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Abstract. We study the relationship between certain Gröbner bases for zero-
dimensional radical ideals, and the varieties defined by the ideals. Such a
variety is a finite set of points in an affine n-dimensional space. We are in-
terested in monomial orders that “eliminate” one variable, say z. Eliminating
z corresponds to projecting points in n-space to (n − 1)-space by discarding
the z-coordinate. We show that knowing a minimal Gröbner basis under an
elimination order immediately reveals some of the geometric structure of the
corresponding variety, and knowing the variety makes available information
concerning the basis. These relationships can be used to decompose polyno-
mial systems into smaller systems.

1. Introduction

Gröbner bases and elimination are powerful tools for solving polynomial systems.
The basic idea is to turn a polynomial system into triangular form and solve it
iteratively using linear algebra. There is a rich literature on this and related topics,
and the reader is referred to [4, 5, 19] for an excellent exposition. Elimination theory
deals mainly with the case where partial solutions can be extended to complete
solutions. In general it is difficult to predict in how many ways partial solutions
can be extended. In this paper we shed some light on this problem. We study
the connection between the structure of certain Gröbner bases and the geometric
structure of the solution set (an affine variety) of a zero-dimensional polynomial
ideal. We focus on the special but important case when all the solutions are distinct,
i.e., when the ideal is radical.

Let F be any field, let I be a zero-dimensional radical ideal in F[x1, . . . , xn], and

let P be the set of its zeros in F
n
, where F is the algebraic closure of F. Suppose

G is a minimal Gröbner basis for I under some monomial order. We would like to
have an easy way, involving little computation, to translate information concerning
G into information concerning P, and vice-versa.

To make these ideas concrete, let π : F
n
−→ F

n−1
be the projection map

π(a1, · · · , an−1, an) = (a1, · · · , an−1).
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Let S = π(P) denote the projection of P. The fibre of π in P at a point s ∈ S is
π−1(s), the set of points in P that project to s. For simplicity we call this set the
fibre of s. The size of a fibre is its cardinality, and the fibre size of s is the size of its
fibre. Note P is a disjoint union of fibres. A point s ∈ S corresponds to a partial
solution and the fibre size of s indicates the number of ways s can be extended to
complete solutions (i.e., to points in P). It is natural to ask the following:

(1) Does a Gröbner basis for I tell the sizes of the fibres in P?
(2) Is it possible to determine from such a Gröbner basis other information,
say Gröbner bases for subsets of S that are projections of fibres of different
sizes?

We work with perfect fields. Recall that a field F is perfect if either F has
characteristic 0, or F has characteristic p > 0 and every element in F has a p-th
root in F. Perfect fields include number fields, finite fields, and all algebraically
closed fields. We also restrict our attention to elimination orders. A monomial
order in F[x1, . . . , xn] is an elimination order for xn if the monomial xn is greater
than all monomials in F[x1, . . . , xn−1]. There is a unique elimination order for xn
that extends any given monomial order on F[x1, . . . , xn−1], say lexicographic or
graded lexicographic.

Our main contribution in this paper is the following theorem, which is proved in
Section 3.

Theorem. Let F be a perfect field, I a zero-dimensional radical ideal in F[x1, . . . , xn],

and P the set of zeros of I in F
n
. Assume the fibre sizes in P are m1 > . . . > mr >

0. Let G be any minimal Gröbner basis for I under an elimination order for xn.
View the elements of G as polynomials in xn with coefficients in F[x1, . . . , xn−1].

(1) The xn-degrees of the polynomials in G are exactly the fibre sizes in P.
(2) For 1 ≤ i ≤ r let Gi denote the set of the leading coefficients of polynomials
in G whose xn-degrees are < mi, and let S≤i denote the set of points in
S = π(P) that are projections of fibres of size ≥ mi. Then each Gi is a
Gröbner basis for S≤i.

This is a strengthening of the classical elimination theory which deals with exis-
tence of extension of partial solutions, whereas the above theorem predicts exactly
how many extensions exist. We demonstrate this with a simple example. Let F
be any perfect field, and let G = {z2 − z, zy − z, x, y2 − y}. Then G is a Gröbner
basis for any monomial order, and the solutions of G are exactly the points (0, 1, 0),
(0, 1, 1), and (0, 0, 0). For the variable z, its distinct degrees in G are 2, 1 and 0,
and

G1 = {y − 1, x, y
2 − y}, G2 = {x, y

2 − y}.

