similarly for GE” ), S K@)
etc. Then

G=]]c¢%, <SK>=][<s", K" >
pln p|n

where p runs through all distinct prime divisors of n. Also, G has
order a power of p and

Suppose that there is a subgroup of G® of the form
HY = 0P 9 B ©--- 0 HY, HY <G,

such that ) ©
G? G
() — () rrp) ~
GWY =< SW H" > and 70 = %o
for each prime divisor p of n. Let H; =[], Hi(p ) and
H=[[H” =H®H, o - ® H,.

pln

Then H satisfies the requirement of Theorem 1.1, since

<SH>=][<8" HY >=[[¢" =¢

pln p|n
and ) (»)
G _1G» 1 G? G
EZII_IH@ :HK@) - K
p|n pn

So we may assume that G is a p-group, i.e., G has order a power of
p. In this case, it suffices to prove the theorem when all the subgroups
G, are cyclic, since we can always decompose G; into a direct product
of cyclic groups and combine subgroups of the components to get the
required H; of G; for all 1 <7 <.
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Henceforth, we assume that G is a p-group and G; =< «a; > gen-
erated by «;, 1 < ¢ < t. The number ¢ is called the rank of G and
a1, Qs, ... a4 form a basis for G. We prove by induction on the rank
t of G. When t = 1, the theorem holds trivially. Suppose that the
theorem is true for any p-group of rank at most ¢ — 1. We prove it for
G of rank t.

If K = G, the theorem holds trivially. So assume that K # G.
Denote the elements of G/K by @, a € G. For convenience, we switch
to the additive notation for the group operation of G. Then

G=S+K and G={a:ac S}

As G is finite, there is an element of largest order in G. Let @ be any
such element with order p®. Then p® > 1, as GG is not the identity
group. There are unique integers ay, as, ... ,a; such that

a = a1 + asg + - - - 4 apQy.

Thus

a = a1y + a0 + -+ - + a0y
The order of @ is equal to the least common multiple of the orders of
a;a;, 1 <1 <t. Since all the orders are powers of p, there is an i such
that a;; has order p¢. Without loss of generality, we assume that ¢ = t.
Note that p 1 a4, since otherwise @; € G would have order at least p°*?,
contradicting to the choice of @ whose order p® is the largest. Suppose
that G has order p". Then the coefficient of a; is computed modulo
p". As ptay, an appropriate multiple of a will make the coefficient of
ay into 1. So we may assume that a is of the form

(1) a=0B+a, €8, forsome € G ® - R G

where @ and @; have the same order p°.

Denote G = G, ® --- ® G,_;. For any element g € G represented
under the basis oy, ..., we define the projection of g via a into G
to be the element g —ua where u is the coefficient of a; in g. Let K be
the set of elements of K projected into G via a. Then K is a subgroup
of G C G. As a € S, we still have

(2) G=<SK>.
We shall show later that

~ G
(3) G==®@<o>.
Let S be the subgroup consisting of all elements of S with t-th compo-
nent zero. Since Gy =< a; > is a component in the direct product of
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G, (1) and (2) imply that G =< S, K >. Now C:’/f(Nhas rank at most
t — 1, by induction hypothesis, there is a subgroup H of G of the form

}NI:H1®"'®H7&717 H; <G,
such that

Y

G—<iSf> and &
K

T Qe

Since p° is the order of @; in G/ K, p°a; € K and the order p" of G, is
at least p°. Let H; =< p°a >. Then G/H, is cyclic of order p®. So
< Oy >= Gt/Ht. Take H =H X Ht. Then7 by (3),

§&g®ﬁﬁg®<a >fi_
H g H K UK
and
<S,H> = <S,a,Hpay>=<5,H,a,po >

= <G, a,p'0 >=< G, oy, ploy >= G,

as —f € G and —3 + a = ay. So the theorem follows by induction.
It remains to prove (3). Since @ € G is of maximum order, < @ > is
a direct summant of G. Hence

(4) G

—X <a>.
<a>
But < @ >~< K,a > /K. By the third isomorphism theorem of
groups,
G G/K G

5} = = .
(%) <a> <Ka>/K <K,a>

Note that the elements of K are linear combinations of a and elements
of K. We have

<Ka>=<K,a>=K+ <a>
where the sum is direct as K has no common elements with < a >.

Since G = G+ < a > is also a direct sum, we have

G  G+<a>_G _<a>_G

<Ka> Kt<a> K <a> K
It follows from (4) and (5) that

— G _ G _
G%T®<a>27®<at>,
K K

as @; and @ have the same order in G. Hence (3) holds, and the proof
is complete. O
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3. PROOF OF THEOREM 1.4

Denote the elements of Z) /K by a, a € Z). Since #Z) = ¢(r) = nk,
Z}/K has order n. < p™ K >= ZX iff p™ has order n in Z)}/K.
The latter happens iff gcd(n,m) = 1 and p has order n. Therefore
<p™ K >=7"iff <p, K >=7Z) and ged(n,m) = 1.

