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Abstract. The present paper is interested in a family of normal bases, considered by V. M.
Sidel’nikov, with the property that all the elements in a basis can be obtained from one element

by repeatedly applying to it a linear fractional function of the form ϕ(x) = (ax + b)/(cx + d),

a, b, c, d ∈ Fq. Sidel’nikov proved that the cross products for such a basis {αi} are of the form αiαj
= ei−jαi+ ej−iαj +γ, i 6= j, where ek, γ ∈ Fq. We will show that every such basis can be formed by

the roots of an irreducible factor of F (x) = cxq+1 + dxq − ax− b. We will construct: (a) a normal

basis of Fqn over Fq with complexity at most 3n− 2 for each divisor n of q− 1 and for n = p where

p is the characteristic of Fq; (b) a self-dual normal basis of Fqn over Fq for n = p and for each odd

divisor n of q − 1 or q + 1. When n = p, the self-dual normal basis constructed of Fqp over Fq
also has complexity at most 3p − 2. In all cases, we will give the irreducible polynomials and the

multiplication tables explicitly.
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1 Introduction

Let N = {α0, α1, · · · , αn−1} be a normal basis of Fqn over Fq with αi = αq
i
, 0 ≤ i ≤ n− 1,

where q is a prime power pm with p a prime and m ≥ 1. The multiplication of elements in

Fqn is uniquely determined by the n cross products α0αi =
∑n−1
j=0 tijαj , tij ∈ Fq. The n× n

matrix T = (tij) is called the multiplication table of N . As in [6], the number of nonzero

elements in T is called the complexity of the normal basis N , denoted by CN . In hardware

and software implementations of finite field arithmetic, normal bases of low complexity offer

considerable advantages. In [6] it is proved that CN ≥ 2n − 1. When the lower bound is

reached N is called an optimal normal basis of Fqn over Fq. Two families of optimal normal

bases are constructed in [6], and in [3] it is proved that these two families are essentially

all the optimal normal bases in finite fields. Some normal bases of low complexity are

constructed in [1]. A normal basis with the smallest complexity, if no optimal normal bases

exist, is called a minimal normal basis.

The present paper is interested in a family of normal bases, considered by Sidel’nikov [8],

with the property that all the elements in a basis can be obtained from one element by

repeatedly applying to it a linear fractional function of the form ϕ(x) = (ax+ b)/(cx+ d),

a, b, c, d ∈ Fq. Sidel’nikov proved that the cross products for such a basis {αi} are of the

form αiαj = ei−jαi + ej−iαj + γ, i 6= j, where ek, γ ∈ Fq. We will show that every such

basis can be formed by the roots of an irreducible factor of F (x) = cxq+1 + dxq − ax − b.

We will construct a normal basis of Fqn over Fq with complexity at most 3n − 2 for each

divisor n of q − 1 and for n = p where p is the characteristic of Fq, and a self-dual normal

basis of Fqn over Fq for n = p and for each odd divisor n of q− 1 or q+1. When n = p, the

self-dual normal basis constructed of Fqp over Fq also has complexity at most 3p− 2. In all

cases, we will give the irreducible polynomials and the multiplication tables explicitly. For

this purpose, some properties of linear fractional functions and the complete factorization

of F (x) are discussed in sections 2 and 3, respectively.

2 On Linear Fractional Functions

In this section, we discuss some properties of the linear fractional function ϕ(x) = (ax +

b)/(cx + d) with a, b, c, d ∈ Fq and ad − bc 6= 0. It is easy to see that ϕ(x) defines a
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permutation on Fq ∪ {∞}, where

a∞+ b

c∞+ d
: =

a

c
, if c 6= 0,

a∞+ b

c∞+ d
: =∞, if ad 6= 0, c = 0,

a

0
:=∞, if a 6= 0.

Actually, ϕ(x) induces a permutation on Fqn ∪ {∞}, for any n ≥ 1. The inverse of ϕ(x) is

ϕ−1(x) = (−dx+ b)/(cx− a).

For any two linear fractional functions ϕ and ψ, the composition ϕψ, defined as ϕψ(x) =

ϕ(ψ(x)), is still a linear fractional function. It is well known that all the linear fractional

functions over Fq form a group under composition and is isomorphic to the projective

general linear group PGL(2, q). The order of ϕ is the smallest positive integer t such that

ϕt(x) = x, i.e., ϕt is the identity map.

For our purpose, we will deal with a linear fractional function ϕ(x) = (ax+ b)/(cx+ d)

with c 6= 0. The fixed points of ϕ(x) satisfy

cx2 − (a− d)x− b = 0. (2.1)

The following two lemmas are easily checked.

Lemma 2.1 Let ϕ(x) = ax+ b with a 6= 0, 1, be a linear mapping. Then

ϕ = h−1ψh,

where ψ(x) = ax and h(x) = x+ b/(a− 1).

