
On the deterministic complexity
of factoring polynomials†

Shuhong Gao

Department of Mathematical Sciences

Clemson University

Clemson, SC 29634 USA

sgao@math.clemson.edu

(March 17, 1999)

The paper focuses on the deterministic complexity of factoring polynomials over finite
fields assuming the extended Riemann hypothesis (ERH). By the works of Berlekamp
(1967, 1970) and Zassenhaus (1969), the general problem reduces deterministically in
polynomial time to finding a proper factor of any squarefree and completely splitting
polynomial over a prime field Fp . Algorithms are designed to split such polynomials. It is
proved that a proper factor of a polynomial can be found deterministically in polynomial
time, under ERH, if its roots do not satisfy some stringent condition, called super square
balanced. It is conjectured that super square balanced polynomials do not exist.

1. Introduction

We consider the problem of factoring polynomials over finite fields. This problem can
be solved in probabilistic polynomial time (Berlekamp 1970, Cantor and Zassenhaus
1981, von zur Gathen and Shoup 1992, Kaltofen and Shoup 1998), but it is still open
whether it has a deterministic polynomial time algorithm, even if the extended Riemann
hypothesis (ERH) is assumed. We are interested in the deterministic complexity of the
problem under ERH.

Various authors have given under ERH efficient algorithms for special classes of poly-
nomials or for polynomials over special fields. Rónyai (1992) showed under ERH that any
polynomial with integer coefficients that generates a Galois number field can be factored
mod p in deterministic polynomial time, except for finitely many primes p, which extends
previous results by Huang (1991), Adleman, Mander & Miller (1977), and Evdokimov
(1989). If the number of irreducible factors of a polynomial is bounded, Rónyai (1988)
showed under ERH that it can be factored deterministically in polynomial time. On spe-
cial fields, Bach, von zur Gathen & Lenstra (1995) showed that polynomials over finite
fields of characteristic p can be factored in polynomial time if Φk(p) is smooth for some
integer k where Φk(x) denotes the k-th cyclotomic polynomial, which extends the works
of von zur Gathen (1987), Moenck (1977), Camion (1983), Mignotte & Schnorr (1988),

† Part of the work was done while the author was an NSERC Postdoctoral Fellow at the University of
Toronto and a Visiting Assistant Professor at the University of Waterloo; their hospitality and support
are gratefully acknowledged.



2 Shuhong Gao

and Rónyai (1989). Recently, Evdokimov (1994) proved that every polynomial over Fq
of degree n can be factored deterministically in time polynomial in nlogn and log q.

In this paper, we continue this line of research for deterministic polynomial time algo-
rithms under ERH. By the algorithms of Berlekamp (1967, 1970) and Zassenhaus (1969),
the general problem can be reduced to finding proper factors of polynomials that split
completely over prime fields. To be precise, we focus on the following problem. For any
given prime p and a polynomial f ∈ Fp [x] that is squarefree and splits completely over
Fp , find a proper factor of f . Under ERH, Rónyai (1988) proves that, for any completely
splitting polynomial f ∈ Fp [x] of degree n and any prime divisor r|n, a proper factor of
f can be found in time polynomial in nr and log p. In particular, if r = 2 this means that
any completely splitting polynomial f ∈ Fp [x] of even degree can be split in polynomial
time under ERH. However, when n has no small divisors, say n is a prime, then Rónyai’s
time is exponential in n. That is where the current paper contributes. We design algo-
rithms that terminate in polynomial time under ERH. It is proven that if f does not
satisfy some stringent conditions then our algorithms will always find a proper factor of
f . For simplicity, we state our result here only for the case p ≡ 3 mod 4. The general
statement can be found in Theorem 3.7.

Suppose that p ≡ 3 mod 4 is a prime. Let F be a subset of Fp with cardinality n > 1.
We say that F is square balanced if, for each ξ ∈ F ,

#{ζ ∈ F : ζ 6= ξ, ξ − ζ is a square in Fp} =
n− 1

2
.

Two sets F1, F2 ⊂ Fq , each with cardinality at least two, are called mutually square
balanced if, for each ξ ∈ F1,

#{ζ ∈ F2 : ξ − ζ is a square in Fp}

is the same for all ξ ∈ F1, and similarly for each ξ ∈ F2 with ζ ∈ F1. For a subset F ⊂ Fp
and an integer k, define Fk = {ak : a ∈ F} , the set of k-th powers of the elements in F .
We call a subset F ⊂ Fp of cardinality n > 1 super square balanced if the following three
conditions are satisfied:

(i) For each 1 ≤ k ≤ (n log p)6, Fk has cardinality n and is square balanced;

(ii) All the sets Fk, 1 ≤ k ≤ (n log p)6, are pairwise disjoint;

(iii) All the sets Fk, 1 ≤ k ≤ (n log p)6, are pairwise mutually square balanced.

Note that a squarefree and completely splitting polynomial f ∈ Fp [x] factors as∏n
i=1(x − ξi) where ξ1, . . . , ξn are different elements in Fp . Thus squarefree and com-

pletely splitting polynomials in Fp [x] are in 1-1 correspondence to the subsets of Fp .
We call a squarefree and completely splitting polynomial f ∈ Fp [x] square balanced or
super square balanced if the set of its roots is square balanced or super square balanced,
respectively. We prove the following theorem.

Theorem 1.1. Given any prime p ≡ 3 mod 4 and f ∈ Fp [x] squarefree and completely
splitting, we can find a proper factor of f in deterministic polynomial time provided that
ERH holds and f is not super square balanced.

Rónyai’s result for r = 2 follows from the above theorem immediately, since if f has
even degree then f can not even be square balanced!



Factoring polynomials 3

Theorem 1.1 puts stringent conditions on the roots of polynomials that can not be
split in polynomial time by our algorithms under ERH. An interesting number theory
problem arises here, that is, whether there exists any super square balanced set in Fp .
We believe that the conditions (i), (ii) and (iii) are so strong that no subset in Fp can
satisfy them all. We conjecture that for any prime p and any positive integer n, there is no
super square balanced subset in Fp of cardinality n > 1. A confirmation to the conjecture
implies that, under ERH, polynomials over finite fields can be factored deterministically
in polynomial time.

We should point out that our results are purely theoretical. They bear on an issue in
theoretical computer science about derandomization, namely, if a problem can be solved
efficiently by randomized algorithms, can it also be solved efficiently by algorithms with-
out using randomness? In our case, the goal is to decide whether there is a deterministic
polynomial time algorithm to factor polynomials over finite fields. For such a purpose, it
is satisfactory when an algorithm runs in polynomial time and thus we do not attempt to
implement our algorithms in the most efficient fashion. For practical purposes, it suffices
to use the randomized algorithms of Berlekamp (1970), Cantor and Zassenhaus (1981),
von zur Gathen and Shoup (1992), Kaltofen and Shoup (1998).

