
FAULT TOLERANCE OF CAYLEY GRAPHS
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Abstract. It is a difficult problem in general to decide whether a Cayley graph Cay(G; S)
is connected where G is an arbitrary finite group and S a subset of G. For example, testing

primitivity of an element in a finite field is a special case of this problem but notoriously hard.

In this paper, it is shown that if a Cayley graph Cay(G; S) is known to be connected then its
fault tolerance can be determined in polynomial time in |S| log(|G|). This is accomplished by

establishing a new structural result for Cayley graphs. This result also yields a simple proof

of optimal fault tolerance for an infinite class of Cayley graphs, namely exchange graphs. We
also use the proof technique for our structural result to give a new proof of a known result on

quasiminimal graphs.

1. Introduction

Let G be any group and S a subset of G not containing the identity 1. We define a Cayley
digraph, denoted Cay(G;S), to have elements of G as vertices and, for any two vertices x, y ∈ G,
a directed edge [x, y] if x · s = y for some s ∈ S. When S = S−1, where S−1 = {s−1 | s ∈ S},
the directed graph Cay(G;S) can be viewed as an undirected graph, called a Cayley graph, as
there is an edge in each direction between two vertices whenever there is one between them.
The underlying undirected graph of a Cayley digraph can be represented as a Cayley graph.
Cayley graphs were first introduced by Cayley [5] as diagrams representing a group in terms of its
generators. Cayley graphs, both in their directed and undirected form have been widely studied.
For algebraic properties of Cayley graphs, see for example the papers [3, 17, 18].

A communication interconnection network can be modelled as a (directed or undirected) graph
whose vertices correspond to processors or communication nodes, and whose edges correspond to
communication channels, see [1, 21]. For designing these networks it is desirable to use graphs
that are highly symmetric. A Cayley graph is vertex transitive, so symmetric in the sense that it
looks the same when viewed from any vertex. Cayley graphs are therefore attractive candidates
for the design of communications networks. Some other important features of a communications
network are small degree, small diameter, and high connectivity (and hence high ‘fault tolerance’).
Cayley graphs have many of these features and tend to yield excellent routing algorithms as well;
see for example [9, 10] for Cayley graphs on abelian groups. In this paper we focus on fault
tolerance, namely the largest number k such that the failure of any k nodes does not destroy the
connectivity of the entire network.

A digraph is strongly connected if for every ordered pair (x, y) of vertices, there is at least
one directed path, or dipath, from x to y. A Cayley digraph Cay(G;S), for finite G, is strongly
connected iff S generates the group G. We consider primarily strongly connected Cayley graphs.
The connectivity of a digraph is the smallest number k so that there exist k vertices in the graph

Date: March 10, 2006.
The first author was supported in part by National Science Foundation (NSF) under Grant DMS0302549, and

the DoD Multidisciplinary University Research Initiative (MURI) program administered by the Office of Naval
Research (ONR) under Grant N00014-00-1-0565.

1



2 GAO AND NOVICK

whose removal leaves a digraph that is either no longer strongly connected or consisting of a single
vertex. Denote the connectivity of a graph X by κ(X ). The fault tolerance of X is then κ(X )−1.
Hence a network with fault tolerance k remains strongly connected with any k or fewer nodes
broken. Our Cayley graph X = Cay(G;S) is regular in the sense that each vertex has out-degree
and in-degree both equal to |S|. Clearly κ(X ) ≤ |S|. When equality holds, Cay(G;S) has highest
possible connectivity, which means optimal fault tolerance.

For any digraph X and any vertex cut C ⊆ V (X ), the strongly connected components of X \C
are called the fragments of X induced by C. A fragment is called an atom if it is induced by a
vertex cut of minimum cardinality and it has minimum cardinality among all such fragments. For
any subset A of V (X ), we denote

N+(A) = {v ∈ V (X ) \A : [u, v] ∈ E(X ) for some u ∈ A}, and
N−(A) = {v ∈ V (X ) \A : [v, u] ∈ E(X ) for some u ∈ A},

called the positive or negative neighborhood of A, respectively. An atom A is called positive or
negative depending on whether N+(A) or N−(A) is a vertex cut (of minimum cardinality). Every
Cayley digraph contains an atom, although it may not contain a positive one. By replacing S
with S−1 if necessary, we may assume that our Cayley digraph Cay(G;S) has a positive atom.