Lemma 2.2 Let ϕ(x) = (ax+b)/(cx+d) with c 6= 0 and ad−bc 6= 0. Let ∆ = (a−d)2+4bc.

Then

ϕ = h−1ψh,

where h(x) and ψ(x) are defined as follows:

(a) When ∆ = 0, let x0 be the only solution of (2.1) in Fq, that is, x0 satisfies cx
2
0 = −b

and 2cx0 = a− d. Then h(x) = (a/c− x0)/(x− x0) and ψ(x) = x+ 1.
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(b) When ∆ 6= 0, let x0, x1 be the two solutions of (2.1) in Fq2 and let ξ = (a− cx0)/(a−

cx1). Then

h(x) =
x− x0
x− x1

, ψ(x) = xξ.

The order of ϕ is now easy to determine. The order of ϕ is equal to the order of ψ.

If ψ is of the form x + 1 then the order of ψ is equal to the additive order p of 1 in Fq,

where p is the characteristic of Fq. If ψ is of the form ξx, then the order of ψ is equal to

the multiplicative order of ξ. In case (b) of Lemma 2.2, if ∆ is a quadratic residue in Fq,

then x0, x1 ∈ Fq, and ξ ∈ Fq. Hence ξ
q−1 = 1 and the order of ξ is a divisor of q − 1.

If ∆ is a quadratic nonresidue in Fq, then x0, x1 ∈ Fq2 \ Fq and x
q
0 = x1, x

q
1 = x0. Thus

ξq = ((a− cx0)/(a− cx1))q = (a− cx
q
0)/(a− cx

q
1) = (a− cx1)/(a− cx0) = 1/ξ. So ξ

q+1 = 1

and the order of ξ divides q + 1. Therefore the order of ϕ is always a divisor of p, q − 1 or

q + 1.

Lemma 2.3 Let a, b, c, d ∈ Fq with c 6= 0 and ad − bc 6= 0. Let ϕ(x) = (ax + b)/(cx + d)

with order t. Then, for 1 ≤ i ≤ t− 1,

ϕi(x) =
eix+ b/c

x− et−i
, ei + et−i =

a− d

c
(2.2)

where e1 = a/c and ei+1 = ϕ(ei) for i = 1, . . . , t− 2.

Proof: It is routine to prove by induction on i that there exist ei, fi ∈ Fq with e1 = a/c,

f1 = d/c such that

ϕi(x) =
eix+ b/c

x+ fi
,

and

ei − fi =
a− d

c
, ei = ϕ(ei−1)

for i = 1, . . . , t− 1, where e0 =∞. Note that

et−ix+ b/c

x+ ft−i
= ϕt−i(x) = ϕ−i(x) = (ϕi)−1(x) =

−fix+ b/c

x− ei
.

We see that fi = −et−i. This completes the proof. 2

Lemma 2.4 With the same notation as in Lemma 2.3, we have

t−1∑
j=1

ej =



(t− 1)(a− d)/(2c), if p 6= 2,
a/c = d/c, if p = 2 and t = 2,
(a− d)/c, if p = 2 and t ≡ 3 mod 4,
0, if p = 2 and t ≡ 1 mod 4,

(2.3)
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where p is the characteristic of Fq.

Proof: We consider two cases according to the type of ϕ(x).

Case I ∆ = (a − d)2 + 4bc = 0. Then t = p and, by Lemma 2.2, ϕ(x) = h−1ψh(x)

where

ψ(x) = x+ 1, h(x) =
a/c− x0
x− x0

, h−1(x) = x0 +
a/c− x0

x
,

with x0 satisfying 2cx0 = a− d and cx20 = −b. Note that ψ
i(x) = x+ i. We have

ϕi(x) = h−1ψih(x)

= h−1
(
a/c− x0
x− x0

+ i

)

=
(a/c− x0 − ix0)x− ix20
ix+ (a/c− x0 − ix0)

.

So

ei =
a/c− x0

i
+ x0, for 1 ≤ i ≤ t− 1.

Therefore

p−1∑
i=1

ei = (p− 1)x0 + (a/c− x0)
p−1∑
i=1

i−1

= (p− 1)x0 + (a/c− x0)
p−1∑
i=1

i

=

{
(p− 1)x0 = (t− 1)(a− d)/(2c), if p 6= 2,
a/c = d/c, if p = 2.

Case II ∆ = (a− d)2 + 4bc 6= 0. In this case, the order t of ϕ(x) is a factor of q − 1 or

q + 1. So t ∈ F ∗q . By Lemma 2.2, ϕ(x) = h
−1ψh(x) where

h(x) =
x− x0
x− x1

, ψ(x) = ξx, ξ =
a/c− x0
a/c− x1

,

with x0 + x1 = (a − d)/c and x0x1 = −b/c. Note that h−1(x) = (x1x − x0)/(x − 1) and

ψi(x) = ξix, we have

ϕi(x) = h−1ψih(x)

= h−1
(
ξi
x− x0
x− x1

)

=
(x1ξ

i − x0)x− x0x1(ξi − 1)

(ξi − 1)x+ x1 − x0ξi
.
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So

ei =
x1ξ

i − x0
ξi − 1

= x1 +
x1 − x0
ξi − 1

, for 1 ≤ i ≤ t− 1,

and
t−1∑
i=1

ei = (t− 1)x1 + (x0 − x1)
t−1∑
i=1

1

1− ξi
.

