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Abstract

Motivated by a connection with block iterative methods for solving
linear systems over finite fields, we consider the probability that the
Krylov space generated by a fixed linear mapping and a random set
of elements in a vector space over a finite field equals the space itself.
We obtain an exact formula for this probability, and from it we derive
good lower bounds that approach 1 exponentially fast as the size of
the set increases.

1 Introduction

Let Fq denote the finite field with q elements and Fq[X] the ring of polyno-
mials in one variable over Fq. Let V be a vector space of dimension n over
Fq. Given a linear mapping T on V and a subset of vectors S ⊆ V of size
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m the Krylov subspace generated by S under T is defined as

Kry(T, S) :=

{
m∑
i=1

fi(T )vi : fi(X) ∈ Fq[X] and vi ∈ S for 1 ≤ i ≤ m

}
.

This is just the space spanned by all vectors of the form T iv over all non-
negative powers of T and vectors v ∈ S. Define

κm(T ) =
1

qmn
·#{(v1, . . . , vm) ∈ V

m : Kry(T, {v1, . . . , vm}) = V },

that is, κm(T ) is the density of m-tuples of vectors in V that generate the
whole space V under T . In other words, if one selects m vectors v1, . . . , vm
uniformly at random and independently from V then κm(T ) is the proba-
bility that Kry(T, {v1, . . . , vm}) = V . Our main goal of this paper is to find
good lower bounds on κm(T ).
To state our result, we need to define some parameter depending on T .

Let ` be the minimal number of vectors required to generate V under T . This
number ` is just the number of invariants in the Frobenius decomposition of
V under T . We call ` the Frobenius index of T . Our main result is

Theorem. Let T be a linear mapping on a vector space V of dimension n
over Fq. Suppose T has Frobenius index `. Then for m ≥ `

κm(T ) ≥




0.04
1+logq(n−`+1)

, if m = `
1
8 , if m = `+ 1 and q = 2
1− 3

2m−`
≥ 1
4 , if m ≥ `+ 2 and q = 2

1− 2
qm−`

≥ 1
3 , if m ≥ `+ 1 and q > 2.

When m = ` the lower bound is almost tight in the sense that there
are values of n such that the probability is arbitrarily close to zero; see
the remark following Corollary 10. Hence it is impossible to bound the
probability away from zero in this case. For fixed ` the probability converges
exponentially fast to 1 as m increases.
There are two important special cases. One is when T is the identity

map, so ` = n. In this case, κm(T ) is equal to the probability thatm random
vectors in a vector space of dimension n over Fq span the whole space, and
a much better lower bound can be proved (see Lemma 7). The other is
when ` = 1, which means that the minimal polynomial of T equals its
characteristic polynomial, and better lower bounds are given in Theorem 9.
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Our work was motivated by a connection with block iterative methods
for solving large sparse linear systems over finite fields, see [3, 4, 8, 12, 14].
It improves upon the result in the report [15] used in an analysis of the
block Wiedemann algorithm. A more difficult and important question in
the analysis of such algorithms is to bound the probability that certain
“truncated” Krylov subspaces generate the whole space. More precisely, let

Kry(T, S; t) = {
m∑
i=1

f(T )vi : fi(X) ∈ Fq[X], deg fi ≤ t, and vi ∈ S}.

For t approximately n/|S|, one requires a lower bound on the probability
that the the above space is the whole space. For large finite fields, relative
to the dimension n, Kaltofen [8] obtains such a bound using the Schwartz-
Zippel Lemma. For some practical applications, such as integer and poly-
nomial factorization [5, 6, 9, 11], it is desirable to have a good bound for
small fields. Using a counting argument Coppersmith obtains a weak bound
in [4, 15]; it would be of great interest to strengthen this bound.
We use a module theoretic approach, via a sequence of reductions us-

ing standard decomposition theorems and an argument from the theory of
abelian groups communicated to us by Simon Blackburn. Using existing re-
sults on random elements in vector spaces over finite fields, we then obtain
an exact formula (Theorem 5) for the probability depending only on certain
properties of the mapping. Finally, good lower bounds for this expression
are derived.