In 1970 Watkins [22] established the fundamental result that for any connected graph (undi-
rected), distinct atoms are disjoint. In the same paper he showed that, for any vertex transitive
graph, every atom is vertex-transitive and the atoms are isomorphic subgraphs that form a parti-
tion of G. Watkins’ results are for the undirected case, and Hamidoune [13] showed in 1977 that
for a vertex transitive digraph the analogous results hold. In a later paper Hamidoune [14] showed
further that for any Cayley digraph Cay(G;S) the atom A containing the identity 1 is a subgroup
of G and is generated by A∩S. Our main result, established in Section 2, extends these structural
properties, namely we show that A is actually contained in the set S · S−1 = {a · b−1 : a, b ∈ S}.

In Section 3, we show how our structural result gives an efficient algorithm for computing
the fault tolerance of Cayley graphs Cay(G;S). We assume that the group G is given by an
oracle (or a black box). The oracle can perform various group operations, namely, product of two
elements, the inverse of an element, and distinctness of two elements. The running time of our
algorithm is measured by the number of calls to the oracle. We show that our algorithm runs
in time polynomial in |S|, the degree of the graph, assuming Cay(G;S) is strongly connected.
We show that one advantage of this model is that for any specific group G, if each element
of G is represented using O(log |G|) bits and each group operation of G can be computed in
time polynomial in log |G|, then our algorithm can be implemented so that its running time is
polynomial in |S| log(|G|).

We should remark that the problem of determining whether two given words represent the
same group element is known as the “word problem for groups” and, while easy in practice for
many groups, is undecidable in general: it has been proven that there is no algorithm that will
solve the group word problem for all groups, [4, 20]. In our situation, the oracle described above
is assumed to have the superpower of solving the word problem, hence our work is not meant to
shed any light on the word problem.

We should also remark that deciding whether a given Cayley graph is strongly connected is in
general hard. For example, if G is the multiplicative group of a finite field, then for any element
a ∈ G, the Cayley graph Cay(G; {a, a−1}) is (strongly) connected if and only if a is a primitive
element of the field (i.e., each nonzero element of the field is a power of a). Testing primitivity is,
however, a notoriously hard problem. Our algorithm does not solve this problem. Instead it finds
the fault tolerance (or connectivity) of each strongly connected component of Cay(G;S). Hence
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if a Cayley graph Cay(G;S) is known to be strongly connected, then our algorithm finds its fault
tolerance.

As further application of our structural result, we show in Section 4 that exchange graphs
have optimal fault tolerance. Also in Section 4 we obtain a result regarding quasiminimal graphs,
namely that all but a particular family of quasiminimal graphs have optimal fault tolerance. This
result was established in its undirected form by Alspach [2] and in its directed form by Hamidoune,
Lladó and Serra [15]. We give a proof of a somewhat different flavor using a proof technique similar
to that used to establish our structural result in Section 3. We note that in a subsequent paper J.
Morris further studied and characterized this family of quasiminimal Cayley graphs, see [19]. So
while the result is not new, the authors of the present paper find the proof to be an interesting
application of the proof techniques involved.

2. Properties of atoms

For any group G and any subset H of G, we denote by
〈
H

〉
the subgroup of G generated by

the elements in H. When H is empty,
〈
H

〉
denotes the trivial group {1} consisting of the identity

only. The following two results summarize what is known about the properties of the atoms of
Cayley graphs. For completeness, and because they are scattered in different papers, we include
their proofs here.

Theorem 1 (Hamidoune [13] and Watkins [22]). Let X be any strongly connected digraph with a
positive atom. Then its positive atoms form a disjoint partition of all the vertices.

Proof. Assume to the contrary that there are distinct positive atoms A and B with A ∩ B 6= ∅.
Since A ∩B is smaller than A (or B), it is not an atom. There are two cases:

(a) Each element of G is contained in A ∩B or N+(A ∩B);
(b) N+(A ∩B) is a vertex cut that is not minimum.

But the case (a) would imply that N+(A) ∪ A is the entire graph, contradicting the fact that
N+(A) is a vertex cut. So (b) holds and |N+(A ∩B)| > κ, where κ = κ(G;S). Let

A1 = N+(B) ∩A, B1 = N+(A) ∩B, and D = N+(A) ∩N+(B).

Since N+(A ∩B) ⊆ A1 ∪B1 ∪D, we have |A1|+ |B1|+ |D| > κ. Let

A2 = N+(A) \ (D ∪B) and B2 = N+(B) \ (D ∪A).