The rest of the paper is organized as follows. In Section 2, we discuss the arithmetic of
polynomials over algebras. In the current paper, we work mainly with semisimple algebras
over Fp that split completely. We show how to adapt the gcd concept for polynomials over
a field to polynomials over an algebra and modify the Euclidean algorithm to compute
gcd. We examine the zero structure of a completely splitting polynomial over an algebra
and answer such questions as how many roots it has, how many decompositions it has, and
which set of roots form a decomposition. We also define the characteristic polynomial
of an element in an algebra over a subalgebra and show a simple formula under an
orthogonal basis. These properties are used in Section 3 in algorithm design and analysis.
They are also of independent interest and may be useful elsewhere. Interestingly, Wan
(1996) uses characteristic polynomials in a different fashion to factor polynomials over
finite fields. In Section 2.4, we review a method for computing k-th roots of elements in a
semisimple algebra and define the concept of square balanced and super square balanced
polynomials over an arbitrary finite field Fq . In Section 3, we describe our algorithms
and their analysis, our main results are proved there.

2. Arithmetic of polynomials over algebras

When computing in an algebra R of dimension n over Fp , by “polynomial time” we
mean that the number of Fp -operations used is bounded above by a polynomial in n and
log p, i.e., (n log p)O(1). We also say “efficient” to mean “polynomial time”.

We say that an algebra R is explicitly given if we know a basis of R and the product of
any two basis elements expressed under the same basis. Thus addition and multiplication
inR can be done in polynomial time. Identity element and inverse of an invertible element
in R can also be computed efficiently by solving a system of linear equations over Fp .

When factoring polynomials over Fp , we work in the algebra R = Fp [x]/(f) where
f ∈ Fp [x] is squarefree and completely splitting. In this paper, we also work in extension
algebras of R. These algebras are special cases of semisimple commutative algebras. In
general, let F be any field. We call an algebra R over F an elementary algebra if there are
primitive idempotents µ1, . . . , µn such that R = Fµ1 ⊕· · ·⊕Fµn . This means that R has



4 Shuhong Gao

a unique basis over F such that addition and multiplication are computed componentwise
under this basis. Note that primitive idempotents of R are unique.

A monic polynomial g ∈ R[x] of degree n is called completely splitting if g =
∏n
i=1(x−

Ci) for some Ci ∈ R, and g is called separable if Ci−Cj is not a zero divisor in R for all
i 6= j. For any elementary algebra R and any g ∈ R[x] monic, separable and completely
splitting, it is easy to prove that R[x]/(g) is an elementary algebra.

2.1. GCD of polynomials

In this section, we discuss the gcd concept of polynomials over an elementary algebra.
At the surface, this does not seem to make any sense, since the polynomial ring over
an elementary algebra is not an integral domain, not to mention a unique factorization
domain. Due to the presence of zero divisors, a polynomial of degree n over an elementary
algebra can be written as a product of polynomials of degrees greater than n. Hence one
has to be very careful when dealing with the concept of gcd. It turns out that we can still
use the usual definition of gcd and the Euclidean algorithm can be adapted to compute
gcd of polynomials over an elementary algebra.

We need some terminology. Let R be an elementary algebra of dimension n over a
field F with primitive idempotents µ1, . . . , µn. For any element A ∈ R, there exist unique
elements a1, . . . , an ∈ F such that

A =
n∑
i=1

aiµi.

We call ai the ith canonical projection of A into F, denoted by Ai. For any polynomial
f ∈ R[x], fi denotes the polynomial in F[x] with each coefficient being the ith projection
of the corresponding coefficient of f . Thus f =

∑n
i=1 fiµi.

Lemma 2.1. Let f, g ∈ R[x]. Then

(a) (f + g)i = fi + gi, (fg)i = figi, for 1 ≤ i ≤ n;
(b) f |g iff fi|gi for all 1 ≤ i ≤ n;
(c) deg fi = deg f , 1 ≤ i ≤ n, iff the leading coefficient of f is invertible in R.

Proof. They follow directly from the fact that
∑n
i=1 µi = 1, and that, for any A,B ∈ R,

(A+B)i = Ai +Bi, (AB)i = AiBi, 1 ≤ i ≤ n.

(Addition and multiplication in R are computed componentwise.) 2

A direct consequence of this lemma is that one can characterize all the zero divisors in
R[x]: a polynomial is a zero divisor if and only if at least one of its canonical projections
is zero.

We can now define gcd as follows. Let f, g ∈ R[x]. Any common divisor of f, g that
is divisible by every common divisor is called a gcd of f and g. We call a polynomial in
R[x] pseudo-monic if each of its canonical projections is either monic or 0.

Theorem 2.2. For any f, g ∈ R[x], there is a unique pseudo-monic gcd of f, g.

Proof. We first prove the existence. Let fi, gi ∈ F[x] be the i-th canonical projections of



Factoring polynomials 5

f, g, respectively. Let gcd(fi, gi) denote the conventional gcd, thus monic or zero. Then
it is easy to check that the polynomial

n∑
i=1

gcd(fi, gi)µi. (2.1)

is a gcd of f, g and is pseudo-monic (here we assume that gcd(0, 0) = 0).

To prove the uniqueness, suppose that h is any gcd of f, g with all canonical projections
monic or zero. We prove that the i-th projection hi of h is equal to gcd(fi, gi), 1 ≤ i ≤ n.
As h|f and h|g, we have hi|fi and hi|gi and hi| gcd(fi, gi). Now let di be any common
factor of fi and gi, and let

d = µ1 + · · ·µi−1 + diµi + µi+1 + · · ·+ µn.

Then d ∈ R[x] divides both f and g. Thus d|h and consequently di|hi. Therefore hi =
gcd(fi, gi). (If fi = gi = 0 then we can take any polynomial as di, so hi must be 0.) 2

We use gcd(f, g) to denote the unique pseudo-monic gcd of f and g. By the above
proof, gcd(f, g) is given by (2.1). Hence gcd(f, g) is monic iff the degree of gcd(fi, gi) is
the same for all 1 ≤ i ≤ n.

The next question is how to compute gcd(f, g) for any given f, g ∈ R[x]. If the primitive
idempotents of R are known then this is trivial, just using the Euclidean algorithm and
the formula (2.1). In practice, we do not know them, and R is represented by some other
basis. This does not present any difficulty at all. We can modify the Euclidean algorithm
as follows.

Suppose that f, g ∈ R[x] with deg f ≥ deg g and we want to compute gcd(f, g). If the
leading coefficient of g is invertible in R, then division by g can be carried out as usual
without any trouble. Suppose that the leading coefficient, say a, of g is a zero divisor in
R. We can first compute the identity elements I1, I2 of the two subalgebras:

R1 = {ra : r ∈ R}, R2 = {r ∈ R : ra = 0}.