2 Reductions

In this section we consider various reductions which allow us to characterise
those sets of vectors which generate the whole space under T .

2.1 Module-theoretic interpretation

Let T be a linear mapping on a vector space V of dimension n over Fq.
Denote by VT the Fq[X]-module with underlying abelian group V and action
of Fq[X] on V defined as

f(X) · v := f(T )v

for any polynomial f ∈ Fq[X]. (Any element v ∈ V may be thought of
as lying in VT , and vice-versa. When necessary to distinguish we shall call
elements in V “vectors” and those in VT “module elements”.)
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Lemma 1 For any set S ⊆ V the Krylov space Kry(T, S) equals V if and
only if S generates VT as an Fq[X]-module.

Proof: Let S be such that the Krylov space generated by S under T
is V . Let w ∈ V . Thus the vector w equals a linear combination over Fq
of vectors of the form T iv where v ∈ V . Hence the module element w is a
linear combination over Fq of module elements of the form X

i.v for v ∈ S.
Thus S generates VT as an Fq[X]-module. The converse is similar.

2

Thus our main question is equivalent to the following: given a set of
elements S chosen uniformly at random from the module VT what is the
probability that they generate VT ?

2.2 Reduction to primary modules

Let the principal ideal (mT ) in Fq[X] be the annihilator of the module VT ,
that is,

(mT ) = {g ∈ Fq[x] : g(T )v = 0 for all v ∈ V }.

(Thus mT , which we take to be monic, is just the minimal polynomial of
the linear mapping T .) Factorize mT as

mT =
a∏
i=1

grii

where gi are monic irreducible polynomials and each ri ≥ 1. Via the primary
decomposition theorem [1, Theorem 3.7.12] the module VT decomposes as

VT = V1 ⊕ V2 ⊕ . . .⊕ Va (1)

where the annihilator of Vi is (g
ri
i ).

For each 1 ≤ i ≤ a, let πi denote the projection of VT onto its ith factor.
For a subset S of elements in VT write πi(S) for the image of the set S under
this projection.

Lemma 2 Let S be a set of elements in VT . Then S generates VT if and
only if πi(S) generates Vi for 1 ≤ i ≤ a.

Proof: The forward implication is straightforward. For the reverse,
assume that πi(S) generates Vi for 1 ≤ i ≤ a. Let v ∈ VT , so πi(v) ∈ Vi.
We can write πi(v) =

∑m
j=1 hij(X).vj where S = {v1, . . . , vm}. For each j,
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1 ≤ j ≤ m using the Chinese Remainder Theorem we can find a polynomial
hj(X) such that hj(X) ≡ hij(X) mod gi(X)ri for each i, 1 ≤ i ≤ a. Here
we use the coprimality of the gi(X). Defining w :=

∑m
j=1 hj(X).vj we see

that πi(w) = πi(v) for all 0 ≤ i ≤ a, and hence v = w. Thus S generates VT
as we wished to show.

2

Thus it suffices to understand the number of generating sets of the pri-
mary modules Vi.

2.3 Reduction to irreducible exponent case

We now examine the primary parts Vi in the decomposition of the module
VT given in Equation (1). To this end, letW denote any Fq[X]-module with
annihilator the ideal generated by a power gr of an irreducible polynomial
g. We need to determine the probability that a set of randomly chosen
elements in W generates the whole module.
Let Rad(W ) denote the Radical of W . This is defined to be the inter-

section of all maximal submodules. The following result is a special case
of a module-theoretic analogue of a result in the theory of abelian groups,
namely “a set of elements generates an abelian group if and only if its image
in the quotient by the Frattini subgroup generates the quotient” (see [13,
page 135, 5.2,12]).

Lemma 3 Let W be a primary Fq[X]-module with annihilator (g
r), where

g is irreducible in Fq[X]. A set S ⊆ W is a generating set if and only
if S̄ := {s + Rad(W ) | s ∈ S} is a generating set in the quotient module
W/Rad(W ).