We prove that if p = 2 and 8|n then < p, K ># Z* for any odd r
with ¢(r) = nk and any subgroup K of order k in Z*. The following
argument is due to H. W. Lenstra, Jr. Suppose on the contrary that
<2,K >=17}. Let K; =< 28, K >C ZX. Then K, has order nk/8,
and Z* /K is cyclic of order 8 generated by 2. Suppose that r =
pips? - - - pit where pq,pe, ... ,p; are distinct odd primes. Consider the
natural homomorphism

t
7 = HZ}i 71K

=1

If p; Z 1 mod 8, then #Z:% = (p; — 1)p® ' # 0mod 8, so U(Z:%)
and thus (2 mod pf*) is in the subgroup of order 4 in Z)X/K;. It
p; = 1 mod 8, then 2 is a quadratic residue mod p; and thus a square
mod p;*, so 0(2 mod p{’) is again in the subgroup of order 4 in Z* /K.
Therefore < 2, K; ># 7, a contradiction.

It remains to show that if p > 2, or p = 2 but 8 t n, then there is a
positive integer k such that (n, k) is a Gauss pair over F,,, thus over Fym
when ged(m,n) = 1. Suppose that n = nyng - - - n; where ny,ng, ... ,ny
are prime powers of distinct primes. By Wassermann (1993) for each
1 < ¢ <t there is a positive integer k; such that r; = n;k; +1 is a prime
and < p, K; >= 7, where K; is the unique subgroup of order k; in Z:.
If some of 71,7y, ..., are equal, say 1y = o, then 1 = nynyk| + 1 for
some integer ki, and (n},k}) is a prime Gauss pair where n| = nins.
So we can drop the pair (ng, k) and ro. Now n = n)inz---n, with
ni,ms, ... ,n; pairwise relatively prime. We can repeat this process
until all the r’s are distinct. Without loss of generality, we may assume
that r1,7ry,...,7r, are already distinct and nq,ns,... ,n; are pairwise
relatively prime.

Let a; = Y, Bf be a Gauss period of type (n;, k;) over [, where
B; is a primitive r;th root of unity in some extension of F,. Then «;
is a normal element in F,» over F,. As ni,ng,...,n; are pairwise
relatively prime, by Theorem 4.3 in [16, pp. 72], @ = ajas -y is a
normal element in F,» over [F,. It suffices to show that a is a Gauss
period. Let r = ryry---ry. Since r1,7s,...,7, are distinct primes, by
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the Chinese remainder theorem,
L =Ly, ® Ly ® -+ DLy, and L} =71 OL), D - DLy

where we identify Z,, with its embedding in Z, (similarly for Z, and
K; below) and the sums are internal. Let

Then
t t
DL D R 1 DL | e
aceK a; €K;,1<i<t =1 a,€K; i=1
Therefore « is a Gauss period of type (n, K). O
4. PROOF OF THEOREM 1.5
Let r = riry---7ry where ry,rs,... ,1r; are distinct primes. By the

Chinese remainder theorem,

LY =7  OLL D L

T

here again we identify Z,, with its embedding in Z, and the sum is
internal. By Theorem 1.1 with S = {q}, there exists a subgroup H =
Hy® Hy ® - -+ @ Hy, where H; is a subgroup of Z, such that

7 7
7Y =<q, H d L = L.
M q,1 > an 7 H
Note that
ZX ZX ZX ZX
6 T~ Tpy gy Lt
(6) H H, ® Hs ® ® H,

i <t,andn=H#ZL /K = #L /H = niny---ny. Now < ¢, H >= 7
implies that Z/H is cyclic. It follows from (6) that ny,ny,... ,n; are
pairwise relatively prime. Also,

L) =<q,H>=<q H >®<qgHy>® ---®<q,H >

implies that < ¢, H; >= Z) for 1 <14 < t. Hence (n;,k;) is a Gauss
pair over F, for 1 <i <t. Obviously k = |K| = |H| = ki - - - k.
Finally, for the last claim of the theorem, taking the subgroup H =
Hi®Hy®---@®H; in Z) where H; is the unique subgroup of order k; in
Z), let a = ayay - - - ap where o; is a Gauss period of type (n;, k;) over
F,, 1 < i <t Then a is a Gauss period of type (n, H) by the proof
of Theorem 1.4. Since «; is normal in Fg» over F, and the n;’s are
pairwise relatively prime, « is normal in Fy» over F, By Exercise 4.2
in [16, pp. 73], the complexity of the normal basis generated by « is
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equal to the product of those generated by «; for Fgni, 1 <1 <t. The
claim follows. O