Since N+(B) = A1 ∪D ∪B2 we have

|N+(B)| = κ = |A1|+ |D|+ |B2| < |A1|+ |B1|+ |D|,
which implies that |B2| < |B1|. It follows that

|A2|+ |D|+ |B2| < |A2|+ |D|+ |B1| = |N+(A)| = κ,

and therefore A2∪D∪B2 cannot be a vertex cut. In other words, since A2∪D∪B2 = N+(A∪B),
the entire vertex set is (A2∪D∪B2)∪ (A∪B). Let Ã be the set of all vertices in the complement
of A ∪ N+(A). Then Ã ( (B \ B1) ∪ B2 and so |Ã| < |B| − |B1| + |B2| < |B|, implying that Ã
contains a fragment of N+(A) that is smaller than an atom, a contradiction. �

Theorem 2 (Hamidoune [14]). Let G be any finite group and S a subset of G not containing the
identity 1. Assume that the Cayley graph Cay(G;S) contains positive atoms. Let A be the positive
atom of Cay(G;S) containing 1. Then A is a subgroup of G and A =

〈
S ∩ A

〉
. Furthermore,

every positive atom is of the form aA, a ∈ G, i.e. a left coset of A.
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Proof. First note that for any a ∈ G, aA is also an atom, as multiplication on the left by a on G
induces a graph automorphism. To prove that A is a subgroup it suffices to show that it is closed
under multiplication, since A is finite. For any a ∈ A, since 1 ∈ A, we have a ∈ aA ∩ A. Hence
aA and A must be identical atoms, namely aA = A for every a ∈ A, establishing the closure of A
under multiplication.

It remains to show that A is generated by S ∩A. For any two vertices x, y ∈ A, suppose there
is an edge from x to y, say x · s = y for some s ∈ S. Since A is a group, it follows that s ∈ A.
Hence all the edges in the subgraph induced by A are generated by elements in S ∩A. We claim
that this subgraph is strongly connected. Indeed, if we assume to the contrary that x, y ∈ A but
that A contains no dipath from x to y, then the set of all vertices in A reachable from x comprises
a positive fragment smaller than |A|, contradicting the fact that A is atomic. Hence for each
element a ∈ A, there is a dipath from 1 to a, which means that a is a product of elements in
S ∩A. This proves that A is generated by S ∩A. �

Before presenting our improvement on Theorem 2, we give a simple lemma.

Lemma 3. Let B be a subset of a finite group A with |B| > 1
2 |A|. Then

A = B ·B−1 = {a · b−1 : a, b ∈ B}.

Proof. Since A is a group, we have B · B−1 ⊆ A. To establish the reverse inclusion, consider
any a ∈ A. Since aB and B are subsets of A having cardinality greater than 1

2 |A|, we have
|aB| + |B| > |A| and thus aB ∩ B 6= ∅, implying the existence of elements b1, b2 ∈ B with
b1 = a · b2, i.e. a = b1 · b−1

2 . It follows that a ∈ B ·B−1 for each a ∈ A, so A = B ·B−1. �

Theorem 4. Let X = Cay(G;S) be any finite Cayley graph with a positive atom A containing
the identity 1. Then A is contained in S · S−1.

Proof. If κ(X ) = |S|, then A = {1} and the theorem is trivial in this case. Hence we assume that
κ(X ) < |S|. By Theorem 1, A is a subgroup of G, hence the vertex cut N+(A) is a disjoint union
of distinct right cosets of A, say Ab1, Ab2, . . . , Ab`, where b1, b2, . . . , b` ∈ S \A. So we have

κ(X ) = |N+(A)| = `|A| < |S|.

Let d0 = |S ∩A| and let di = |S ∩Abi| for i = 1, · · · , `. Since S ⊆ A ∪N+(A), we have

d0 + d1 + · · ·+ d` = |S|.

We claim that there is an 0 ≤ i ≤ ` with di > 1
2 |A|. Indeed, if di ≤ 1

2 |A| for all 1 ≤ i ≤ `, then

|S| ≤ d0 +
`

2
|A|,

which, together with the fact that `|A| < |S|, implies that

d0 ≥ |S| − `

2
|A| > `|A| − `

2
|A| = `

2
|A| ≥ 1

2
|A|.