As ξ is a t-th primitive root of unity, we have

t−1∏
i=1

(x− ξi) = (xt − 1)/(x− 1) = xt−1 + xt−2 + · · ·+ x+ 1. (2.4)

Letting x = 1 in equation (2.4), we get

t−1∏
i=1

(1− ξi) = t. (2.5)

Taking derivatives with respect to x on both sides of (2.4), we have

t−1∏
i=1

(x− ξi)(
t−1∑
i=1

1

x− ξi
) = (t− 1)xt−2 + (t− 2)xt−3 + · · ·+ 2x+ 1. (2.6)

Letting x = 1 in (2.6), we see that

t−1∑
i=1

1

1− ξi
= (

t−1∑
i=1

i)/t =



(t− 1)/2, if p 6= 2,
1, if p = 2 and t ≡ 3 mod 4,
0, if p = 2 and t ≡ 1 mod 4,

(Note that t is odd when p = 2.) Therefore

t−1∑
i=1

ei =



((t− 1)/2)(x0 + x1) = (t− 1)(a− d)/(2c), if p 6= 2,
x0 − x1 = (a− d)/c, if p = 2 and t ≡ 3 mod 4,
0, if p = 2 and t ≡ 1 mod 4.

This completes the proof. 2

The following theorem is proved by Sidel’nikov [8, Theorem 2]:

Theorem 2.5 Let a, b, c, d ∈ Fq with c 6= 0 and ad − bc 6= 0. Let θ be a root of F (x) =

cxq+1 + dxq − ax − b in some extension field of Fq, not fixed by ϕ(x) = (ax + b)/(cx + d)

whose order is assumed to be t. Then

θ, ϕ(θ), · · · , ϕt−1(θ)

are linearly independent over Fq, if
∑t−1
i=0 ϕ

i(θ) 6= 0.

This theorem indicates that if we can factor F (x) then we will obtain normal bases over

Fq. The factorization of F (x) is discussed in the next section.
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3 Factorization of cxq+1 + dxq − ax− b

The complete factorization of F (x) = cxq+1 + dxq − ax − b, a, b, c, d ∈ Fq, into irreducible

factors was established by Ore [7, pp. 264–270] by using his theory of linearized polynomials.

In this section, we briefly discuss how this can be done without resorting to linearized

polynomials. For the detail, the reader is referred to [2]. To exclude the trivial cases, we

assume that ad − bc 6= 0. Let ϕ(x) = (ax + b)/(cx + d) be the linear fractional function

associated with F (x). As noted in section 2, ϕ(x) induces a permutation on Fqn ∪{∞}, for

any n ≥ 1. We assume that the order of ϕ is t in this section.

Let θ be a root of F (x) = (cx+ d)xq − (ax+ b). Then

θq =
aθ + b

cθ + d
= ϕ(θ).

Note that

θq
2
= (ϕ(θ))q = ϕ(θq) = ϕ(ϕ(θ)) = ϕ2(θ).

By induction we see that θq
i
= ϕi(θ), i ≥ 0. So

θ, ϕ(θ), · · · , ϕt−1(θ) (3.1)

are all the conjugates of θ over Fq. If θ is a fixed point of ϕ(x) then θ ∈ Fq, and x − θ is

a factor of F (x). If θ is not a fixed point of ϕ(x), then, by Theorem 2.5, the elements of

(3.1) are distinct and θ is of degree t over Fq. In the latter case, the minimal polynomial

of θ over Fq is an irreducible factor of F (x) of degree t. So an irreducible factor of F (x) is

either linear or of degree t. We first deal with two special cases.

Theorem 3.1 Let ξ ∈ Fq \{0} with multiplicative order t. Then the following factorization

over Fq is complete:

xq−1 − ξ =
(q−1)/t∏
j=1

(xt − βj),

where βj are all the (q − 1)/t distinct roots of x(q−1)/t − ξ in Fq.

Proof: Let θ be a root of xq−1− ξ in some extension field of Fq. Then θq
i
= θξi, i ≥ 1. All

the distinct conjugates of θ over Fq are θ, θξ, . . . , θξ
t−1. The minimal polynomial of θ over

7



Fq is
t−1∏
i=0

(x− θξi) = xt − θt,

which divides xq−1 − ξ. This means that any irreducible factor of xq−1 − ξ is of the form

xt − β where β ∈ Fq. One can prove that xt − β divides xq−1 − ξ if and only if β is a root

of x(q−1)/t − ξ. This completes the proof. 2

Theorem 3.2 For xq−(x+b) with b ∈ F ∗q , the following factorization over Fq is complete:

xq − (x+ b) =
q/p∏
j=1

(xp − bp−1x− bpβj) (3.2)

where βj are the distinct elements of Fq with Trq/p(βj) = 1 and p is the characteristic of

Fq.