5. NORMAL BASES OF LOW COMPLEXITY

Let n be a positive integer and ¢ = p™ where p is a prime and m is a
positive integer. We want to construct a normal basis of low complexity
for Fn over F,. Theorem 1.4 says that if gcd(m,n) = 1 then a normal
basis for Fy;» over F, can always be constructed from Gauss periods
except for p = 2 and 8|n. Since any basis for F,» over F, is still a
basis for F,» over F, when ged(m,n) = 1, we will concentrate only on
the fields Fp» over F,. To the author’s knowledge, there is currently
no known construction of normal bases of low complexity for Fon over
[Fy when 8|n, and little is known for Fy» over F, when gcd(m,n) > 1,
see Blake et al. [6] for a construction of normal bases with complexity
3n — 2 for F;n over F, when n|(¢g — 1) or n = p.

Recall that (n, k) is a prime Gauss pair if r = nk 4 1 is a prime and
< q,K >= 7 where K is the unique subgroup of Z* of order k. We
call (n, k) a Gauss pair over F, if nk = ¢(r) for some squarefree integer
r with ged(r, ¢) = 1 and if there is a subgroup K in Z* of order k such
that < ¢, K >= Z). Define

' (n) = { min{k : (n, k) is a prime Gauss pair over F,}, if k exists,

K . .
a 00, if no such k exists;

and
(n) = min{k : (n, k) is a Gauss pair over F,}, if such k exists,
Fg(t) = 00, if no such k exists.

As a prime Gauss pair is always a Gauss pair, r(n) < s (n).

In the prime case, x;(n) measures the complexity of the correspond-
ing normal basis. In the general case, however, we don’t know the
precise relationship between r,(n) and the complexity of the normal
basis. We introduce another measure. By Theorem 1.5, if the condi-
tions (i) and (ii) are satisfied then there is a Gauss period that generates
a normal basis of complexity at most [['_,(n:k; — 1). When a Gauss
period comes from the set {(n, k1),..., (n, k) } of pairs, we say that
it is of type {(n1,k1),..., (ng, ki) }. Define

G,(n) = % min{1+ [ [(neki — 1)}

i=1
where k; is the same as defined in Theorem 1.5 and the minimum is

taken over all the collections of pairs {(n1, k1), ... , (n, ki) } that satisfy
the conditions (i) and (ii) in Theorem 1.5. G,(n) is approximately the
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same as K,(n) but G,(n) measures more accurately the complexity of
normal bases. For example, when n = 15 and p = 2, a Gauss period
of type (15,4) yields a normal basis of complexity 15-4 — 1 = 59, and
a Gauss period of type {(3,2), (5,2)} yields a normal basis complexity
(3-2—=1)(5-2—1) = 45; both have the same k but with different
complexities. In fact, Go(15) = 46/15 =~ 3.07 but k2(15) = 4.

Given a prime p and a positive integer n, we want to compute Gp(n).
We need to search for an appropriate factorization n = nins - --n; and
positive integers ki, ko, . . . k; such that (i) and (ii) are satisfied and such
that []._,(nik; — 1) is minimized. To do this we first factor n as

n:P1P2"'Pg

where P; are prime powers and £ is the number of distinct prime factors
of n. Then we partition {Py, P», ... , P} to form all possible factoriza-
tions n = ning - - - ny, t < £, where nq,no, ... ,n; are pairwise relatively
prime. For each factorization n = niny---n; and for each 1 <1 < ¢,
find the smallest positive integer k; such that (n;, k;) is a prime Gauss
pair. If 7 = [[_,(n;k; + 1) is squarefree then we have a normal basis
of complexity at most [[i_,(nik; — 1). Take the smallest complexity
among all such factorizations of n. For example, if n =154 =2-7-11

then we can factor n as
(2)(7)(11), (2-11)(7), (2)(7-11), (2-7)(11), (2-7-11).

For p = 2 and for m € {2,7,11,14,22 77,154}, the smallest prime
Gauss pairs (m, k) are

(2,1), (7,4), (11,2), (14,2), (22,3), (77,6), (154,25).

The optimal combination is {(11,2),(14,2)}. So there is a Gauss pe-
riod of type {(11,2),(14,2)} that generates a normal basis for Foisa of
complexity (11-2—1)(14-2—1) = 567, and G»(154) = 568/154 ~ 3.69.
Note that }(154) = 25, and the smallest complexity of normal bases
from prime Gauss periods is 154-(25+1)—1 = 4003. In this case general
Gauss periods yield normal bases with much smaller complexity.

To test if any given pair (n, k) is a prime Gauss pair for p, we check
if the following conditions are satisfied, r = nk+ 1 must be a prime and
ged(e,n) = 1 where e is the index of p modulo r. The latter condition
is equivalent to

p"" #1  (mod r) for each prime factor v of n.