Therefore, |Abi ∩ S| > 1
2 |A| for some 0 ≤ i ≤ ` where b0 = 1. Let B be the subset of A such that

Abi ∩ S = Bbi. Then |B| = |Abi ∩ S| > 1
2 |A|. By the above lemma, we have

A = B ·B−1 = (Bbi) · (Bbi)−1 = (Abi ∩ S) · (Abi ∩ S)−1 ⊆ S · S−1.

This completes the proof. �
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3. Algorithm for computing fault tolerance

Let G be any finite group, given by an oracle as described earlier in the introduction, and S any
subset of G. The Cayley graph X = Cay(G;S) may not be strongly connected, but its strongly
connected components are isomorphic. Let G0 be the subgroup generated by S. Then the Cayley
graph Cay(G0;S) is the connected component of X that contains the identity 1. We denote this
component by X0, i.e., X0 = Cay(G0;S). We show how to compute the fault tolerance of X0 by
using the oracle for group operations. The basic idea is to construct a smaller graph whose size is
bounded by a polynomial in |S| and in which certain maximum flow is equal to the connectivity
of the original graph X0. We then apply any one of the efficient algorithms in the literature, for
which we give references later, to this new graph in order to compute its connectivity. The fault
tolerance is simply the connectivity minus 1.

First we need to construct the desired new digraph, call it X 0. Define

A1 = S · S−1 = {s1s
−1
2 : s1, s2 ∈ S},

A2 = (A1 · S) \A1.

Then
1 ∈ A1 and A1 ∪A2 = (S · S−1) · S.

The new graph X 0 will consist of the induced subgraph of X0 on the vertex subset A1 ∪ A2. If
G0 6= A1 ∪A2, we add one additional vertex, v∞, and an additional edge [v, v∞] for each v ∈ A2.

The new digraph X 0 may be constructed by calling the oracle for G. As mentioned in the
introduction, we assume that the oracle can perform various group operations, namely product
of two elements, the inverse of an element, and distinctness of two elements. Let k = |S|. We
can construct S−1 with k calls to the oracle. All elements of the form a · b, a ∈ S and b ∈ S−1

require k2 calls. Duplicates may be eliminated using at most k2(k2 − 1)/2 calls, since checking
whether any given element lies in a set of i elements needs i calls. This gives us the vertex set
A1, which has at most k2 elements. Finding all edges in the subdigraph induced by A1 requires
no more than k2(k2 − 1) · k calls. Hence A1 can be constructed, duplicates can be removed, and
edges of A1 can be constructed by O(k5) calls to the oracle. We need O(k3) calls to get all the
distinct elements in A1 ·S that are not already in A1, this gives A2 which has at most k3 elements.
No more than O(k6 · k) calls are needed to get all the edges [a, b], where a ∈ A1 and b ∈ A2 or
a, b ∈ A2. Finally, to check whether G0 = A1 ∪ A2, we compute the set B = (A1 ∪ A2) · S and
compare each of its elements to each element of A1 ∪ A2, which needs at most k(k2 + k3)2 calls.
If B contains no elements that are different from those in A1 ∪ A2, then A1 ∪ A2 is the vertex
set of the connected component of Cay(G;S) that contains the identity, namely G0 = A1 ∪ A2.
Otherwise, G0 6= A1 ∪A2. Hence the new graph X 0 can be constructed using at most O(k7) calls
to the oracle.

Lemma 5 below shows that finding κ(X0) is no harder than finding κ(X 0). If s and t are
vertices in a digraph then an s-t cut is a set of vertices containing neither s nor t whose removal
leaves a digraph that contains no s-t dipath. We use the directed version of Menger’s theorem for
vertices that states that the minimum cardinality of an s-t cut is equal to the maximum number
of internally disjoint s-t dipaths, see [6].

Lemma 5. Suppose G0 6= A1 ∪ A2. Then κ(X0) is equal to the cardinality of a minimum 1-v∞
vertex cut in X 0.

Proof. Let A be the positive atom of X0 containing the identity 1. By Theorem 4, A ⊆ S · S−1

and hence
N+(A) ⊆

(
S · S−1

)
· S = A1 ∪A2.
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In both digraphs, namely in both X0 and X 0, the vertex set N+(A) separates A from all vertices
lying outside A ∪N+(A). Hence N+(A) is an 1-v∞ cut and so the minimum cardinality of 1-v∞
vertex cuts in X 0 is at most |N+(A)| = κ.