Proof: Let θ be a root of F (x) = xq − (x+ b). Then θq
i
= θ + ib, i ≥ 1. So the conjugates

of θ over Fq are θ, θ + b, . . . , θ + (p− 1)b. The minimal polynomial of θ over Fq is

p−1∏
i=0

[x− (θ + ib)] = bp
p−1∏
i=0

[
x− θ

b
− i]

= bp[(
x− θ

b
)p −

x− θ

b
]

= xp − bp−1x+ θ(bp−1 − θp−1).

Hence an irreducible factor of xq − (x+ b) is of the form

xp − bp−1x− β, β ∈ Fq. (3.3)

Let γ be a root of (3.3) in some extension field of Fq. Then we have

(
γ

b
)p
i

− (
γ

b
)p
i−1
= (

β

bp
)p
i−1
, 1 ≤ i ≤ m, (3.4)

where q = pm. Summing (3.4) yields

γp
m

− γ = bTrq/p(
β

bp
).

Consequently (3.3) divides F (x) = xp
m
− x − b if and only if Trq/p(β/b

p) = 1. Note that

there are q/p = pm−1 elements β in Fq with trace 1, and the proof is completed. 2
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In general we show that the factorization of F (x) can be reduced to factoring xq−x−1,

xq−1 − ξ or xq+1 − ξ. Let ϕ = h−1ψh as in Lemmas 2.1 and 2.2. For any root θ of F (x)

that is not fixed by ϕ, we have

h(θq) = ψ(h(θ)). (3.5)

If ∆ is a quadratic residue in Fq, then h(θ
q) = (h(θ))q. Thus η = h(θ) is a root of xq−x−1 or

xq−ξx = x(xq−1−ξ) according as ψ(x) = x+1 or ψ(x) = ξx, ξ ∈ Fq. So by the factorization

of xq − x− 1 and xq−1 − ξ as in Theorems 3.1 and 3.2 we obtain the factorization of F (x)

as follows.

Theorem 3.3 For a, b ∈ Fq with a 6= 0, 1, the following factorization over Fq is complete:

xq − (ax+ b) = (x−
b

a− 1
)

(q−1)/t∏
j=1

((x−
b

a− 1
)t − βj),

where t is the multiplicative order of a and βj are all the (q−1)/t distinct roots of x(q−1)/t−a.

Theorem 3.4 For a, b, c, d ∈ Fq with c 6= 0, ad− bc 6= 0 and ∆ = (a− d)2 + 4bc = 0, the

following factorization over Fq is complete:

(cx+ d)xq − (ax+ b)

= (x− x0)
q/p∏
j=1

[(x− x0)
p +

1

βj
(a/c− x0)(x− x0)

p−1 −
1

βj
(a/c− x0)

p]

where x0 ∈ Fq is the unique solution of (2.1) and βj are all the q/p distinct elements of Fq

with Trq/p(βj) = 1.

Theorem 3.5 For a, b, c, d ∈ Fq with c 6= 0, ad− bc 6= 0 and ∆ = (a− d)2 + 4bc 6= 0 being

a quadratic residue in Fq, the following factorization over Fq is complete:

(cx+ d)xq − (ax+ b)

= (x− x0)(x− x1)
(q−1)/t∏
j=1

1

1− βj
[(x− x0)

t − βj(x− x1)
t]

where x0, x1 ∈ Fq are the two distinct roots of (2.1), t is the multiplicative order of ξ =

(a− cx0)/(a− cx1) and βj are all the (q − 1)/t distinct roots of x(q−1)/t − ξ in Fq.
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If ∆ is not a quadratic residue in Fq, the situation is a little more complicated, as in

this case x0, x1, ξ 6∈ Fq. Noting that x
q
0 = x1 and x

q
1 = x0, we have h(θ

q) = (1/h(θ))q. The

equation (3.5) implies that η = 1/h(θ) is a root of xq+1 − ξ. So by factoring xq+1 − ξ over

Fq2 we can obtain the factorization of F (x) over Fq2 . Then by “combining” these factors

we get the factorization of F (x) over Fq as in Theorem 3.6.

Theorem 3.6 For a, b, c, d ∈ Fq with c 6= 0, ad− bc 6= 0 and ∆ = (a− d)2 + 4bc 6= 0 being

a quadratic nonresidue in Fq, the following factorization over Fq is complete:

F (x) = (cx+ d)xq − (ax+ b)

=

(q+1)/t∏
j=1

1

1− βj
[(x− x0)

t − βj(x− x1)
t] (3.6)

where x0, x1 ∈ Fq2 are the two distinct roots of (2.1), t is the multiplicative order of ξ =

(a− cx1)/(a− cx0) and βj are all the (q + 1)/t distinct roots of x(q+1)/t − ξ in Fq2.

