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k
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of the irreducibles are noted. We also mention that our results may be useful in applying the

Fast Fourier Transform over finite fields.
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Introduction

Let p be a prime with p ≡ 3 mod 4. We consider the problem of completely factoring

x2
k
+ 1 over Fp. As the roots of x

2k + 1 are primitive 2k+1th roots of unity (in some

extension field of Fp), this problem is equivalent to constructing all the minimal poly-

nomials over Fp of primitive 2
k+1th roots of unity for an arbitrary integer k ≥ 1. Since

the degree of any irreducible factor of x2
k
+ 1 is known to be a power of 2, it is also

related to the problem of constructing an irreducible polynomial of degree 2e for any

given integer e.

The last problem is considered by Lenstra [4] and Shoup [7]. Let 2a be the highest

power of 2 in p + 1. Then 2a+1 is the highest power of 2 in p2 − 1. Let α ∈ Fp2 be of

order 2a+1. Then it is known that x2
e
− α is irreducible over Fp2 for any integer e ≥ 0.

Thus (x2
e
−α)(x2

e
−αp) is irreducible over Fp of degree 2e+1 and its roots are primitive

2a+e+1th roots of unity. Both Lenstra and Shoup give simple ways to construct an

element of order 2a+1 in Fp2 . Since p ≡ 3 mod 4, −1 is a quadratic nonresidue in Fp

and therefore x2 + 1 is irreducible over Fp. So Fp2 = Fp(i) where i =
√
−1. Let f be

the map f : Fp2 → Fp2 defined by f(x) = (1 + x)
(p−1)/2. We define f [k] recursively:

f [0](x) = x, f [k+1](x) = f(f [k](x)), k ≥ 0. Lenstra [4, page 344] points out that, for

every k with 2 ≤ k ≤ a + 1, f [k−2](i) ∈ Fp2 has multiplicative order 2
k, in particular

f [a−1](i) has order 2a+1. (Actually f(x) is one of the square roots of x−1 if xp+1 = 1.)

Shoup [7, page 439] suggests taking a−1 successive square roots of i, then the resulting

element is of order 2a+1. Taking square roots in Fp2 can be done using the following

formula
√
α =

{
iα(p+1)/4, if α(p−1)/2 = −1,
(1 + α(p−1)/2)(p−1)/2α(p+1)/4, otherwise,

which holds for any quadratic residue α in Fp(i).

Both Lenstra’s and Shoup’s methods construct explicitly one element in Fp2 of

order 2k for any k ≤ a + 1 by taking square roots. Note that if α is of order 2k then

both
√
α and −

√
α have order 2k+1 provided k > 0. One may modify their methods
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to find all the elements of order 2k recursively by starting at i =
√
−1. In order to

factor x2
k+1
+1, one then needs to compute the minimal polynomials over Fp of all the

elements constructed.

We shall show that all the irreducible factors of x2
k
+1 can be obtained by computing

directly their coefficients. As a consequence, we find some interesting properties of the

coefficients. All the operations will be in Fp.

Main Results

We assume that p is a prime such that 2a|(p+1), 2a+1 - (p+1) with a ≥ 2. Then 2a+1

is the highest power in p2 − 1.

Theorem 1 Let H1 = {0}. Recursively define

Hk = {±(
u+ 1

2
)(p+1)/4 : u ∈ Hk−1}

for k = 2, 3, · · · , a− 1 and

Ha = {±(
u− 1

2
)(p+1)/4 : u ∈ Ha−1}.

Then, for 1 ≤ k ≤ a− 1, Hk has cardinality 2k−1,

x2
k

+ 1 =
∏
u∈Hk

(x2 − 2ux+ 1),(1)

and for any integer e ≥ 0,

x2
a+e

+ 1 =
∏
u∈Ha

(x2
e+1

− 2ux2
e

− 1).(2)

All the factors in the above products are irreducible over Fp.

Proof. First note that Fp2 contains all the 2
a+1th roots of unity, since 2a+1|(p2 − 1).

Note that since 22 - (p − 1), for 1 ≤ k ≤ a, every primitive 2k+1th root of unity is of

degree 2 over Fp. We prove (1) and (2) by induction on k.
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For k = 1, note that p ≡ 3 mod 4, −1 is a quadratic nonresidue in Fp. Hence x2+1

is irreducible over Fp. Therefore (1) is true for k = 1.

Assume that (1) is true for k with 1 ≤ k < a. For k+1, we prove that (1) is true if

k+1 < a and (2) with e = 0 is true if k+1 = a. Substituting the x in (1) by x2 yields

x2
k+1

+ 1 =
∏
u∈Hk

(x4 − 2ux2 + 1).

and for a complete factorization it is required to factor

x4 − 2ux2 + 1(3)

for any u ∈ Hk.