On the other hand, G0 6= A1 ∪ A2 by our assumption, so there is at least one vertex say x of
X0 that is not in A1 ∪A2. By the directed version of Menger’s theorem for vertex cuts, there are
κ internally vertex disjoint dipaths P1, P2, · · · , Pκ from 1 to x in the larger digraph X0. By the
construction of A2, every path from an element in A1 to x must pass through A2. For 1 ≤ i ≤ κ,
let vi be the first vertex in Pi that is in A2 but the next vertex in Pi is outside of A1 ∪ A2. Let
P (1, vi) be the sub-dipath of Pi that begins at 1 and terminates at vi. Each P (1, vi) is entirely
contained in the sub-digraph induced by A1 ∪ A2 and hence is a dipath in the smaller digraph,
X 0, as well. Appending v∞ to each P (1, vi) we obtain κ internally vertex disjoint 1-v∞ dipaths in
X 0, hence the minimum cardinality of 1-v∞ vertex cuts in X 0 is at least κ. Therefore κ is equal
to the minimum cardinality of 1-v∞ vertex cuts in X 0. �

It is well known that the cardinality of a minimum s-t vertex cut for any two vertices s, t can
be found in time polynomial in the number of vertices, see [6]. Indeed, Feder and Motwani [7]
have an O(

√
n ·m · logn(n2/m)) algorithm to find a minimum s-t cut, where n = |V | and m = |E|.

When G0 = A1 ∪ A2 we have κ(X0) = κ(X 0) and hence we find κ(X0) directly. As X0 is vertex
transitive κ is equal to the minimum, over all v, of the cardinality of the smallest 1-v vertex cut,
which can be found by applying Feder and Motwani’s algorithm n times. We also remark that
Gabow and Jordán [8] give an algorithm to find a minimum vertex cut in a digraph with in time
O( m2

n1/4 + nm). In any case, we have the following theorem.

Theorem 6. Suppose a finite group G is given via an oracle which computes inverses, multipli-
cation and distinctness of elements in G. Then for any given subset S of G, the connectivity of
the strongly connected components of Cay(G;S) can be computed in polynomial time, that is, the
number of calls to the oracle made by the algorithm is at most |S|c for some constant c.

If we assume, as discussed in the introduction, that each element of G is represented using
O(log |G|) bits and that each group operation of G can be computed in time polynomial in
log |G|, then each call to the oracle can be performed in time polynomial in log |G| as well. Hence
it follows from Theorem 6 that the fault tolerance of Cay(G;S) can be computed in time at most
(|S| log |G|)c for some constant c.

4. Exchange graphs and quasiminimal graphs

As further applications of our structural result, namely Theorem 4, and of the techniques used
in its proof, we show that two interesting classes of Cayley graphs have optimal fault tolerance.
One such class is based on the symmetric group on n elements and our proof is very simple. The
other class is the so-called quasiminimal Cayley graphs.

4.1. Exchange Graphs. We define a Cayley graph on the symmetric group Sn of permutations
on {1, 2, · · · , n} as follows. Let Γ be any graph (undirected) on the vertex set {1, 2, · · · , n}. Each
edge (i, j) of Γ corresponds to a transposition, or a 2-cycle, still denoted by (i, j), in Sn that
exchanges i and j. Hence the set E(Γ) of edges in Γ gives a subset of elements in Sn, thus
defines a Cayley graph. By identifying Γ with E(Γ), we may simply denote this Cayley graph
by (Sn; Γ). Following Godsil [12], we call such a graph an exchange graph. Since 2-cycles are
their own inverses, the digraph (Sn; Γ) is symmetric. Hence we equate it with the underlying
undirected graph. When Γ is a tree, properties of the Cayley graph (Sn,Γ) are studied in [1]. For
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a general graph Γ, Godsil [12, Chapter 3] proved that (Sn; Γ) is connected iff Γ is connected. We
show below that (Sn; Γ) has optimal fault tolerance, namely κ(Sn; Γ) = |E(Γ)|.

Theorem 7. If Γ is connected then (Sn; Γ) is also connected and has connectivity |E(Γ)|.

Proof. To show that (Sn; Γ) is connected, it suffices to show that there is a path from 1 to every
permutation in Sn. Since each permutation is a product of 2-cycles, we just need to show that
each 2-cycle (i, j) is a product of 2-cycles from Γ. Note that (i, j) = (i, v)(v, j)(i, v) for any three
distinct vertices i, v, j. Hence a simple induction on the distance between i and j will prove that
(Sn; Γ) is connected iff Γ is connected.