Proof: The forward implication is easy. For the reverse, by the cyclic
decomposition theorem [1, Theorem 3.7.1] we can write

W =W1 ⊕W2 ⊕ . . .⊕Wb

where each module Wi is cyclic with annihilator the ideal generated by the
polynomial gri for some power of g. We may take ri ≥ ri+1 for 1 ≤ i ≤ b−1,
and so r1 = r. Since each module in the decomposition is cyclic we have the
Fq[X]-module isomorphism

Wi ∼= Fq[X]/(g
ri)
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and so
W ∼= ⊕bi=1Fq[X]/(g

ri).

The intersection of all maximal submodules is just

Rad(W ) ∼= ⊕bi=1g · (Fq[X]/(g
ri)).

which is just g(X)W . Hence

W/Rad(W ) ∼= Fq[X]/(g)⊕ . . .⊕ Fq[X]/(g)

where we have b terms in the sum. Now assume that the images of the
elements of S = {vi} in the quotient generate W/Rad(W ). Let w ∈ W .
Via the isomorphisms described above we have w = (w1, . . . , wb) where each
wi ∈ Fq[X]/(gri). The image of w in the quotient W/Rad(W ) is then w̄ :=
(w1 mod g, . . . , wb mod g). By assumption we can write w̄ =

∑m
i=1 hi(X).v̄i.

Then w −
∑m
i=1 hi(X).vi = (gw

′
1, . . . , gw

′
b). Defining w

′ = (w′1, . . . , w
′
b) ∈

W and repeating the process, we can express w as a combination of the
elements vi plus an “error vector” each coefficient of which is divisible by
g2. Continuing in this way the error vector eventually reduces to zero, since
our module is annihilated by some power of g, and we have the desired
combination.

2

As in the proof of the above lemma, for W a primary module with
annihilator (gr) the required quotient is just

W/Rad(W ) ∼= Fq[X]/(g)⊕ . . .⊕ Fq[X]/(g)

where we have b terms in the sum. Letting d = deg(g) we see that this is just
the direct sum of b finite fields of order qd, each viewed as an Fq[X]-module.
The action of Fq[X] on each finite field is just defined for α in the finite field
by X.α = βα, where β is some element such that g(β) = 0 in the finite field.
We have

W/Rad(W ) ∼= (Fqd)
b

as an Fq[X]-module. The righthand-side also has the structure of a vector
space over Fqd . A set of elements in W/Rad(W ) is a generating set if and
only if the corresponding elements on the righthand-side of above isomor-
phism generates the set (Fqd)

b as a Fqd-vector space. This follows from the
description of the action of Fq[X] on each vector space in the summand, since
1, β, . . . , βd−1 generates each finite field as a vector space over Fq. Thus we
have reduced our problem to the study of generating sets for vector spaces
over finite fields.
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2.4 Generating sets for vector spaces

For each non-negative integer n, define the real function π(n, x) by

π(n, x) := (1− x)(1− x2) . . . (1− xn).

The following lemma is “classical”.

Lemma 4 Let U be a vector space of dimension b over Fq. Then the prob-
ability that m ≥ b elements of U chosen uniformly at random span U is

π(m, 1/q)

π(m− b, 1/q)
.

Proof: We follow the proof for the prime field case in [10], making
appropriate modifications. (See also Theorem 1.1 in [2].) Let Φb(m, r) de-
note the number of m-tuples of vectors in Fbq which span a subspace of
rank r. (Equivalently, the number of rank r matrices of size b × n over
Fq.) Dividing such sequences into those whose last vector is linearly depen-
dent/independent on the previous m− 1 we derive the recurrence for m ≥ 1
and r ≥ 1

Φb(m, r) = q
rΦb(m− 1, r) + (q

b − qr−1)Φb(m− 1, r − 1).

We also have the initial conditions Φb(s, 0) = 1 for all s ≥ 1 (the zero
sequence), Φb(0, 0) = 1 (the empty sequence), and Φb(0, s) = 0 for all s ≥ 1.
One can now verify that the following formula holds for r ≥ 1

Φb(m, r) =
r−1∏
i=0

(qb − qi)
qm−i − 1

qi+1 − 1
.