Explicit bases for the two subalgebras can be computed by solving linear systems of
equations over F. If R is represented under the basis of primitive idempotents µi’s and
a = a1µ1 + · · · + anµn, then R1 is generated by all the µi’s where ai’s are not zero,
and R2 is generated by those µi’s where ai’s are zero. Hence R1 and R2 are orthogonal
complements in R, that is, R = R1 ⊕R2 and r1r2 = 0 for all r1 ∈ R1, r2 ∈ R2. Let

f1 = fI1, g1 = gI1 ∈ R1[x], f2 = fI2, g2 = gI2 ∈ R2[x].

Then

gcd(f, g) = gcd(f1, g1) + gcd(f2, g2).

Apply the algorithm recursively in the subalgebras to compute gcd(f1, g1) and gcd(f2, g2).
Note that the leading coefficient of g1 is aI1 and is invertible in R1 and the degree of g2

is smaller than the degree of g, as aI2 = 0. When R is an elementary algebra over Fp ,
this modified Euclidean algorithm runs in polynomial time.



6 Shuhong Gao

2.2. Zero structure of polynomials

Let R be an elementary algebra of dimension n over a field F with primitive idempo-
tents µ1, . . . , µn. Let g ∈ R[x] be completely splitting over R, i.e.,

g =
m∏
i=1

(x− Ci), Ci ∈ R. (2.2)

We want to know how many zeroes g has in R, which set of zeroes form a decomposition
(2.2) and how many different decompositions g has.

As µ1, . . . , µn form a basis for R over F, there are unique elements cij ∈ F such that

Ci =
n∑
j=1

cijµj , 1 ≤ i ≤ m.

For 1 ≤ j ≤ n, define

C[j] = {c1j , . . . , cmj},

gj =
m∏
i=1

(x− cij) ∈ F[x].

Lemma 2.3. An element A =
∑n
j=1 ajµj, aj ∈ F, is a zero of g iff aj ∈ C[j] for 1 ≤ j ≤

n. Hence g has
∏n
j=1 |C

[j]| different zeroes in R.

Proof. Note that (x− A)|g iff (x− aj)|gj , 1 ≤ j ≤ n, and the latter is true iff aj ∈ C[j],
1 ≤ j ≤ n. 2

Lemma 2.4. For 1 ≤ i ≤ m, let Ai =
∑n
j=1 aijµj ∈ R where aij ∈ F. Then g =

∏m
i=1(x−

Ai) iff each column of the m×n matrix (aij) is a permutation of the corresponding column
of (cij). Therefore g has

∏n
j=1 kj different decompositions (2.2) over R where kj is the

number of different permutations of the jth column of (cij).

Proof. Note that
m∏
i=1

(x−Ai) =
n∑
j=1

(
m∏
i=1

(x− aij)

)
µj ,

and

g =
m∏
i=1

(x−Ai) iff
m∏
i=1

(x− aij) = gj , 1 ≤ j ≤ n.

As
∏m
i=1(x−aij) and gj are polynomials over a field, a1j , . . . , amj must be a permutation

of c1j , . . . , cmj , the roots of gj . The lemma follows immediately. 2

Theorem 2.5. Let R be an elementary algebra of dimension n over a field F with prim-
itive idempotents µ1, . . . , µn. Suppose that g =

∏m
i=1(x− ci) ∈ F[x] where c1, . . . , cm are

different elements in F. Then

(a) A =
∑n
j=1 ajµj ∈ R, aj ∈ F, is a zero of g iff aj ∈ {c1, . . . , cm}, 1 ≤ j ≤ n;



Factoring polynomials 7

(b) For 1 ≤ i ≤ m, let Ai =
∑n
j=1 aijµj ∈ R where aij ∈ F. Then g =

∏m
i=1(x−Ai) iff

each column of the m× n matrix (aij) is a permutation of c1, . . . , cm.

Proof. It follows from Lemmas 2.3 and 2.4 and the fact that, for any element a ∈ F,
a =

∑n
j=1 aµj in R. 2

2.3. Characteristic polynomials

Let T be a commutative algebra of dimension n over an elementary algebraR. For any
α ∈ T , the characteristic polynomial of α over R is defined to be that of the mapping:
ξ 7→ αξ, ξ ∈ T , which is an R-module homomorphism. The characteristic polynomial
of an element is invariant with respect to different bases. It can be computed with any
explicitly given basis (α1, . . . , αn) of T over R as follows. Compute

α · αi =
n∑
j=1

mijαj , mij ∈ R, 1 ≤ i ≤ n.

Then det(Inx − (mij)) is the characteristic polynomial of α. The determinant can be
computed in polynomial time (again, go to subalgebras when necessary).

Characteristic polynomials have a very simple formula under an orthogonal basis. By
an orthogonal basis of T over R, we mean some elements µ1, . . . , µn such that T =
Rµ1 ⊕ · · · ⊕ Rµn and µiµj = 0 for i 6= j and µ2

i = 1 for all i. For any α ∈ T , there are
unique elements ai ∈ R such that α =

∑n
i=1 aiµi. Note that α ·µi = aiµi, 1 ≤ i ≤ n. We

see that the characteristic polynomial of α is

α(x) =
n∏
i=1

(x− ai) ∈ R[x]. (2.3)

T may have many orthogonal bases overR, but the formula (2.3) is true for any of them.
We will use this formula in Section 3 when analyzing our algorithms. As noted above, the
polynomial in (2.3) can be computed in polynomial time by using any explicitly given
basis, without knowing an orthogonal basis.

2.4. Finding roots and square balanced polynomials

Let R be an elementary algebra of dimension n over a finite field Fq where q is a prime
power. We need to efficiently compute k-th roots of elements in R for various integers k.
Evdokimov (1994) shows that this can be done under ERH in (nk log q)O(1) operations in
Fq , where ERH is used only to construct an r-th power nonresidue in Fq for every prime
divisor r of gcd(k, q − 1). Evdokimov’s algorithm is a direct generalization of Adleman,
Manders and Miller (1977) and Pohlig and Hellman (1978).

We describe a slightly modified version of Evdokimov’s algorithm here so that we can
observe some of its properties. These properties will be useful later in analyzing the
algorithms in Section 3. It suffices to show how to find an r-th root of an arbitrary
element in R for any prime r. If r is coprime to q− 1 then As is an r-th root of A where
sr ≡ 1 mod q− 1. So we assume henceforth that r is a prime and r|(q− 1). Suppose that
q− 1 = rew where r - w. Let η be a fixed primitive re-th root of unity in Fq . We remark
that η can be taken as ξw for any primitive root or r-th nonresidue ξ in Fq and ξ can be
constructed efficiently assuming ERH (Wang 1959, Bach 1997).