Let f(x) be any nonlinear irreducible factor of F (x) of degree t and let α be a root of f(x).

From the discussion at the beginning of this section, we see that ϕi(α), i = 0, 1, . . . , t − 1

are all the roots of f(x) and, by Theorem 2.5, they are linearly independent over Fq if

Tr(α) 6= 0. But Tr(α) is just the negative of the coefficient of xt−1 in f(x). By examining

the factors in the above explicit factorizations, we have

Theorem 3.7 Let F (x) = (cx+ d)xq − (ax+ b) with a, b, c, d ∈ Fq, c 6= 0 and ad− bc 6= 0.

Then a monic nonlinear irreducible factor f(x) of F (x) of degree t has linearly dependent

roots over Fq if and only if the coefficient of x
t−1 in f(x) is zero. The latter happens only

if ∆ = (a− d)2 + 4bc 6= 0 and f(x) is of the form

1

x1 − x0
[x1(x− x0)

t − x0(x− x1)
t],

where x0 and x1 are solutions of (2.1).

This shows that every nonlinear irreducible factor of F (x), except for possibly one, has

linearly independent roots.
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4 Normal Bases

As Theorem 3.7 shows, when c 6= 0 the roots of an irreducible nonlinear factor of F (x)

form a normal basis over Fq (except possibly for one factor). This section is devoted to

discussing the properties of these bases. We will show how to construct a normal basis of

Fqn over Fq with complexity at most 3n− 2 for n = p and for each divisor n of q − 1. For

this purpose we first compute the multiplication tables of the normal bases formed by the

roots of an irreducible factor of F (x).

Without loss of generality, we assume that F (x) = xq+1 + dxq − ax− b with a, b, d ∈ Fq

and b 6= ad. Assume that ϕ(x) = (ax + b)/(x + d) has order n and that, by Lemma 2.3,

ϕi(x) = (eix+ b)/(x− en−i) with ei = ϕi−1(a), 1 ≤ i ≤ n− 1. Let f(x) be any irreducible

nonlinear factor of F (x) and α a root of f(x). Then f(x) has degree n and its roots are

αi = α
qi = ϕi(α), i = 0, 1, · · · , n− 1,

and they form a normal basis of Fqn over Fq if the coefficient of x
n−1 in f(x) is not zero (or

Tr(α) 6= 0), by Theorem 3.7.

Theorem 4.1 Let F (x) = xq+1 + dxq − (ax+ b) with a, b, d ∈ Fq and b 6= ad. Let f(x) be

an irreducible factor of F (x) of degree n > 1 and let α be a root of it. Then all the roots of

f(x) are

αi = α
qi = ϕi(α), i = 0, 1, · · · , n− 1, (4.1)

where ϕ(x) = (ax + b)/(x + d). If τ =
∑n−1
i=0 αi, the negative of the coefficient of x

n−1 in

f(x), is not zero, then (4.1) form a normal basis of Fqn over Fq such that

α0




α0
α1
α2
...

αn−1


 =




τ∗ −en−1 −en−2 . . . −e1
e1 en−1
e2 en−2
...

. . .

en−1 e1







α0
α1
α2
...

αn−1


+




b∗

b

b
...
b


 (4.2)

where e1 = a, ei+1 = ϕ(ei) (i ≥ 1), b∗ = −b(n− 1) and τ∗ = τ − ε with

ε =
n−1∑
i=1

ei =



(n− 1)(a− d)/2, if p 6= 2,
a = d, if p = n = 2,
a− d, if p = 2 and n ≡ 3 mod 4,
0, if p = 2 and n ≡ 1 mod 4.
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Proof: We just need to prove (4.2). By Lemma 2.3, for i ≥ 1,

αi = ϕ
i(α) =

eiα0 + b

α0 − en−i
.

So

α0αi = eiα0 + en−iαi + b.

For i = 0, we have

α0α0 = α0(τ −
n−1∑
j=1

αj) = (τ −
n−1∑
j=1

ej)α0 −
n−1∑
j=1

en−jαj − b(n− 1).

The theorem follows from Lemma 2.4. 2

The next theorem can be viewed as the “converse” of Theorem 4.1.

Theorem 4.2 Let n > 2 and αi = αq
i
for 0 ≤ i ≤ n − 1. Suppose that {αi} is a normal

basis of Fqn over Fq and satisfies

αiαj = aijαi + bijαj + γij , for all 0 ≤ i 6= j ≤ n− 1, (4.3)

where aij , bij , γij ∈ Fq. Then there are constants γ, e1, e2, . . . , en−1 ∈ Fq such that

(a) ei = ϕ(ei−1), for 2 ≤ i ≤ n− 1, and

aij = ej−i, bij = ei−j , γij = γ, for all i 6= j,

where ϕ(x) = (e1x+ γ)/(x− en−1) and the subscripts of e are calculated modulo n;

(b) the minimal polynomial of α is a factor of F (x) = xq+1− en−1xq − (e1x+ γ), and thus

n must be a factor of p, q − 1 or q + 1.