Let β be a root of (3). Then β is of order 2k+2. As k + 2 ≤ a+ 1, β is of degree 2

over Fp. The minimal polynomial of β is of the form

x2 − 2rx+ s,(4)

where r, s ∈ Fp. As β is a root of both (3) and (4), we have

β2 + s = 2rβ,(5)

and

β4 = 2uβ2 − 1.(6)

Squaring (5) gives

β4 = (4r2 − 2s)β2 − s2.(7)

From (6) and (7) we have

(4r2 − 2s)β2 − s2 = 2uβ2 − 1.

As β2 6∈ Fp (since β2 has order 2k+1 and 2k+1 - (p − 1)), we must have 4r2 − 2s = 2u

and s2 = 1. So

s = ±1,(8)
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and

r = ±

√
u+ s

2
= ±(

u+ s

2
)(p+1)/4.(9)

The last equation follows from the fact that if w is a quadratic residue in Fp then

w(p+1)/4 is a square root of w. We prove that s must be 1 if k < a − 1, and −1 if

k = a− 1.

Case 1 k < a− 1. Then k+1 ≤ a− 1 and k+3 ≤ a+1. Suppose s = −1 in (8)

and (9). Then, from (4), x2 − 2rx− 1 is irreducible and its roots are primitive 2k+2th

roots of unity. Hence the roots of x4 − 2rx2 − 1 are primitive 2k+3th roots of unity.

As k + 3 ≤ a + 1, x4 − 2rx2 − 1 has two irreducible factors of degree 2, and assume

x2 − 2r̄x + s̄ is one of them. Then, by a similar argument leading to (8) and (9), we

find that

s̄2 = −1(10)

and

4r̄2 − 2s̄ = 2r(11)

have at least one solution (r̄, s̄) ∈ Fp × Fp. This is impossible , as −1 is a quadratic

nonresidue in Fp.

Therefore s = 1 in (8) and (9). Since (3) has irreducible factors of degree 2, for

every u ∈ Hk, (u+1)/2 must be a quadratic residue in Fp. Let u1 = ((u+1)/2)(p+1)/4.

Then

x4 − 2ux2 + 1 = (x2 − 2u1x+ 1)(x
2 − 2(−u1)x+ 1).

So (1) is true for k + 1.

Case 2 k = a − 1. In this case, k + 2 = a + 1, k + 3 = a + 2 > a + 1. Suppose

s = 1 in (8) and (9). Then both x2− 2rx+1 and x2+2rx+1 are irreducible and have

roots being primitive 2a+1th roots of unity. Thus the roots of

x4 − 2rx2 + 1(12)
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and

x4 + 2rx2 + 1(13)

are primitive 2a+2th roots of unity. Since p has order 4 modulo 2a+2, a primitive 2a+2th

root of unity is of degree 4 over Fp. So (12) and (13) must be irreducible over Fp.

It is easy to see that if (r + 1)/2 = r̄2 for some r̄ ∈ Fp, then x2 − 2r̄x + 1 divides

(12); if (r − 1)/2 = r̃2 for some r̃ ∈ Fp, then x2 − 2r̃x− 1 divides (12). So for (12) to

be irreducible, both (r+ 1)/2 and (r− 1)/2 must be quadratic nonresidues. Similarly,

for (13) to be irreducible, both of (−r + 1)/2 and (−r − 1)/2 must also be quadratic

nonresidues. This is impossible, since −1 is a quadratic nonresidue in Fp and one of

(r + 1)/2 and −(r + 1)/2 is a quadratic nonresidue in Fp.

Therefore s = −1 in (8) and (9). Hence, for each u ∈ Hk, (u− 1)/2 is a quadratic

residue in Fp. Let u1 = ((u− 1)/2)(p+1)/4. Then

x4 − 2ux2 + 1 = (x2 − 2u1x− 1)(x
2 − 2(−u1)x− 1).

So (2) is true for e = 0.

This proves by induction that (1) and (2) with e = 0 hold. As the factors in (1)

and (2) (with e = 0) are minimal polynomials of roots of unity, they are all irreducible

over Fp. For e > 0, (2) obviously holds as it is true for e = 0. We just need to

prove that every factor in (2) is irreducible over Fp. For any u ∈ Ha, we have proved

that x2 − 2ux − 1 is irreducible over Fp. Let α1, α2 be its two roots. We know that

α1, α2 ∈ Fp2 and have order 2
a+1. By Theorem 3.75 [5, page 124], x2

e
−α1 and x2

e
−α2

are irreducible over Fp2 for any integer e ≥ 1. Hence

(x2
e

− α1)(x
2e − α2) = x

2e+1 − 2ux2
e

− 1

is irreducible over Fp.