Putting r = b and cancelling in a suitable way one finds that

Φb(m, b) = (q
m − 1)(qm − q) . . . (qm − qb−1).

Dividing by the number of sequences, qm, gives the required probability.
2

3 An exact formula

We now piece together the results proved in Section 2 to obtain an exact
formula for the required probability. Let the minimal polynomial of the
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linear mapping T be denoted mT and the characteristic polynomial cT . Let
` be the Frobenius index of T . We consider a cyclic decomposition [1,
Theorem 3.7.1] of the module VT as

VT = U1 ⊕ U2 ⊕ . . .⊕ U`

where each Ui is a cyclic module with annihilator the ideal generated by a
monic polynomial hi satisfying hi+1|hi for 1 ≤ i ≤ `−1. Thus mT = h1 and
cT = h1h2 . . . h`. As before, let gj , 1 ≤ j ≤ a, be the irreducible factors of
mT . Let dj be the degree of gj and `j the number of polynomials h1, . . . , hl
divisible by gj , 1 ≤ j ≤ a. Thus 1 ≤ `j ≤ ` and the cyclic decomposition of
the module Vi in the primary decomposition of VT (see Equation (1)) has
exactly `i factors.

Theorem 5 Let T be a linear mapping on a vector space V of dimension
n over Fq. Suppose T has Frobenius index ` and m ≥ `. With the notation
defined above, we have

κm(T ) =
a∏
j=1

π(m, q−dj )

π(m− `j , q−dj )

where π(m,x) = (1− x)(1− x2) . . . (1− xm).

Proof: By Lemma 1 one may equivalently find the probability that a
uniform at random sequence of elements S in VT generates VT as an Fq[X]-
module. By Lemma 2 such a set will generate VT if and only if the set πj(S)
generates each primary summand Vj for 1 ≤ j ≤ a. Now for any choice of
subsets Sj ⊆ Vj of size m, 1 ≤ j ≤ a, there exists exactly one set S in VT
such that πj(S) = Sj for each 1 ≤ j ≤ a. Conversely, all sets S arise in
this way. Thus it suffices to compute the probabilities of generating each
primary module Vi by m elements separately, and to take the product.
We claim that the jth term in the product in the statement of the the-

orem is the probability that a sequence of m elements chosen uniformly at
random in Vj will generate Vj . Once this claim is proved the result follows.
By Lemma 3 a set of elements Sj in Vj is a generating set if and only if its
image in the quotient by the Radical of Vj generates this quotient. If Sj is
chosen uniformly at random in Vj , the corresponding set of elements S̄j in
the quotient will be uniform at random (exactly |Rad(Vj)| elements of Vj
map onto each element in the quotient). Thus we need to find the proba-
bility that m elements chosen uniformly at random in the quotient generate
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it. But the quotient has the structure of a vector space of dimension `j
over F

q
dj . From the comments at the end of Section 2.3 this probability is

equal to the probability that m elements chosen uniformly at random from
a vector space of dimension `j over Fqdj span the space. The result now
follows from Lemma 4.

2

4 Lower bounds

The formula in Theorem 5 is elegant, but it is hard to see the magnitude of
the probability κm(T ). In this section we shall derive various simple explicit
lower bounds for κm(T ).
We shall repeatedly use the following equality and inequality:

1
qk
+ 1
qk+1
+ · · ·+ 1

qm + · · · =
1

qk−1(q−1)
,

(1− x1)a1(1− x2)a2 · · · (1− xm)am ≥ 1− (a1x1 + a2x2 + · · ·+ amxm),

for any real ai ≥ 1, 1 ≥ xi ≥ 0, q > 1, and any integer k ≥ 0. The inequality
can be seen as follows. First of all it holds if xi ≥ 1/ai for some i. So we
may assume that 0 ≤ xi < 1/ai for all i. Then one sees that the inequality
follows by induction from the following two inequalities:

(1− x1)(1− x2) ≥ 1− (x1 + x2), for x1x2 ≥ 0,

(1− x)a ≥ 1− ax, for 0 ≤ x <
1

a
, a ≥ 1.