Proof: Let ek = a0k and γk = γ0k for k = 1, 2, · · · , n− 1. Then

α0αk = ekα0 + b0kαk + γk. (4.4)

Raising (4.4) to the qn−k-th power on both sides, we have

α0αn−k = b0kα0 + ekαn−k + γk. (4.5)

12



Subtracting (4.5) from (4.4), with the k in (4.4) replaced by n− k, gives

(en−k − b0k)α0 + (b0n−k − ek)αn−k + γn−k − γk = 0. (4.6)

As n > 2 and the αi’s are linearly independent over Fq, the equation (4.6) implies that

b0k = en−k, γk = γn−k, 1 ≤ k ≤ n− 1

Therefore

α0αk = ekα0 + en−kαk + γk, 1 ≤ k ≤ n− 1. (4.7)

Now for any i 6= j, raising (4.7) to the qi-th power and letting k = j − i, we have

αiαj = ej−iαi + ei−jαj + γj−i. (4.8)

Comparing (4.8) and (4.3) gives

aij = ej−i, bij = ei−j , γij = γj−i, (4.9)

which proves part of (a).

We shall prove the remaining part of (a) together with (b). To this purpose, note that

a special case of (4.8) is

αiαi+1 = en−1αi+1 + e1αi + γ1, 0 ≤ i < n− 1,

or

αi+1 =
e1αi + γ1
αi − en−1

= ϕ(αi), 0 ≤ i < n− 1, (4.10)

where ϕ(x) = (e1x + γ)/(x − en−1) with γ = γ1. So, by induction on i, we see that

αi = ϕ
i(α0) = ϕ

i(α), 0 ≤ i ≤ n− 1. We know, by Lemma 2.3, that

ϕi(x) = (aix+ γ)/(x− an−i), 0 ≤ i ≤ n− 1

where ai = ϕ(ai−1), for i ≥ 1, and a1 = e1. Thus (4.10) implies that

αi =
aiα0 + γ

α0 − an−i
,

i.e.,

α0αi = aiα0 + an−iαi + γ. (4.11)
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Comparing (4.11) to (4.7), we have

ei = ai, en−i = an−i, γi = γ.

This proves (a). For (b), note that α1 = αq and that (4.7) with k = 1 means α is a root

of F (x) = xq+1 − en−1xq − e1x − γ. Therefore the minimal polynomial of α divides F (x).

This completes the proof. 2

Theorem 4.3 For every a, β ∈ F ∗q with Trq/p(β) = 1,

xp −
1

β
axp−1 −

1

β
ap, (4.12)

is irreducible over Fq and its roots form a normal basis of Fqp over Fq with complexity at

most 3p− 2. The multiplication table is


τ∗ −ep−1 −ep−2 . . . −e1
e1 ep−1
e2 ep−2
...

. . .

ep−1 e1




(4.13)

where e1 = a, ei+1 = ϕ(ei) fori ≥ 1, ϕ(x) = ax/(x+ a), and τ∗ = a/β if p 6= 2 or a/β − a

if p = 2.

Proof: Let F (x) = (x+a)xq−ax and ϕ(x) = ax/(x+a). Then F (x) satisfies the conditions

of Theorem 3.4 with b = 0, c = 1, d = a, ∆ = 0, and x0 = 0. So (4.12) is an irreducible

factor of F (x). As the coefficient of xp−1 in (4.12) is −a/β 6= 0, by Theorem 4.1, the

roots of (4.12) form a normal basis and its multiplication table is (4.13). The complexity is

obviously at most 3p− 2. 2

Theorem 4.4 Let n be any factor of q−1. Let β ∈ Fq with multiplicative order t such that

gcd(n, (q − 1)/t) = 1 and let a = β(q−1)/n. Then

xn − β(x− a+ 1)n (4.14)

is irreducible over Fq and its roots form a normal basis of Fqn over Fq of complexity at most

3n− 2. The multiplication table is


τ∗ −en−1 −en−2 . . . −e1
e1 en−1
e2 en−2
...

. . .

en−1 e1


 (4.15)
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where e1 = a, ei+1 = ϕ(ei) (i ≥ 1), ϕ(x) = ax/(x+1) and τ∗ = −n(a− 1)β/(1− β)− ε

with ε specified as in Theorem 4.1 (with d = 1).