8 Shuhong Gao

Note that an element a ∈ Fq has an r-th root in Fq iff a = 0 or a(q−1)/r = 1. When
a 6= 0, write a as

a = ηuθ

for some integer u with 0 ≤ u < re and θ ∈ Fq with θw = 1. Then a(q−1)/r = 1 iff
r|u. To see what happens in R, let µ1, . . . , µn be the primitive idempotents of R over
Fq and A =

∑n
i=1 aiµi where ai ∈ Fq . For any B =

∑n
i=1 biµi where bi ∈ Fq , we have

br =
∑n
i=1 b

r
iµi. So Br = A iff bri = ai for 1 ≤ i ≤ n. The latter is true iff a

(q−1)/r
i = 0 or

1 for 1 ≤ i ≤ n, i.e., A(q−1)/r is an idempotent in R (each component is 0 or 1).
Now we show how to find roots of A. If ai = 0 for some i then certainly bi = 0.

So we only need to work with the nonzero components of A. Consider the subalgebra
RA = {CA : C ∈ R}. Let I be the identity element of RA. Then A · I is invertible in
RA and an r-th root of A · I in RA is an r-th root of A in R.

Henceforth we assume that A ∈ R is invertible. We assume that an r-th root of A
exists in R, which means that A(q−1)/r is the identity element 1 in R. Find integers s
and t such that sre + tw = 1. Then

A = Atw(Asr
e−1

)r.

It suffices to find an r-th root of Atw. Denote Ā = Atw. Note that Ār
e

= (Aq−1)t = 1.

Find the smallest integer k ≥ 0 such that Ār
k

∈ Fq . Then Ār
k

is a power of η. Use Pohlig
and Hellman’s algorithm to find an integer u such that

Ār
k

= ηu.

Since A has an r-th root in R, u must be divisible by r. If k = 0 then ηu/r is an r-th root

of Ā. If k > 0, then find a zero divisor in R as follows. Let B = Ār
k−1

and ζ = ηr
e−1

.
Then B 6∈ Fq and ζ is a primitive r-th root of unity. Note that

Bη−u/r 6∈ Fq and (Bη−u/r)r = 1.

We have r + 1 distinct r-th roots of unity in R, i.e., 1, ζ, . . . , ζr−1 and Bη−u/r . So
Bη−u/r − ζi is a zero divisor in R for some 0 ≤ i < r. We find this i by an exhaustive
search. Let D = Bη−u/r − ζi and

R1 = RD = {DC : C ∈ R}, R2 = {C ∈ R : DC = 0}.

Then R1 and R2 are nontrivial subalgebras of R and R = R1 ⊕R2. Explicit bases for
R1 and R2 can be computed by solving systems of linear equations. We next compute
Ā = A1 + A2 where A1 ∈ R1 and A2 ∈ R2, and proceed recursively in R1 and R2,
respectively, to compute r-th roots of A1 and A2. The whole process can be finished in
time polynomial in r, n and log q.

Let σr denote the above algorithm for computing r-th roots by using η ∈ Fq as a
primitive re-th root of unity. Denote by σr(A) ∈ R the output of σr on input A ∈ R.
Then (σr(A))r = A if A has an r-th root in R. When q ≡ 3 mod 4, η has only one choice,
namely, η = −1. In this case, σ2 is nothing but the formula: σ2(A) = A(q+1)/4 provided
that A has a quadratic root in R. In general, observe that the only operations in σr on A
are powering and canonical projections into subalgebras. We see that σr acts individually
to each component under the primitive idempotent basis over Fq .

Lemma 2.6. Given a primitive re-th root η of unity in Fq where q− 1 = rew, e ≥ 1 and



Factoring polynomials 9

r - w, the algorithm σr runs in polynomial time in r, log q and n = dimR. Furthermore,
σr has the following properties:

(a) σr(aA) = σr(a)A for a ∈ Fq , if A ∈ R is idempotent, i.e., A2 = A.

(b) σr(A+B) = σr(A) + σr(B), if A,B ∈ R are orthogonal, i.e., AB = 0.

(c) Let µ1, . . . , µn be primitive idempotents in R and A =
∑n
i=1 aiµi ∈ R where ai ∈ Fq .

Then

σr(A) =
n∑
i=1

σr(ai)µi.

(d) Let a = ηuθ where θ ∈ Fq with θw = 1 and 0 ≤ u < re. Then σr(a
r) = a iff

u < re−1.

(e) Suppose q is odd and a ∈ Fq \ {0}. Then σ2(a
2) = ±a.

Proof. Properties (a) and (b) follow from the fact that σr acts individually to each
primitive component of R over Fq . (c) follows from (a) and (b). To see (d), write u =
u0r

e−1 + u1 where 0 ≤ u1 < re−1 and 0 ≤ u0 ≤ r − 1. As

ar = ηu0r
e+ru1θr = ηru1θr,

we see that σr(a
r) = ηu1θ, which is equal to a iff u = u1, i.e., u < re−1. This proves (d).

When r = 2, we have η2e−1

= −1, so ηu02e−1

= (−1)u0 = ±1 depending on u0 = 0 or 1.
Hence σ2(a

2) = ηu1θ = ±a, which is part (e). 2

When q ≡ 3 mod 4, η = −1 and the property (e) reads as: σ2(a
2) = a for a ∈ Fq iff a

is a square in Fq , and σ2(a
2) = −a iff a is not a square in Fq .

This leads to the concept of square balanced and mutually square balanced sets for
general q mentioned in the introduction. Let σ2 be the above deterministic algorithm for
computing quadratic roots using a primitive 2e-th root η of unity in Fq where 2e divides
q− 1 exactly. A subset F ⊂ Fq of cardinality n > 1 is called square balanced with respect
to η if, for each ξ ∈ F ,

#
{
ζ ∈ F : ζ 6= ξ, σ2

(
(ξ − ζ)2

)
= ξ − ζ

}
=
n− 1

2
.

Two sets F1, F2 ⊂ Fq , each with cardinality at least two, are called mutually square
balanced with respect to η if for each ξ ∈ F1,

#
{
ζ ∈ F2 : σ2

(
(ξ − ζ)2

)
= ξ − ζ

}
is the same for all ξ ∈ F1, and similarly for ξ ∈ F2 and ζ ∈ F1.

When q ≡ 3 mod 4, this definition agrees with the one given in the introduction. When
q ≡ 1 mod 4, however, σ2

(
(ξ − ζ)2

)
= ξ − ζ does not imply that ξ − ζ is a square in Fq .