Clearly G1 has one solution, namely (0, 1), which is the projection of a fibre of size
2 by the above theorem. Similarly, G2 has two solutions, namely (0, 0) and (0, 1),
each of which is the projection of a fibre of size ≥ 1. It follows that (0, 0) is the
projection of a fibre of size 1. Note these fibre sizes indeed match those of the
solution set. This relationship can be used to decompose the polynomial system
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G into smaller systems that are easier to solve. We demonstrate this with a more
extensive example in Section5.

When the points in P are known, the xn-degrees for a minimal Gröbner basis
can be found by calculating fibre sizes. In the extreme case where the monomial
order is lexicographic, this gives rise to a simple algorithm, presented in Section 4,
for constructing the monomial basis of I. The algorithm operates exclusively on
the point set and requires no operations in the field aside from tests for equality of
field elements. In [3], Cerlienco and Mureddu present an algorithm for computing
the monomial basis for I directly from the point set. Our construction is different
from theirs and is perhaps more intuitive.

In this paper we do not describe how to calculate a Gröbner basis for a given set of
points. Algorithms for doing this (possibly with multiplicity) are described in [2, 6,
7, 16]. Vanishing ideals of finite sets of points also arise in several other applications.
See for examples, [12, 18, 20] for coding theory, [8, 9, 10, 11, 15] for multivariate
polynomial interpolation and multivariate rational function approximation, [17] for
statistics, and [14] for biology.

2. Preliminaries

We refer the reader to the books of Cox, Little and O’Shea ([4] and [5]) for
introduction to the theory of Gröbner bases and its applications. Here we mention
some notation and basic results needed in later sections. Throughout we write R
to denote the polynomial ring F[x1, . . . , xn].

Fix any monomial order in R. A nonzero polynomial f ∈ R has a unique leading
term lt(f). For any nonempty subset G of R, we denote by lt(G) the set of leading
terms of all nonzero polynomials in G, and by 〈lt(G)〉 the ideal generated by the
elements of lt(G).

Every nonzero ideal I of R has a Gröbner basis. A Gröbner basis G for I
can be made minimal making its polynomials monic and by removing from G
any polynomial g with lt(g) ∈ 〈lt(G \ {g})〉 A given ideal can have many minimal
Gröbner bases, but each has the same set of leading terms. A minimal Gröbner
basis G for I is reduced if its elements are reduced with respect to G, i.e., for every
g ∈ G no monomial of g is in 〈lt(G \ {g})〉. Any nonzero ideal I of R has a unique
reduced Gröbner basis. and radical.

For an n-tuple α = (α1, . . . , αn) ∈ Nn we write xα to represent the monomial
with exponent vector α: xα = xα11 x

α2
2 · · ·x

αn
n . The set

B(I) = {xα : α ∈ Nn and xα /∈ lt(I)}

of all monomials not divisible by the leading term of any polynomial in I is called
the monomial basis of I (with respect to the given monomial order). Its elements
are called basis monomials (or standard monomials). The monomial basis of I forms
a basis for the quotient ring R/I as a vector space over the field F, so

|B(I)| = dimF (R/I) .
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This implies that for a given ideal I the number of basis monomials is independent
of the monomial order.

The set of exponent vectors of the basis monomials is called the delta set of the
ideal I. We represent it by ∆(I). Thus

∆(I) = {α ∈ Nn : xα ∈ B(I)} = {α ∈ Nn : xα /∈ lt(I)}.

Similarly, we define the delta set of a finite set {f1, . . . , fl} ⊆ R to be the set

∆(f1, . . . , fl) = {α ∈ N
n : xα is not divisible by any lt(fi), 1 ≤ i ≤ l}.