The latter inequality here holds since the function a ln(1 − x) − ln(1 − ax)
strictly increases for 0 ≤ x < 1/a (for any fixed a > 1) and evaluates to 0
when x = 0.
The next lemma is an extremely crude estimation, but already useful for

large q.

Lemma 6 Let T be any linear map on a vector space of dimension n over
Fq. Let ` be the Frobenius index of T . Then, for m ≥ `,

κm(T ) ≥ 1−
n

q − 1
.
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Proof: With the notation in Theorem 5, as n ≥ a, m ≥ `j and dj ≥ 1,
we have

κm(T ) =
a∏
j=1

`j∏
i=1

(
1−

(
1

qdj

)m−`j+i)

≥
n∏
j=1

∞∏
i=1

(
1−

(
1

q

)i)

≥

(
1−

∞∑
i=1

1

qi

)n
≥
(
1−

1

q − 1

)n
≥ 1−

n

q − 1
.

2

The bound in Lemma 6 is good if q is large, but says nothing if q ≤ n+1.
To get a good lower bound of κm(T ) for small q, we need a more careful
estimation. We start with a simple case when T is the identity map on V .

Lemma 7 Let V be a vector space of dimension n over Fq and let m ≥ n.
Then the probability that m random vectors in V span the whole space V is

n∏
i=1

(1−
1

qm−n+i
) ≥

{
0.288, if m = n and q = 2
1− 1

qm−n(q−1) , otherwise.

Equivalently, this also bounds the probability that a random m × n matrix
over Fq has rank n.

Proof: By Lemma 4, the probability is

π(m, 1/q)

π(m− n, 1/q)
= (1−

1

qm−n+1
)(1−

1

qm−n+2
) · · · (1−

1

qm
)

≥ 1− (
1

qm−n+1
+

1

qm−n+2
+ · · ·+

1

qm
)

≥ 1−
1

qm−n+1
(1 +

1

q
+ · · ·+

1

qn−1
+ · · ·)

≥ 1−
1

qm−n+1
1

1− 1/q
≥ 1−

1

qm−n(q − 1)
.

For m = n and q = 2, the above bound is zero, so we need a more careful
analysis:

(1−
1

2
)(1−

1

22
) · · · (1−

1

2m
)
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> (1−
1

2
)(1−

1

22
)(1−

1

23
)(1−

1

24
)(1−

1

25
) · · · (1−

1

2m
) · · ·

> (1−
1

2
)(1−

1

22
)(1−

1

23
)(1−

1

24
)(1− (

1

25
+ · · ·+

1

2m
+ · · ·))

= (1−
1

2
)(1−

1

22
)(1−

1

23
)(1−

1

24
)(1−

1

24
)

> 0.288.

This completes the proof.
2

To deal with the general case we need the following result, which reduces
the problem for a general polynomial to that of a polynomial with irreducible
factors of small degrees only.

Lemma 8 For k ≥ 1, let Ik be the number of irreducible polynomials in
Fq[X] of degree k. Let f ∈ Fq[X] of degree n and let u = blogq nc. Then for
any integer q1 > 1

∏
g|f, g irred

(
1−

1

q
deg g
1

)
≥
u+1∏
k=1

(
1−

1

qk1

)Ik
.

Proof: This result is proved in [7] (i.e., the formula (6) on page 144, with
q replaced by q1).

2

We consider the important case when V is cyclic as an Fq[X]-module
under T , hence ` = 1 and `j = 1 in Theorem 5. In this case, the minimal
polynomial of T is equal to its characteristic polynomial, and T is called
nonderogatory.