Also, there are many choices for η and it is possible that a subset of Fq is square balanced
with respect to one choice but not to another. For example, q = 17 and F = {1, 4, 5}.
Then F is square balanced with respect to η = 3 but not to η = 6. We often omit the
reference to η when it is fixed or clear from the context.

As squarefree and completely splitting polynomials in Fq [x] are in 1-1 correspondence
to subsets of Fq , we also say that a squarefree and completely splitting polynomial is
square balanced if the set of its roots is square balanced. We construct an infinite family
of square balanced polynomials.



10 Shuhong Gao

Lemma 2.7. Let n > 1 be an odd factor of q − 1. Then the polynomial f = xn − 1 is
always square balanced (with respect to any η).

Proof. Let ξ be a primitive n-th root of unity in Fq . Then

f = xn − 1 =
n−1∏
i=0

(x− ξi).

Let q − 1 = 2ew where w is odd and η a 2e-th primitive root of unity in Fq . Define

D =
{
0 ≤ j ≤ n− 1 : j 6= 0, σ2

(
(1− ξj)2

)
= 1− ξj

}
.

For any i 6= j, suppose that 1− ξj−i = ηuθ where θ ∈ Fq with θw = 1. As the order n of
ξ is an odd factor of q − 1, we have n|w and so ξw = 1. Hence

ξi − ξj = ξi(1− ξj−i) = ηu(ξiθ)

with (ξiθ)w = 1. By Lemma 2.6 (d),

σ2

(
(1− ξj−i)2

)
= 1− ξj−i iff σ2

(
(ξi − ξj)2

)
= ξi − ξj ,

as each of which holds iff u < 2e−1. For 0 ≤ i ≤ n− 1,

Di =
{
0 ≤ j ≤ n− 1 : j 6= i, σ2

(
(ξi − ξj)2

)
= ξi − ξj

}
=

{
0 ≤ j ≤ n− 1 : j 6= i, σ2

(
(1− ξj−i)2

)
= 1− ξj−i

}
= {j : j − i ∈ D} = D + i.

Therefore |D| = |D1| = · · · = |Dn−1|. Let t = |D|. Note that, for i 6= j, σ2

(
(ξi − ξj)2

)
=

ξi− ξj iff σ2

(
(ξj − ξi)2

)
= −(ξj − ξi), so j ∈ Di iff i 6∈ Dj . By counting the pairs j ∈ Di,

we have nt = n(n− 1)/2 and thus t = (n− 1)/2. This proves the theorem. 2

Finally, let c > 1 be a constant and F a subset of Fq with cardinality n > 1. We say
that F is c-super square balanced if the following three conditions are satisfied:

(i) For each 1 ≤ k ≤ (n log q)c, Fk has cardinality n and is square balanced;

(ii) The sets Fk, 1 ≤ k ≤ (n log q)c, are pairwise disjoint;

(iii) The sets Fk, 1 ≤ k ≤ (n log q)c, are pairwise mutually square balanced.

A squarefree and completely splitting polynomial in Fq [x] is called c-super square balanced
if its set of roots in Fq is c-super square balanced. The polynomial xn−1 above is square
balanced but not 2-super square balanced, as (ii) is violated for k = 1 and 2.

3. Algorithms and Analysis

Suppose that we want to factor f ∈ Fp [x] of degree n where f has n different roots in
Fp , say

f =
n∏
i=1

(x− ξi), ξi ∈ Fp .

Let

R = Fp [x]/(f) = Fp [A]



Factoring polynomials 11

where A = x mod f . Then 1, A, . . . , An−1 form an explicit basis for R over Fp . Define

f∗(y) = f(y)/(y −A) ∈ R[y] and T = R[y]/(f∗) = R[B]

where B = y mod f∗. Then 1, B, . . . , Bn−2 form an explicit basis for T over R, and
AiBj , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2, form an explicit basis for T over Fp .

Let η be a fixed 2e-th primitive root of unity in Fp where 2e divides p− 1 exactly, and
let σ be the deterministic algorithm σ2 from Section 2.4 for computing quadratic roots in
T . That is, if C ∈ T is a square then σ(C) is the output of the algorithm which satisfies
(σ(C))2 = C. The main idea of our algorithms is to employ the property of σ as stated
in Lemma 2.6 (c). This property says that, when applied to an element C ∈ T , σ acts
individually to the coordinates of C under the primitive idempotent basis of T over Fp ,
and so σ

(
(A − B)2

)
6= ±(A − B) in general. Such a case usually enables one to find a

zero divisor in R and thus a proper factor of f , via the characteristic polynomial and gcd
techniques discussed in Section 2. The construction of C in Step 1 below was motivated
by Evdokimov (1994).

Algorithm 3.1
Input: f ∈ Fp [x] squarefree and completely splitting over Fp where p is an odd prime,
Output: a proper factor of f or “Failure”.

0. Form A, B, R, T as described above.
1. Compute C = 1

2

(
A+B + σ((A −B)2)

)
∈ T .

2. Compute the characteristic polynomial c(z) of C over R.
3. Decompose c(z) as c(z) = h(z)(z −A)t where t is the largest possible.

Set H = h(A) ∈ R. Then H 6= 0.
4. If H is a zero divisor in R then find a proper factor of f ,

otherwise output “Failure”.

Theorem 3.1. Algorithm 3.1 terminates in polynomial time under ERH, and outputs
“Failure” if and only if f is square balanced.

Proof. Consider the running time first. By Lemma 2.6, σ finds a quadratic root of (A−B)2

in polynomial time provided that η is given. But η can be constructed efficiently under
ERH. So Step 1 can be done in polynomial time under ERH. Steps 2 and 3 can also be
finished in polynomial time. For Step 4, one just views H ∈ R as a polynomial in Fp [x]
and computes gcd(H, f). Note that gcd(H, f) is a proper factor of f if and only if H is
a zero divisor in R. So this step can be done in polynomial time too. Hence the whole
algorithm runs in polynomial time under ERH. (ERH was used only to construct η.)

To prove the other statement, define

ti = #
{
1 ≤ j ≤ n : j 6= i, σ

(
(ξi − ξj)

2
)

= ξi − ξj
}
, 1 ≤ i ≤ n. (3.1)

We prove that the H in step 3 is not a zero divisor in R if and only if t1 = · · · = tn, and
this common value of ti must equal (n− 1)/2.

For this purpose, we examine the element C ∈ T obtained in Step 1 and characterize
the set of zeroes of the polynomial c(z) in R. Order the primitive idempotents µ1, . . . , µn
of R such that

A =
n∑
i=1

ξiµi.