Proof: It is easy to see that a has multiplicative order n. Then ϕ(x) = ax/(x + 1) has

x0 = 0 and x1 = a− 1 as fixed points, and ξ = (a− x0)/(a− x1) = a has order n. So ϕ has

order n. Note that β is a root of x(q−1)/n− a. By Theorem 3.5, the polynomial (4.14) is an

irreducible factor of F (x) = xq+1 + xq − ax. Note that the coefficient of xn−1 in (4.14) is

n(a− 1) 6= 0. By Theorem 4.1 (with b = 0, d = 1), the roots of (4.14) form a normal basis

of Fqn over Fq and its multiplication table is (4.15). The complexity is obviously at most

3n− 2. 2

The following table is the result of a computer search for the minimal complexity of

normal bases. It indicates that when n|(q − 1) the minimal complexity is often 3n − 3 or

3n−2. This indicates that the normal bases constructed in Theorems 4.3 and 4.4 often have

complexity very close to the minimal complexity. In the table, † indicates that the minimal

q 5 7 7 11 11 13 13 17 19

n 4 3 6 5 10 3 4 4 3

min 9 6 16† 12 28† 6 7? 7? 6

complexity is 3n−2 and ? indicates optimal complexity, i. e., 2n−1. Other minimal values

are of the form 3n− 3.

5 Self-dual Normal Bases

A basis B = {β0, β1, · · · , βn−1} is called a dual basis of A = {α0, α1, · · · , αn−1} if Tr(αiβj)

= δij = 0 for i 6= j, and 1 for i = j, where Tr is the trace function of Fqn into Fq defined as

Tr(α) = α+ αq + · · ·+ αq
n−1
∈ Fq, α ∈ Fqn . One can prove that, for each basis A of Fqn

over Fq, there is a unique dual basis. Also, if A is normal then so is its dual. If the dual

basis of A coincides with A, then A is called a self-dual basis, that is, a basis A = {αi} is

called self-dual if Tr(αiαj) = δij . Lempel and Weinberger [5] proved

Theorem 5.1 A self-dual normal basis of Fqn over Fq exists if and only if one of the

following conditions is satisfied
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(a) q is even and n is not a multiple of 4,

(b) both q and n are odd.

Later, Jungnickel, Menezes and Vanstone [4] determined the total number of self-dual bases

and self-dual normal bases of Fqn over Fq.

However the proofs of these results are not constructive. In this section, we will construct

a self-dual normal basis of Fqn over Fq for every n in the following cases:

(a) n = p, the characteristic of Fq,

(b) n|(q − 1) and n is odd,

(c) n|(q + 1) and n is odd.

One can check that the conditions in Theorem 5.1 are satisfied by each of the three cases.

Theorem 5.2 Let N = {α0, α1, · · · , αn−1} with αi = αq
i
be a normal basis of Fqn over Fq

satisfying

αiαj = ej−iαi + ei−jαj + γ, for all i 6= j,

where e1, e2, · · · , en−1, γ ∈ Fq. Let τ = Trqn/q(α) and λ = −(e1 + en−1)− nγ/τ . Then

{
1

τ(τ + nλ)
(αi + λ) : i = 0, 1, · · · , n− 1}

is the dual basis of N .

Proof: Note that, for i 6= j,

Trqn/q(αi(αj + λ)) = Trqn/q(λαi + ej−iαi + ei−jαj + γ)

= λτ + ej−iτ + ei−jτ + nγ

= τ(λ+ e1 + en−1) + nγ

= 0,

and

Trqn/q(αi(αi + λ)) = Tr(αi(τ + λ−
∑
j 6=i

αj))
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= Tr(αi(τ + nλ−
∑
j 6=i

(αj + λ)))

= Tr(αi)(τ + nλ)−
∑
j 6=i

Tr(αi(αj + λ))

= τ(τ + nλ).

The result is proved. 2

We now proceed to determine when the roots of an irreducible factor of F (x) = xq+1 +

dxq−ax−b form a self-dual normal basis. Let {α0, α1, . . . , αn−1} be a normal basis generated

by a root α of F (x) with αi = α
qi and let τ = Trqn|q(α). By Theorem 4.1 and Lemma 2.3,

we have, for i 6= 0,

Trqn/q(α0αi) = eiTr(α0) + en−iTr(αi) + nb

= τ(ei + en−i) + nb

= τ(a− d) + nb, (5.1)

and

Trqn/q(α0α0) = τ(τ − ε)− τε− nb(n− 1)

=

{
τ2, if p = 2,
τ2 − (n− 1)(τ(a− d) + nb), if p 6= 2.

(5.2)

Therefore α generates a self-dual normal basis if τ = Tr(α) = 1 and (a − d) + nb = 0.

By examining the irreducible factors in Theorems 3.4, 3.5 and 3.6, we find that these two

conditions can be satisfied. More explicitly, we have the following three results.

Theorem 5.3 For any β ∈ F ∗q with Trq/p(β) = 1,

xp − xp−1 − βp−1 (5.3)

is irreducible over Fq and its roots form a self-dual normal basis of Fqp over Fq with com-

plexity at most 3p−2. The multiplication table is (4.13) where e1 = β, ei+1 = ϕ(ei) (i ≥ 1),

ϕ(x) = βx/(x+ β), and τ∗ = 1 if p 6= 2 or τ∗ = 1− β if p = 2.