The motivation for the choice of names is the following. Consider the set of
n-tuples of natural numbers with the partial order ≤ induced from the usual order
on N, namely (a1, . . . , an) ≤ (b1, . . . , bn) provided ai ≤ bi for each i. Suppose
∆ is a subset of Nn with the property that whenever a = (a1, . . . , an) ∈ ∆ and
b = (b1, . . . , bn) ∈ Nn, with b ≤ a, then b must also be in ∆. Then ∆ is called a
delta set (or an order ideal). It is easy to see that ∆(I) and ∆(f1, . . . , fl) as defined
above are in fact delta sets in this second sense, since for all α, β ∈ Nn, xα | xβ if and
only if α ≤ β. It follows that ∆(I) ⊆ ∆(f1, . . . , fl) for any f1, . . . , fl ∈ I. Lemma 1
below tells us that the equality holds if and only if {f1, . . . , fl} is a Gröbner basis
for I. Whenever ∆ is a delta set, then c ∈ Nn is co-minimal for ∆ provided c is a
minimal element of Nn \∆.

We denote by V (I) be the set of common zeros in F
n
of the polynomials in the

ideal I, i.e.,

V (I) = {p ∈ F
n
: f(p) = 0 for all f ∈ I}.

V (I) is an affine algebraic set, called the algebraic set determined by I. It is also
known as the locus of I or the variety of I.

Conversely, let P be a finite set of distinct points in Fn, where F is an arbitrary
field, and consider the vanishing ideal I(P) of P defined by

I(P) = {f ∈ F[x1, . . . , xn] : f(p) = 0 for all p ∈ P}. (1)

The common solutions of the polynomials in I(P) are precisely the points in P. For
brevity, when G is a Gröbner basis for I(P), we say G is a Gröbner basis for P. The
following basic results relate the concepts above, whose proofs are straightforward
(The last part of Lemma 1 appears in [16, Lemma 3.8, p112].)

Lemma 1. Let P ⊆ Fn and I = I(P). Then V (I) = P and |∆(I)| = |P|, Further,
{f1, . . . , fl} ⊂ I is a Gröbner basis for I if and only if |∆(f1, . . . , fl)| = |P|.

Lemma 2. Let P1 and P2 be finite sets of points in Fn such that P1 ⊆ P2, and let
I1 = I(P1) and I2 = I(P2). Then I1 ⊇ I2 and, under the same monomial order,
∆(I1) ⊆ ∆(I2) and 〈lt(I1)〉 ⊇ 〈lt(I2)〉. Moreover, |∆(I2) \∆(I1)| = |P2 \ P1|.

Lemma 1 implies that to obtain a Gröbner basis for I(P) it suffices to find
polynomials f1, . . . , fl ∈ I such that |∆(f1, . . . , fl)| = |P|. Lemma 2 shows how
Gröbner bases change when points are added. We also need the following well-
known result on polynomial interpolation.

Lemma 3. For any n ≥ 1, any distinct points p1, p2, . . . , ps ∈ Fn, and any values
r1, . . . , rs ∈ F, there is a polynomial g ∈ R such that g(pi) = ri, for 1 ≤ i ≤ s. In
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particular, there are polynomials g1, . . . , gs ∈ R such that for all 1 ≤ i, j ≤ s,

gi(pj) =

{
1 if i = j,

0 if i 6= j.
(2)

3. Structure of Gröbner bases

Our goal in this section is to prove the theorem stated in the introduction. The
strategy is the following. Let F be any field and let P ⊆ Fn be a finite nonempty
set of points. The fibre structure of P allows us to construct a Gröbner basis for
I(P). This basis makes it possible to show that every minimal Gröbner basis for
a zero-dimensional radical ideal has a particular property. From this the theorem
follows.

When n = 1, the theorem becomes trivial. In this case we write the points in
P as pi = ai, 1 ≤ i ≤ t. Let G be the set consisting of the single polynomial
(x1 − a1) · · · (xt − at). Then G ⊆ I(P) and its delta set is ∆(G) = {0, 1, · · · , t− 1}
which has cardinality t = |P|. Clearly G is a Gröbner basis for I(P). The degree
of the polynomial in G is equal to the number of zeros of I. This is essentially
the Fundamental Theorem of Algebra, which says that every polynomial in C[x] of
degree t has t zeros.

Henceforth in this section we assume n > 1. Let π be the projection map as
defined in the introduction and let S = π(P) = {π(p) : p ∈ P} ⊆ Fn−1 be the
projection of P. If the sizes of the fibres in P are m1 > . . . > mr > 0, then P can
be partitioned as

P = P1 ∪ . . . ∪ Pr,

where each Pi consists of the fibres of size mi. This allows us to partition S as

S = S1 ∪ . . . ∪ Sr, where Si = π(Pi), 1 ≤ i ≤ r.