Theorem 9 Let T be a nonderogatory linear map on a vector space V of
dimension n over Fq. Then

κm(T ) ≥




0.218
1+logq n

, if m = 1,

0.42, if m = 2 and q = 2,
1− 1.5

qm−1
≥ 1
2 , otherwise

Proof: Let f be the minimal polynomial of T . Then f has degree n and
all `i = 1 in Theorem 5. Hence

κm(T ) =
∏

g|f, g irred

(
1−

1

qm deg g

)
.
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First assume m = 1. Then κ1(T ) is the density of polynomials in Fq[X] of
degrees < n that are relatively prime to f . In this case, by Theorem 2.1 in
[7], we have

κ1(T ) ≥ (1−
1

q
) ·

1

e0.83(1 + logq n)
>

0.218

1 + logq n
,

where the factor 1−1/q accounts for the irreducible factorX that is excluded
in [7]..
Now assume m > 1. Let u = blogq nc and Ik as in Lemma 8. Note that

I1 = q and

Ik ≤
qk − 1

k
≤
qk

2
, k ≥ 2.

By Lemma 8, we have

κm(T ) ≥
u+1∏
k=1

(
1−

1

qmk

)Ik

≥
(
1−

1

qm

)q ∞∏
k=2

(
1−

1

qmk

) qk−1
k

≥
(
1−

1

qm

)q (
1−

∞∑
k=2

qk − 1

kqmk

)

≥
(
1−

1

qm

)q (
1−

∞∑
k=2

1

2q(m−1)k

)

≥
(
1−

1

qm

)q (
1−

1

2qm−1(qm−1 − 1)

)

which is at least 0.42 when m = 2 and q = 2, and generally at least(
1−

1

qm−1

)(
1−

1

2qm−1(qm−1 − 1)

)
> 1−

1

qm−1
−

1

2qm−1(qm−1 − 1)

≥ 1−
1.5

qm−1

for all q and m.
2

Theorem 9 can be interpreted for the following situation. Let f ∈ Fq[X]
be any polynomial of degree n. Define κm(f) to be the probability that

gcd(f, g1, . . . , , gm) = 1
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for m random polynomials g1, . . . , gm ∈ Fq[x] of degrees < n. Note that
κ1(f) is the Euler function for the polynomial f . Then for any nonderogatory
linear map T on a vector space of dimension n over Fq that has f as its
minimal polynomial, we have

κm(f) = κm(T ) =
∏

g|f, g irred

(
1−

1

qm deg g

)
.

Hence the lower bounds in Theorem 9 applies to κm(f) automatically.

Corollary 10 Let f ∈ Fq[x] of degree n. Then

κm(f) ≥




0.218
1+logq n

, if m = 1,

0.42, if m = 2 and q = 2,
1− 1.5

qm−1
≥ 1
2 , otherwise

Remark. By Theorem 3.4 in [7], there are infinitely many values of n such
that

κ1(x
n − 1) ≤

c√
1 + logq n

for some constant c > 0 depending only on q. This means that the prob-
ability may be arbitrarily close to zero and our lower bound is quite close
to the upper bound. This also applies to the lower bound in Thereom 11
below for m = `.
Now we turn to the general case where we obtain slightly weaker bounds.

The next result is the main theorem stated in the introduction.

Theorem 11 Let T be any linear map on a vector space of dimension n
over Fq. Let ` be the Frobenius index of T and let m ≥ `. Then

κm(T ) ≥




0.04
1+logq(n−`+1)

, if m = `
1
8 , if m = `+ 1 and q = 2
1− 3

2m−`
≥ 1
4 , if m ≥ `+ 2 and q = 2

1− 2
qm−`

≥ 1
3 , if m ≥ `+ 1 and q > 2.