Next we show that κ(Sn; Γ) = |E(Γ)|. Since the degree of each vertex in (Sn; Γ) is |E(Γ)|, we
have that κ(Sn; Γ) ≤ |E(Γ)|. Suppose κ(Sn; Γ) is strictly less than |E(Γ)|. Then by Theorem 4
the atom A containing 1 has size at least 2 and is a subset of

Γ · Γ−1 = {(i, j)(a, b) : (i, j), (a, b) ∈ E(Γ)}.

Furthermore, A is generated by A ∩ Γ and, as |A| ≥ 2, in particular A ∩ Γ 6= ∅. Thus there is
a 2-cycle of Γ that lies in Γ · Γ−1,and so is a product of two 2-cycles, which is absurd since the
product of any two 2-cycles is either the identity, a 3-cycle, or the product of two disjoint 2-cycles.
The result follows. �

4.2. Quasiminimal Cayley Graphs. A set S of distinct elements of a group G is called quasi-
minimal if its elements can be ordered, say

s1 ≺ s2 ≺ · · · ≺ sr

so that the following condition is satisfied: letting Si = {s1, s2, · · · , si}, we have for 2 ≤ i ≤ r

s−1
i = si−1 or

〈
Si−1

〉
(

〈
Si

〉
.

When S is quasiminimal, Cay(G;S) is called a quasiminimal Cayley graph. We assume 1 6∈ S and
that S generates G, so Cay(G;S) is strongly connected.

Quasiminimal Cayley graphs have been studied by Alspach [2], Hamidoune, Lladó and Serra
[16]. Alspach [2] showed that if S is a quasiminimal then, unless S belongs to a special family,
Cay(G;S) has optimal fault tolerance. Hamidoune, Lladó and Serra [15] showed this result for
the directed case. Earlier Akers and Krishnamurthy [1] obtain the same result but for Cayley
graphs for which the associated group is restricted in size. The purpose of the present section is
to give a somewhat different proof of the result of [15] using techniques of our Theorem 4. See
[19] for a subsequent, stronger characterization of heirarchical Cayley graphs which lack optimal
fault tolerance.

A generating set S for a group G is minimal if
〈
S \ {s}

〉
(

〈
S

〉
for all s ∈ S. Godsil [11]

showed that if S is a minimal generating set of G then Cay(G;S) has optimal fault tolerance. A
minimal set is always quasiminimal, but the converse may not be so. For example, let G = Z8 with
the group operation being addition. Then it is easy to check that S = {4, 6, 3} is quasiminimal in
the order listed. However, it is not minimal as it strictly contains the generating set {4, 3}.

A quasiminimal Cayley graph Cay(G;S) need not be optimally fault tolerant. For example
(see Alspach [2]) let G = Z4 × Z2 with addition being the group operation and let

S = {(2, 0), (1, 0), (3, 0), (1, 1), (3, 1)},
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in the order given. Note that (2, 0) has order 2, (1, 0)−1 = (3, 0) and (1, 1)−1 = (3, 1). The atom,
A, containing the identity (0, 0) is A = {(2, 0), (0, 0)}, and

N+(A) = {(1, 0), (3, 0), (1, 1), (3, 1)}.

So the vertex connectivity is 4 = |S|−1. This is the smallest example in the family of quasiminimal
Cayley graphs that do not have optimal fault tolerance.

We need the following property of quasiminimal sets.

Lemma 8. Let S be a quasiminimal set of a group G, with 1 /∈ S. If all three elements a, b, and
ab are contained in S then either a−1 = b2 or b−1 = a2.

Proof. Let S be ordered as {s1, s2, · · · , sr} that satisfies the quasiminimal property. Suppose
a, b, ab ∈ S. Let si be the last of the three elements a, b, ab in this ordering. Note that any
subgroup of G containing two of the three elements a, b, ab must contain the third. Hence
si ∈

〈
Si−1

〉
. So by the definition of quasiminimal we must have s−1

i = si−1. Furthermore, si−1

must itself be a member of the set {a, b, ab} since otherwise Si−2 would generate Si. Since 1 6∈ S
we have a 6= b−1. Therefore either ab = a−1 which implies b−1 = a2, or ab = b−1 implying
a−1 = b2. �

The following theorem is due to Alspach [2] in its undirected form and Hamidoune, Lladó and
Serra [15] in the directed form. We give a proof with a somewhat different flavor, similar to our
proof of Theorem 4.