Proof: Let F (x) = (x + β)xq − βx. Then, by Theorem 3.4, the polynomial (5.3) is an

irreducible factor of F (x) (where b = 0, c = 1, d = a = β, x0 = 0 and βj = β). Since

a− d = b = 0 and τ = 1 in (5.1) and (5.2), the roots of (5.3) form a self-dual normal basis.

Its multiplication table is (4.13), by Theorem 4.1. 2.
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Theorem 5.4 Let n be an odd factor of q − 1 and ξ ∈ Fq of multiplicative order n. Then

there exists u ∈ Fq such that (u2)(q−1)/n = ξ. Let x0 = (1 + u)/n and x1 = (1 + u)/(nu).

Then the monic polynomial

1

1− u2
[(x− x0)

n − u2(x− x1)
n] (5.4)

is irreducible over Fq and its roots form a self-dual normal basis of Fqn over Fq. The

multiplication table is (4.2) with a = (x0 − ξx1)/(1− ξ), b = −x0x1, d = a− (x0 + x1) and

τ = 1.

Proof: We first prove that there exists at least one root of x(q−1)/n − ξ that is a quadratic

residue in Fq. Let ζ be a primitive element in Fq. Let t be an odd factor of q− 1 such that

n|t and gcd(n, (q− 1)/t) = 1. Then ζ0 = ζ(q−1)/t is a t-th primitive root of unity. Since t is

odd, ζ20 is also a t-th primitive root of unity. Let d = t/n. Then there is an integer i such

that (ζ20 )
id = ξ, that is,

(ζ(q−1)/t)2id = (ζ2i)(q−1)/n = ξ.

So ζ2i is a root of x(q−1)/n − ξ and is a quadratic residue in Fq. Therefore we can take

u = ζi.

Now by applying Theorem 3.5, we see that (5.4) is an irreducible factor of F (x) =

(x+ d)xq − (ax+ b). The negative of the coefficient of xn−1 in (5.4) is

τ =
n(x0 − u2x1)

1− u2
= 1.

By Theorem 4.1, the roots of (5.4) form a normal basis of Fqn over Fq with the claimed

multiplication table. Note that

a− d = x0 + x1 =
(u+ 1)

n
+
u+ 1

nu
=
(u+ 1)2

nu
= nx0x1 = −nb,

that is, τ(a − d) + nb = 0. It follows from (5.1) and (5.2) that the roots of (5.4) form a

self-dual normal basis. 2

Theorem 5.5 Let n be an odd factor of q + 1 and let ξ ∈ Fq2 be a root of x
q+1 − 1 with

multiplicative order n. Then there is a root u of xq+1 − 1 such that (u2)(q+1)/n = ξ. Let

x0 = (1 + u)/n and x1 = (1 + u)/(nu). Then

1

1− u2
[(x− x0)

n − u2(x− x1)
n] (5.5)
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is in Fq[x] and is irreducible over Fq with its roots forming a self-dual normal basis of

Fqn over Fq. The multiplication table is (4.2) with a = (x1 − ξx0)/(1 − ξ), b = −x0x1,

d = a− (x0 + x1) and τ = 1.

Proof: The proof of the existence of u is similar to that in the proof of Theorem 5.4 by

taking ζ to be a (q + 1)th primitive root of unity in Fq2 . We next prove that a, b, d ∈ Fq

and (5.5) is in Fq[x]. Note that ξ, u and u
2 are all (q + 1)th roots of unity and we have

ξq = 1/ξ, uq = 1/u and (u2)q = 1/u2. Thus xq0 = x1 and x
q
1 = x0. So a

q = a, bq = b and

dq = d, that is, a, b, d ∈ Fq. Denote the polynomial (5.5) by φ(x) and note that

(φ(x))q =
1

1− (u2)q
[(xq − xq0)

n − (u2)q(xq − xq1)
n]

=
1

1− 1/u2
[(xq − x1)

n − 1/u2(xq − x0)
n]

= φ(xq).

We see that the coefficients of φ(x) are in Fq.

To prove that (5.5) is irreducible over Fq, we apply Theorem 3.6. It is easy to check

that, with a, b, d as defined in Theorem 5.5, x0 and x1 are the two distinct solutions of (2.1)

with c = 1 and (a − x1)/(a − x0) = ξ which is of order n. Now since u2 is assumed to be

a solution of x(q+1)/q − ξ, it follows from Theorem 3.6 that (5.5) is an irreducible factor of

F (x) = (x+ d)xq − (ax+ b).

As the coefficient of xn−1 in (5.5) is (−nx0 + nu2x1)/(1 − u2) = −1, the trace of any

root of (5.5) is τ = 1. It is easy to check that τ(a− d) + nb = 0. It follows from (5.1) and

(5.2) that the roots of (5.5) form a self-dual normal basis. The multiplication table follows

from Theorem 4.1. 2
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