This completes the whole proof. 2
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Note that when p ≡ −1 mod 8 (so a > 2), 1/2 is a quadratic residue in Fp. From

the above proof we see that if k < a−1 then, for every u ∈ Hk, (u+1)/2 is a quadratic

residue in Fp,thus u + 1 is a quadratic residue. Observe that the irreducibility of

x2 − 2ux+ 1 = (x− u)2 − (u2 − 1) implies that u2 − 1 = (u− 1)(u+ 1) is a quadratic

nonresidue. So u − 1 is a quadratic nonresidue. Similarly, for u ∈ Ha−1, u − 1 is a

quadratic residue and u+1 is a quadratic nonresidue. For u ∈ Ha, we can only say that

u2+1 is a quadratic nonresidue due to the irreducibility of x2− 2ux− 1. In summary,

we have

Corollary 2 If p ≡ −1 mod 8 (hence a > 2), then

(a) for each 1 ≤ k < a− 1 and u ∈ Hk, u + 1 is a quadratic residue in Fp and u− 1

is a quadratic nonresidue in Fp;

(b) for each u ∈ Ha−1, u − 1 is a quadratic residue in Fp and u + 1 is a quadratic

nonresidue in Fp;

(c) for each u ∈ Ha, u2 + 1 is a quadratic nonresidue in Fp.

This solves, in a theoretical sense, a problem arising from primality testing [3,

(11.6)(a)] and [2, section 5], as remarked by Lenstra [4, page 344].

Corollary 3 For 1 ≤ k ≤ a, let u ∈ Hk. Define

v =

{
(1− u2)(p+1)/4, if k < a,
(−1− u2)(p+1)/4, if k = a.

Then u+ iv ∈ Fp2 = Fp(i) is a 2
k+1th primitive root of unity where i =

√
−1.

Proof. For u ∈ Hk with k < a, we know from Corollary 2 that 1− u2 is a quadratic

residue in Fp. So v = (1 − u2)(p+1)/4 is a square root of 1 − u2, that is, v2 = 1 − u2.

Hence u+ iv is a root of x2− 2ux+1. By Theorem 1, u+ iv is a 2k+1th primitive root

of unity. For u ∈ Ha, the proof is similar. 2
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As x2
t
− 1 = (x − 1)

∏t−1
i=0(x

2i + 1), the following corollary is an immediate conse-

quence of Theorem 1.

Corollary 4 For any integer t ≥ 1, the following factorization over Fp is complete:

(a) if t < a+ 1, then

x2
t

− 1 = (x− 1)(x+ 1)
t−1∏
i=1

∏
u∈Hi

(x2 − 2ux+ 1);

(b) if t ≥ a+ 1, then

x2
t

− 1 = (x− 1)(x+ 1)
∏
u∈Hi
1≤i≤a−1

(x2 − 2ux+ 1)
∏
u∈Ha

0≤r≤t−a−1

(x2
r+1

− 2ux2
r

− 1).

Remark

We mention a possible application of the preceding results in applying the Fast Fourier

Transform (FFT) over finite fields [6, Chapter IX] and [1, Chapter 7]. The FFT is

widely used in many areas including computing the convolution of data, digital signal

processing and computing products of polynomials or integers. In [6], to apply the FFT

over finite fields one chooses an appropriately large N = 2e and a prime p of the form

Nk+1. If an Nth root of unity ω in Fp is given, then the FFT evaluates a polynomial

in Fp[x] of degree at most N at the N points 1, ω, ω
2, . . . , ωN−1 in time O(N logN).

The problem here is that, when an integer e and a prime p = 2ek + 1 are given, there

is currently no deterministic polynomial time (in log p and e) algorithm to construct a

2eth primitive root of unity in Fp. It is suggested in [1] to apply the FFT over the ring

Zm of integers modulo m where m = 2
N/2 + 1 (which is not necessarily a prime). One

advantage of Zm is that 2 is known to be a primitive Nth root of unity in Zm. Since

the number m is exponential in N , the computation in Zm may be expensive for large

N . In the following we show that such problems do not exist if one operates the FFT

over Fp2 .
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Let e ≥ 1 be a positive integer and N = 2e. Let p be any prime of the form 2Nk−1.

Define u = ue inductively: u1 = 0 and

uk = (
1 + uk−1
2

)(p+1)/4, k = 2, 3, . . . , e.

Let

v = (1− u2)(p+1)/4.

Then, by Theorem 1 and Corollary 3, ω = u + iv ∈ Fp2 = Fp(i) is a 2
eth primitive

root of unity where i =
√
−1. Here the number of Fp-operations needed to get u + iv

is O(e log p). So one can compute a 2eth primitive root of unity in Fp2 quickly for

any given integer e and prime p of the form 2Nk − 1. Also, for fixed N = 2e, the

generalized prime number theorem implies that the number of primes 2Nk−1 ≤ N 2 is

approximately N/(2e). This means that primes of the required form exist in reasonable

abundance and their sizes can be bounded by N 2. So the problems encountered in [1]

and [6] are avoided when the FFT is applied over Fp2 .

Conclusion

We have given a direct way to compute the coefficients of the irreducible factors of

x2
k
+ 1 over Fp for a prime p ≡ 3 mod 4 and for any given integer k. From the

coefficients of these irreducible factors, one can produce many quadratic residues and

quadratic nonresidues in Fp. It was also noticed that our results may be useful in

applying the Fast Fourier Transform over finite fields.
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