12 Shuhong Gao

For 1 ≤ j ≤ n− 1, let

Bj =
n∑
i=1

bjiµi ∈ R,

where bji ∈ {ξ1, . . . , ξn} such that (ξi, b1i, . . . , bn−1 i) is a permutation of (ξ1, ξ2, . . . , ξn)
for each 1 ≤ i ≤ n. Then, by Theorem 2.5,

f(y) = (y −A)
n−1∏
j=1

(y −Bj), f∗(y) =
n−1∏
j=1

(y −Bj).

Define

νj =
∏
k 6=j

(B −Bk)/
∏
k 6=j

(Bj −Bk), 1 ≤ j ≤ n− 1.

Then

B =
n−1∑
j=1

Bjνj ,

and
n−1∑
i=1

νi = 1, νiνj =

{
νi, if i = j,
0, otherwise.

Thus ν1, . . . , νn−1 form an orthogonal basis for T over R. Note that

A±B =
n−1∑
j=1

(A±Bj)νj ,

and

C =
n−1∑
j=1

1

2

(
(A+ Bj) + σ

(
(A−Bj)

2
))
νj .

By (2.3), the characteristic polynomial of C over R is

c(z) =
n−1∏
j=1

(
z −

1

2

(
A+Bj + σ

(
(A−Bj)

2
)))

=
n−1∏
j=1

(
z −

1

2

(
n∑
i=1

(ξi + bji)µi + σ

( n∑
i=1

(ξi − bji)
2µi

)))

=
n−1∏
j=1

n∑
i=1

(
z −

1

2

(
ξi + bji + σ

(
(ξi − bji)

2
)))

µi

=
n∑
i=1

n−1∏
j=1

(
z −

1

2

(
ξi + bji + σ

(
(ξi − bji)

2
)))

µi

=
n∑
i=1

∏
j 6=i

(
z −

1

2

(
ξi + ξj + σ

(
(ξi − ξj)

2
)))

µi,



Factoring polynomials 13

since (ξi, b1 i, . . . , bn−1 i) is a permutation of (ξ1, ξ2, . . . , ξn). Note that

1

2

(
ξi + ξj + σ

(
(ξi − ξj)

2
))

=

{
ξi, if σ

(
(ξi − ξj)2

)
= ξi − ξj ,

ξj , if σ
(
(ξi − ξj)2

)
= −(ξi − ξj).

For 1 ≤ i ≤ n, define

∆i =
{
1 ≤ j ≤ n : j 6= i, σ

(
(ξi − ξj)

2
)

= −(ξi − ξj)
}
,

∆̄i =
{
1 ≤ j ≤ n : j 6= i, σ

(
(ξi − ξj)

2
)

= ξi − ξj
}
.

Then ti = #∆̄i and

c(z) =
n∑
i=1

(z − ξi)
ti
∏
j∈∆i

(z − ξj)µi. (3.2)

Since

z −A =
n∑
i=1

(z − ξi)µi,

we see from Lemma 2.1 (b) that the e in step 3 is equal to min{t1, . . . , tn} and

h(z) =
n∑
i=1

(z − ξi)
ti−t

∏
j∈∆i

(z − ξj)µi, H = h(A) =
n∑
i=1

(ξi − ξi)
ti−t

∏
j∈∆i

(ξi − ξj)µi.

If ti > t for some i then the coefficient of µi is zero, so H is a zero divisor in R. Obviously,
H is not a zero divisor in R if and only if ti = t for 1 ≤ i ≤ n.

It remains to prove that if t1 = · · · = tn = t then t = (n− 1)/2. Note that

σ
(
(ξi − ξj)

2
)

= ξi − ξj iff σ
(
(ξj − ξi)

2
)

= −(ξj − ξi) for all i 6= j.

Each pair (i, j), 1 ≤ i < j ≤ n, contributes to either ti or tj but not both. This implies
that

nt =
n∑
i=1

ti = n(n− 1)/2.

Therefore t = (n− 1)/2. 2

Corollary 3.2. (Rónyai 1992) If the degree n of f is even, then Algorithm 3.1 finds
a proper factor of f .

When the ti’s are not equal, we can refine Algorithm 3.1 to get more proper factors of
f . The polynomial c(z) from Step 2 contains enough information to separate ξi from ξj
whenever ti 6= tj . More precisely, we have the following algorithm and theorem.

Algorithm 3.2
Input: f ∈ Fp [x] squarefree and completely splitting over Fp .
Output: a list of factors of f .

0. Form A, B, R, T as described above.
1. Compute C = 1

2

(
A+B + σ((A −B)2)

)
∈ T .

2. Compute the characteristic polynomial c(z) of C over R.
3. Compute d(z) = gcd(c(z), (z −A)n) ∈ R[z].

Suppose that d(z) =
∑n
k=0 Dkz

k, Dk ∈ R.



14 Shuhong Gao

Set dn = f .
For k from n− 1 down to 0 do

Compute dk = gcd(Dk, dk+1) (Dk is viewed as a polynomial in Fp [x]).
Set fk = dk+1/dk.

Return f0, f1, . . . , fn−1.

Theorem 3.3. Under ERH, Algorithm 3.2 factors f as f = f0f1 · · · fn−1 in polynomial
time with

fk(x) =
∏

1≤i≤n,ti=k

(x− ξi) ∈ Fp [x], 0 ≤ k ≤ n− 1, (3.3)

where the ti’s are defined as in (3.1) and an empty product is assumed to be 1.

Proof. Obviously Step 3 can be finished in polynomial time. By the proof of Theorem 3.1,
Steps 1 and 2 can be done in polynomial time under ERH. Therefore Algorithm 3.2 runs
in polynomial time under ERH.

We prove that the fk computed by Algorithm 3.2 is the same as in (3.3). Use the
notations in the proof of Theorem 3.1. Since

(z −A)n =
n∑
i=1

(z − ξi)
nµi,

it follows from (2.1) and (3.2) that

d(z) =
n∑
k=0

Dkz
k = gcd

(
c(z), (z −A)n

)
=

n∑
i=1

(z − ξi)
tiµi.

Write

Dk =
n∑
i=1

dikµi, dik ∈ Fp .

Since the i-th canonical projection of d(z) has degree ti, we see that

dik = 0, if k > ti.

For any D =
∑n
i=1 diµi ∈ R, di ∈ Fp , gcd(D, f) =

∏
di=0(z − ξi). By induction on k

(from n− 1 down to 0), we have

dk+1 =
∏

1≤i≤n,ti≤k

(z − ξi),

dk = gcd(Dk, dk+1) =
∏

1≤i≤n,ti<k

(z − ξi).

Therefore

fk = dk+1/dk =
∏

1≤i≤n,ti=k

(z − ξi).