When n and p are given, the smallest prime Gauss pair (n, k) is found
by trying k = 1,2,3,.... Adleman & Lenstra [1] and Bach & Shal-

lit [5] prove under the extended Riemann Hypothesis that x(n) <
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cn®log?(np) for some absolute constant c. But our computer experi-
ment shows that such & is much smaller. For example, x5(3") < 6i and
Kk5(29) < 64 for all 1 < 4 < 1000. It would be interesting to have a
better theoretical bound for x,(n).

We still need to generate all the partitions of { Py, P, ..., P;}. The
number of partitions of a set with ¢ distinct elements is called a Bell
number, denoted by Bell(¢), which is exponential in £. All the partitions

of aset {1,2,...,¢} of ¢ distinct elements can be generated recursively
as follows. Let m = Bell(i — 1). Suppose that

S1,82,...,5m
is a list of all partitions of {1,2,... ,i — 1} for some ¢ > 1. For each

partition S; = s;; U sjoU---Usj, with v parts, 1 < j < m, form v + 1
partitions of {1,2,... ,i}:

(7) Sj1USj2U"'USjUU{i}, Sjw,lgwgv,

where S;,, is the partition S; with its wth part s;, replaced by s;,
with ¢ added. Then all the partitions of {1,2,... i} is the union of
(7) for 1 < j < m. Since each partition of {1,2,...,i — 1} has at
most ¢ — 1 parts, the above algorithm shows that Bell(i) < i Bell(: —1).
So Bell(¢) < ¢I. (Of course, the number of partitions is at most the
number of permutations.) Note that the ith prime is at least i +1. We
have Bell(¢) < n for any positive integer n with ¢ distinct prime factors.
Therefore one can generate all the partitions of { P, Py, ... , P;} in time
linear in n.

Using the above algorithm, we computed G,(n) for n < 3000 and p €
{2,3,5,7,11,13,17,19,23}. In Table 1, we tabulated the percentages
of the values of n with G,(n) < k for various small values of k. Note
that for p = 2, the percentage is relatively small for k£ > 2 comparing
to other p’s. The reason is that whenever 8|n, Fo» has no normal bases
from Gauss periods. For all p € {3,5,7,11,13,17,19,23}, G,(n) < 10
for more than 70% of n < 3000, and G(n) < 20 for more than 95% of
n < 3000. To see how much general Gauss periods improve over prime
Gauss periods, we list in Tables 2, 3 and 4 the values of n < 2000
for which x,(n) — Gp(n) > 20 for p € {2,3,5,7,11}, where “Cplex”
denotes complexity, “Diff” is the difference of complexities divided by
n. General Gauss periods indeed give many new normal bases of low
complexity.

Acknowledgement. The author would like to thank Hendrik W.
Lenstra, Jr. for sharing his proof of part of Theorem 1.4. Many thanks
also go to Joel Brawley and Jenny Key for their useful comments and
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k\p 2 3 5 7 11 13| 17| 19| 23
2 20.2|5.67(6.00| 5.37| 5.47|5.50|5.30|5.50 | 5.37
3 22.8128.0(21.4| 20.0| 20.0]20.0]19.8|20.3|20.1
4 48.6 1 28.0 | 28.1 | 26.3| 26.3|26.5|25.7(26.3|26.2
5 48.6 | 40.0 | 41.7| 37.7| 39.7|37.6|39.1|38.0|39.6
6
7
8

61.2 | 59.1 | 45.8 | 45.4| 46.2|44.8|47.0|45.3|46.5
62.759.1|58.0| 60.4| 58.6 57.0|59.5|58.2|59.1
69.4|65.2|62.3| 61.4| 63.6|60.4|64.0|61.5|63.9
9 70.2 | 76.5|71.2 | 71.5| 71.4/69.6|72.4|70.1|70.6
10 | 75.7 | 77.6 | 782 742 | T4.6|72.6|76.0|73.5|73.7
15 |81.9192.291.7 | 90.8| 90.6 | 89.0 | 90.8 | 89.8 | 90.2
20 185.3]95.8]96.6| 96.0| 95.7195.1195.4|95.095.8
25 186.6]983]981] 98.5| 98.1/98.1|97.9|97.6|98.2
30 [ 87.0(99.2]99.2| 99.2| 99.2|98.7|98.8|98.4|98.9
35 [87.2]99.5[99.6| 99.6 | 99.7|99.6 | 99.5|99.2 | 99.6
40 | 87.4199.8199.7| 99.8| 99.8|99.8199.6 |99.3|99.7
50 | 87.5199.9]99.8100.0 100.099.9{99.999.8|99.9

TABLE 1. Percentages of n < 3000 with G,(n) < k.

encouragement. The main results of the paper were reported at a
Workshop on Finite fields: Theory and Computation, Mathematical
Research Institute at Oberwolfach, Germany, January 19-25, 1997.
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