Theorem 9 (Alspach [2], Hamidoune, Lladó and Serra [15]). Let S ⊆ G be quasiminimal. Then
Cay(G;S) has connectivity |S| or |S| − 1. In the latter case, S consists of an element a of order
2 in the center of G and pairs {b, b−1} with b2 = a.

Proof. Suppose κ = κ(G;S) < |S|. We just need to prove that κ = |S| − 1 and S has the claimed
structure. We keep the notation used in the proof of Theorem 4: A denotes the positive atom
containing 1, and

N+(A) = ∪`
i=1Abi

where bi ∈ S \A, 1 ≤ i ≤ `. Since S ⊆ A∪N+(A), the condition |S| > κ = |N+(A)| implies that

|A ∩ S| >
∑̀
i=1

|Abi \ S|. (1)

For convenience, let A0 = A ∩ S and A1 = A \A0. We claim that, for each b ∈ S \A,

|Ab \ S| ≥ |A0| − 1. (2)

In fact, for any a ∈ A0 = A ∩ S, if ab ∈ Ab ∩ S then we have a, b, ab ∈ S. It follows from Lemma
8 that a = b−2 (or ab = b−1), as b /∈ A and A is a group. Hence ab 6∈ S for each a ∈ A0 except
possibly one element, namely when a = b−2. Hence (2) holds. The above argument also shows
that equality in (2) holds iff b−2 ∈ A0. Furthermore, if equality holds then

Ab \ S = (A0 \ {b−2})b and Ab ∩ S = {b−1} ∪A1b. (3)

where the latter equality follows from the fact that A = A0 ∪ A1. Now the inequalities (1) and
(2) imply that

|A0| >
∑̀
i=1

(|A0| − 1) = `(|A0| − 1).

There are only two possibilities: (a) |A0| = 1 (and ` ≥ 1), or (b) |A0| > 1 and ` = 1.
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First consider case (a). Since |A ∩ S| = |A0| = 1, the equation (1) implies that |Abi \ S| =
0 = |A0| − 1 for each i, thus |Ab \ S| = 0 for each b ∈ S \ A. This means that Ab ⊆ S for each
b ∈ S \A. It also implies that equality in (2) holds. Suppose A0 = A∩S = {a}. Then b−2 = a, so
ab = b−1 ∈ S, for each b ∈ S \A. Hence S \A consists of inverse pairs. For any pair b, b−1 ∈ S \A,
we have b−2, (b−1)−2 = b2 ∈ A0 so b−2 = a = b2. Hence a2 = 1 and A = {1, a}. This proves the
structure of S as claimed in the theorem.

Lastly, we prove that case (b) is impossible. Let b = b1, B0 = Ab ∩ S and B1 = Ab \ S. Then

|A0|+ |B0| = |S| > |Ab| = |B0|+ |B1| ≥ |B0|+ |A0| − 1,

where the last inequality follows from (2). Hence

κ = |Ab| = |B0|+ |A0| − 1 = |S| − 1.

One also has that |B1| = |A0| − 1, hence b−2 ∈ A0. By (3),

B0 = {b−1} ∪A1b.

Note that 1 ∈ A1. We claim that A1 = {1}. Suppose otherwise. There is an element c ∈ A1 \{1}.
By Theorem 2, A = A0 ∪ A1 is generated by A0, so there are elements a1, a2 ∈ A0 such that
c = a1a2. Hence we have four elements a1, a2, b, cb ∈ S. Since any three of them can generates
the other, the quasiminimal property of S implies that there is at least one inverse pair among
them. Since c = a1a2 6= 1 and b is not in the subgroup A, the only possible pair is b and
cb. Hence b−1 = cb, thus b−2 = c. This contradicts with the fact that b−2 ∈ A0. Therefore
A1 = {1} and consequently B0 = {b, b−1}. Since b−2 ∈ A0,

〈
b2

〉
⊆ A. If A =

〈
b2

〉
then as

Abb = Abb−1 = Aba = A for all a ∈ A0, N+(A) contains only one part, namely A, contradicting
the fact that N+(A) is a vertex cut. Hence

〈
b2

〉
( A, but then

〈
b2

〉
is a fragment of the minimum

cut (A \
〈
b2

〉
) ∪ (

〈
b2

〉
b) which is impossible since A is atomic. Hence the theorem is proved. �
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