This completes the proof. 2

Next we apply Algorithms 3.1 and 3.2 to many polynomials related to f to obtain a
much stronger result. For any integer k > 0, define f (k) ∈ Fp [x] to be the polynomial
whose roots are the k-th powers of the roots of f . The idea is to apply Algorithm 3.1 to



Factoring polynomials 15

split f (k). If a proper factor of f (k) is found then use it to get a proper factor of f . We show
that this can be done in polynomial time when k is small. We can apply this for many, even
all values of k such that k ≤ (n log p)O(1), and the total running time is still polynomial.
We also apply Algorithm 3.2 to polynomials f (k) · f (`) for 0 < k, ` ≤ (n log p)O(1). Since
f (k) ·f (`) has even degree 2n, Algorithm 3.2 will output some proper factors of f (k) ·f (`).
If for some pair of k and `, there is one factor not equal to f (k) nor f (`), then we can
compute a proper factor of f (k) or f (`), thus a proper factor of f . To materialize this
scheme, we need to show how to compute f (k) efficiently and how to get a proper factor
of f when given a proper factor of f (k).

First note that f (k)(x) = resy(f(y), x− yk) where resy denotes the resultant of poly-
nomials with respect to the variable y. So f (k) can be computed in time polynomial in
k, n and log p.

Lemma 3.4. Given a proper factor of f (k), we can find a proper factor of f in time
polynomial in k, n and log p assuming ERH.

Proof. Let h be a given proper factor of f (k). Without loss of generality, we may assume
that h is squarefree and

h =
∏̀
i=1

(x− ξki ).

Let K ⊂ Fp be the subset

K = {β ∈ Fp : βk = 1}.

The set K can be computed in time polynomial in k and log p by factoring the polynomial
xk−1 under ERH (Huang 1991). Form T = Fp [x]/(h), and A = x mod h. Compute a k-th
root H of A in T by the algorithm in Section 2.4. Let g be the characteristic polynomial
of H in T over Fp . Then there exist ai ∈ K such that

g =
∏̀
i=1

(x− aiξi).

For each a ∈ K, compute

f0 = gcd
(
f(x), g(ax)

)
.

If a = ai then (x− ξi)|f0. Since g has degree ` < n, this f0 is a proper factor of f . Under
ERH, all these can be done in time (kn log p)O(1). 2

Lemma 3.5. Suppose f ∈ Fp [x] is squarefree and completely splitting. Let R = Fp [x]/(f)
and A = x mod f . For an integer k, if Ak 6= A and the characteristic polynomial of Ak

over Fp is equal to f then A 7→ Ak induces a nontrivial endomorphism of R.

Proof. Since f is the minimal polynomial of A over Fp , we just need to check whether
f(Ak) = 0, but it is true as f is equal to the characteristic polynomial of Ak over Fp by
our assumption. 2

We also need the following result:

Lemma 3.6. (Rónyai 1992) Given any prime p and a polynomial f ∈ Fp [x] square-



16 Shuhong Gao

free and completely splitting, together with a nontrivial endomorphism of the algebra
Fp [x]/(f), a proper factor of f can be found in polynomial time under ERH.

We are now ready to describe our next algorithm.

Algorithm 3.3
Input: f ∈ Fp [x] of degree n, squarefree and completely splitting over Fp ,

and a constant c > 1.
Output: a proper factor of f or “Failure”.

0. Form R = Fp [A] where A = x mod f .
Apply Algorithm 3.1 to f . If a proper factor of f is found then halt.

1. For each integer 1 < k ≤ (n log p)c, compute Ak ∈ R.
1.1. If Ak = A then f is a factor of xk−1 − 1; factor f (by factoring xk−1 − 1) and

halt. Otherwise, compute the characteristic polynomial f (k) of Ak over Fp .
1.2. If f (k) is not squarefree, find a proper factor of f (k) and then

Find a proper factor of f and halt.
1.3. Compute d = gcd(f, f (k)). If d 6= 1 or f then output d and halt.

If d = f then f = f (k) and, by Lemma 3.5, A 7→ Ak induces
a nontrivial endomorphism of R; find a proper factor of f and halt.

1.4. Apply Algorithm 3.1 to the polynomial f (k). If it outputs a proper factor
of f (k) then find a proper factor of f and halt.

2. For each integer pair 0 < k < ` ≤ (n log p)c do the following:
2.1. Compute d = gcd(f (k), f (`)).

If d is a proper factor then use it to find a proper factor of f and halt.
If d = f (k) = f (`) then either Ak = A` (so the roots of f are (`− k)-th roots
of unity in Fp) or Ak 7→ A` induces a nontrivial automorphism of R;
in both cases, find a proper factor of f and halt.

2.2. Apply Algorithm 3.2 to g = f (k) · f (`) ∈ Fp [x] to get a list of factors of g.
2.3. For each factor h in the list, compute u = gcd(h, f (k)) and v = gcd(h, f (`)).

If u or v is a proper factor of f (k) or f (`), respectively,
then use it to find a proper factor of f and halt.

Otherwise, output “Failure”.

Theorem 3.7. Algorithm 3.3 runs in polynomial time under ERH, and outputs “Fail-
ure” if and only if f is c-super square balanced.

Proof. Consider first the running time under ERH. Step 0 can be done in polynomial time
by Theorem 3.1. For each k, all the other steps can be finished in polynomial time: 1.1 by
Huang (1991), 1.2 by Lemma 3.4, 1.3 by Lemma 3.6, 1.4 by Theorem 3.1 and Lemma 3.4,
2.1 by Huang (1991) and Lemma 3.6, 2.2 by Theorem 3.3, and 2.3 by Lemma 3.4. These
steps are repeated for polynomially many values of k. Therefore Algorithm 3.3 runs in
polynomial time under ERH.

Now suppose that Algorithm 3.3 outputs “Failure”. We prove that f is c-super square
balanced, i.e., the three conditions (i), (ii) and (iii) at the end of Section 2.4 are satisfied.
Note that Fk is the set of the roots of f (k). The algorithm does not halt at Step 0 means
that F1 is square balanced. For each k > 1, Steps 1.1, 1.2, 1.3 make sure that f (k) has no
repeated roots and its roots are different from those of f . So Fk has cardinality n and is



Factoring polynomials 17

disjoint from F1 for all k > 1. To pass Step 1.4, Fk has to be square balanced. Hence the
condition (i) is satisfied. Step 2.1 makes sure that that f (k) and f (`) have no common
roots, i.e., Fk is disjoint from F`, hence (ii) holds. Note that both Ak and A` generate
the ring R over Fp , as their minimal polynomials f (k) and f (`) over Fp have degree n.
Hence Ak 7→ A` induces an automorphism of R. In the following, we prove that if Step
2.3 does not find a proper factor of f then (iii) must be satisfied.