Proof: Let f be the minimal polynomial of T . Then deg f ≤ n− `+1 as at
one irreducible factor of f appears ` times in the characteristic polynomial
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of T , which has degree n and is divisible by f . Let u = blogq(n − ` + 1)c.
By Theorem 5 and Lemma 8, we have

κm(T ) =
a∏
j=1

`i∏
i=1

(
1−

(
1

qdj

)m−`+i)

≥
a∏
j=1

∏̀
i=1

(
1−

(
1

qdj

)m−`+i)

=
∏̀
i=1

∏
g|f, g irred

(
1−

(
1

qdeg g

)m−`+i)

≥
∏̀
i=1

u+1∏
k=1

(
1−

(
1

qk

)m−`+i)Ik
. (2)

Assume first that m = `. Then

κm(T ) ≥
∏̀
i=1

u+1∏
k=1

(
1−

(
1

qk

)i)Ik

≥
∏̀
i=1

(
1−
1

qi

) ∏̀
i=1

u+1∏
k=1

(
1−

1

qki

) qk−1
k

≥
∏̀
i=1

(
1−
1

qi

) u+1∏
k=1

(
1−

1

qk

) qk−1
k

∞∏
k=1

∞∏
i=2

(
1−

1

qki

) qk−1
k

.

By Lemma 7, we know the first product is at least 0.288. For the second
product, the proof of Theorem 2.1 in [7] implies

u+1∏
k=1

(
1−

1

qk

) qk−1
k

≥
1

e0.83(1 + u)
≥

1

e0.83(1 + logq(n− `+ 1))
.

To estimate the third product, we recall the fact that

ln(1− x) ≥ −(x+ x2), 0 ≤ x ≤ 0.6.

Then

∞∏
k=1

∞∏
i=2

(
1−

1

qki

) qk−1
k

= exp

(
∞∑
k=1

∞∑
i=2

qk − 1

k
ln(1−

1

qki
)

)
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≥ exp

(
−
∞∑
k=1

∞∑
i=2

qk − 1

k
(
1

qki
+
1

q2ki
)

)

≥ exp

(
−
∞∑
k=1

qk − 1

k
(

1

qk(qk − 1)
+

1

q2k(q2k − 1)
)

)

≥ exp

(
−
∞∑
k=1

(
1

qk
+
1

q3k
)

)

≥ exp

(
−(

1

q − 1
+

1

q3 − 1
)

)

≥ exp

(
−(1 +

1

7
)

)
> 0.3189.

Therefore, when m = `,

κm(T ) >
0.288 · 0.3189

e0.83
·

1

1 + logq(n− `+ 1)
>

0.04

1 + logq(n− `+ 1)
.

Finally assume m > `. Then from Equation (2)

κm(T ) ≥
∞∏
i=1

(
1−

1

qm−`+i

)q ∞∏
k=2

∞∏
i=1

(
1−

1

qk(m−`+i)

) qk−1
k

.

For the first product, we have

∞∏
i=1

(
1−

1

qm−`+i

)q
≥

(
1−

q

qm−`+1

)(
1−

∞∑
i=2

q

qm−`+i

)

≥
(
1−

1

qm−`

)(
1−

1

qm−`(q − 1)

)

which is 1/4 for m = `+ 1 and q = 2. For the second product, we have

∞∏
k=2

∞∏
i=1

(
1−

1

qk(m−`+i)

) qk−1
k

≥ 1−
∞∑
k=2

∞∑
i=1

qk − 1

kqk(m−`+i)

≥ 1−
∞∑
k=2

∞∑
i=1

1

kqk(m−`+i−1)

≥ 1−
∞∑
k=2

1

kqk(m−`−1)(qk − 1)
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≥ 1−
∞∑
k=2

1

qk(m−`)

≥ 1−
1

qm−`(qm−` − 1)

which is 1/2 for m = `+ 1 and q = 2. Therefore κm(T ) is at least
1
4 ·
1
2 =

1
8

for m = `+ 1 and q = 2. In general when m > ` it is at least(
1−

1

qm−`

)(
1−

1

qm−`(q − 1)

)(
1−

1

qm−`(qm−` − 1)

)

≥ 1−
1

qm−`
−

1

qm−`(q − 1)
−

1

qm−`(qm−` − 1)

≥ 1−
q + 1

q − 1

1

qm−`
≥ 1−

3

qm−`
.

For q = 2 and m ≥ `+ 2 this is 1− 3
2m−`

≥ 1
4 , and for q ≥ 3 and m ≥ `+ 1

at least 1− 2
qm−1

≥ 1
3 .

2
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