At the start of Step 2.2, g is squarefree and completely splitting over Fp . Fk ∪ F` is
the set of roots of g. Also, Fk and F` are both square balanced. We need to determine
when the u and v computed in Step 2.2 are both trivial factors. Order the roots of
g = f (k) · f (`) as η1, η2, . . . , η2n where ηi = ξ`i for 1 ≤ i ≤ n and ηi = ξki−n for n < i ≤ 2n.
For 1 ≤ i ≤ 2n, let

ti = #
{
1 ≤ j ≤ 2n : j 6= i, σ

(
(ηi − ηj)

2
)

= ηi − ηj
}
.

For 1 ≤ i ≤ n, define

ui = #
{
1 ≤ j ≤ n : σ

(
(ξ`i − ξ

k
j )

2
)

= ξ`i − ξ
k
j

}
,

vi = #
{
1 ≤ j ≤ n : σ

(
(ξki − ξ

`
j)

2
)

= ξki − ξ
`
j

}
.

Then, for 1 ≤ i ≤ n,

ti = #
{
1 ≤ j ≤ n : j 6= i, σ

(
(ξ`i − ξ

`
j)

2
)

= ξ`i − ξ
`
j

}
+ #

{
1 ≤ j ≤ n : σ

(
(ξ`i − ξ

k
j )

2
)

= ξ`i − ξ
k
j

}
=

n− 1

2
+ ui,

and

ti+n = #
{
1 ≤ j ≤ n : σ

(
(ξki − ξ

`
j)

2
)

= ξki − ξ
`
j

}
+ #

{
1 ≤ j ≤ n : j 6= i, σ

(
(ξki − ξ

k
j )

2
)

= ξki − ξ
k
j

}
= vi +

n− 1

2
,

since Fk and F` are square balanced.
Suppose that u1, . . . , un are not equal. Then t1, . . . , tn are not equal. By Theorem 3.3,

the roots η1 = ξ`1, . . . , ηn = ξ`n of g, and of f (`), are separated. That is, there is a factor
h in the list from Step 2.2 such that gcd(h, f (`)) is a proper factor of f (`). Similarly, if
v1, . . . , vn are not equal then Step 2.3 will find a proper factor of f (k) for some h in the
list. Therefore if no proper factor of f (`) or f (k) is found at Step 2.3 then u1 = · · · = un
and v1 = · · · = vn, that is, Fk and F` are mutually square balanced. Hence (iii) holds.

Conversely, if (i), (ii) and (iii) are satisfied, then one can see from the above proof
that Algorithm 3.3 will not be able to find an proper factor of f , thus output “Failure”.
2

If we take c = 6, then Theorem 3.7 gives the result in the introduction for p ≡ 3 mod 4.
The theorem suggests an interesting number theory problem on the existence of c-super
square balanced subsets in Fp . If c is large enough, then it is very likely that there are
no such subsets in Fp . We believe that c = 6 suffices.

Conjecture. For any prime p and any integer n > 1, there are no super square balanced
subsets in Fp of cardinality n.



18 Shuhong Gao

A confirmation to the conjecture implies that, under ERH, polynomials over finite
fields can be factored deterministically in polynomial time.

Finally, we remark that it is possible to apply Algorithm 3.2 to extensions of R =
Fp [x]/(f) and obtain an interesting connection of the problem of factoring polynomials to
a combinatorial structure called Hadamard designs. It may be possible that this approach
will render the problem to combinatorial attacks. The details will be given elsewhere.

Acknowledgement. The author would like to thank Professor Joachim von zur
Gathen for his encouragement and insightful discussions. Thanks also go to Professors
Andrew Granville and Carl Pomerance for helpful suggestions and comments on the
paper, particularly, Professor Pomerance suggested the use of super square balanced
sets. Finally, the detailed comments and questions from an anonymous referee greatly
improved the presentation of the paper.

References

Adleman, L., Manders, K., Miller, G. (1977). On taking roots in finite fields. In Proc. 18th IEEE Symp.
Foundations of Computer Science (Providence, R.I., 1977) :175–178.

Bach, E. (1997). Comments on search procedures for primitive roots. Math. Comp., 66:1719–1727.
Bach, E., von zur Gathen, J., Lenstra, H. (1995). Deterministic factorization of polynomials over special

finite fields. Preprint.
Berlekamp, E. R. (1967). Factoring polynomials over finite fields. Bell System Tech. J., 46:1853–1859.
Berlekamp, E. R. (1970). Factoring polynomials over large finite fields. Math. Comp., 24:713–735.
Camion, P. (1983). A deterministic algorithm for factorizing polynomials of Fq [x]. Ann. Discr. Math.,

17:149–157.
Evdokimov, S. A. (1989). Factorization of a solvable polynomial over finite fields and the generalized

Riemann hypothesis. Zapiski Nauchnyck Seminarov LOMI, 176:104–117.
Evdokimov, S. A. (1994). Factorization of polynomials over finite fields in subexponential time under

GRH. In Proceedings of the 1994 Algorithmic Number Theory Symposium(Adleman, L. M., Huang,
M.-D., editors), Ithaca, New York. Lecture Notes in Computer Science, Berlin, Springer-Verlag,
1994 :209–219.

von zur Gathen, J. (1987). Factoring polynomials and primitive elements for special primes. Theoret.
Computer Science, 52:77–89.

von zur Gathen, J., Shoup, V. (1992). Computing Frobenius maps and factoring polynomials. Comput.
Complexity, 2:187–224.

Huang, M. A. (1991). Generalized Riemann hypothesis and factoring polynomials over finite fields. J.
Algorithms, 12:464–481.

Kaltofen, E., Shoup, V. (1998). Subquadratic-time factoring of polynomials over finite fields. Math.
Comp., 67:1179–1197.

Mignotte, M., Schnorr, C.-P. (1988). Calcul déterministe des racines d’un polynôme dans un corps fini.
Comptes Rendus Académie des Sciences (Paris), 306:467–472.

Moenck, R. T. (1977). On the efficiency of algorithms for polynomial factoring. Math. Comp., 31:235–
250.

Pohlig, S. C., Hellman, M. E. (1978). An improved algorithm for computing logarithms over GF (p) and
its cryptographic significance. IEEE-IT, IT-24:106–110.

Rónyai, L. (1988). Factoring polynomials over finite fields. J. Algorithms, 9:391–400.
Rónyai, L. (1989). Factoring polynomials modulo special primes. Combinatorica, 9:199–206.
Rónyai, L. (1992). Galois groups and factoring over finite fields. SIAM J. Discrete Math., 5:345–365.
Wan, D. (1996). Notes on factoring polynomials and zeta functions over finite fields. Preprint.
Wang, Y. (1959). On the least primitive root of a prime. Acta. Math. Sinica, 9:432–441 (Chinese).

Scientia Sinica, 10 (1961) :1–14 (English translation).
Zassenhaus, H. (1969). On Hensel factorization, I. J. Number Theory, 1:291–311.