It is convenient to let mr+1 denote 0. We use S≤i to denote S1 ∪ . . . ∪ Si, P≥i to
denote Pi ∪ . . . ∪ Pr, and so on. Whenever P is a set of points in Fm, write ∆(P)
as a shorthand for ∆(I(P)), a subset of Nm. Given a delta set ∆ ⊂ Nn−1 and a
positive integer m, one can build a new delta set ∆⊗m ⊂ Nn as follows:

∆⊗m = {(a1, . . . , an−1, i) : (a1, . . . , an−1) ∈ ∆ and 0 ≤ i < m}.

Theorem 4. Let F be any field and let P ⊂ Fn be a finite set with fibre sizes
m1 > . . . > mr > 0. Assume P and S are partitioned as described above. Let
G0 = {1}, and for 1 ≤ i ≤ r let Gi be a Gröbner basis for S≤i. Then, under an
elimination order for xn in R = F[x1, · · · , xn], I(P) has a Gröbner basis given by

Ĝ =
r+1⋃
i=1

{fi · g : g ∈ Gi−1}, (3)

for some fi ∈ R with lt(fi) = xmin , 1 ≤ i ≤ r + 1.

Proof: We first construct the desired polynomials fi, 1 ≤ i ≤ r + 1. We require
that fi vanish on P≥i and lt(fi) = xmin . We take fr+1 = 1, as P≥r+1 is empty,
so assume 1 ≤ i ≤ r. Since the largest fibre in P≥i has size mi, we can partition
P≥i into mi subsets Q1 ∪ . . . ∪Qmi so that every fibre in each Qj has size 1. This
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means the projection map π is one-to-one on each Qj . By Lemma 3, there is a
polynomial fj ∈ F[x1, . . . , xn−1] that interpolates Qj , that is, xn − fj vanishes on
Qj . We define fi to be

∏mi
j=1(xn − fj). Then lt(fi) = x

mi
n and fj vanishes on P≥i.

Every g ∈ Gi−1 vanishes on S<i, hence on P<i, and therefore, g · fi vanishes on P.
This proves Ĝ in (3) is a subset of I(P).

Define a delta set ∆ as follows:

∆ =
r⋃
i=1

(
∆(S≤i)⊗mi

)
.

By Lemma 2 and the fact that the mi decreases with i, one sees that |∆| = |P|. By
Lemma 1, it suffices to show that whenever c ∈ Nn is co-minimal for ∆, the set G in
(3) contains a polynomial h ∈ I(P) such that lt(h) = xc. Let c ∈ Nn be co-minimal
for ∆. Then c is of the form c = (c1, . . . , cn−1,mi) for some 1 ≤ i ≤ r + 1, and
π(c) = (c1, . . . , cn−1) is co-minimal for ∆(S<i). (Here S0 is empty and corresponds
to G0 = {1}.) Since Gi−1 is a Gröbner basis for S<i, there is g ∈ Gi−1 with
lt(g) = xc11 · · ·x

cn−1
n−1 . Hence h = g · fi is in G and lt(h) = x

c. This proves that Ĝ is
a (not necessarily minimal) Gröbner basis for I(P). �

The proof of Theorem 4 actually shows something additional, namely

Corollary 5.

∆(P) =
r⋃
i=1

(
∆(S≤i)⊗mi

)
.

In particular, this asserts that the fibre structures of P and ∆(P) are identical,
i.e., for each m, the number of fibres of size m in P equals the number of fibres of
the same size in ∆(P).

The Gröbner basis Ĝ described in Theorem 4 has two pleasant properties. Sup-
pose we view its elements as polynomials in xn with coefficients in F[x1, . . . , xn−1].
First, the xn-degrees of the polynomials are exactly the fibre sizes of P. Second,
for each fibre size mi, 1 ≤ i ≤ r + 1, the leading coefficients of the polynomials
having xn-degree exactly mi form a Gröbner basis for S<i.

If we reduce Ĝ or make it minimal, the second property no longer holds, but
we can still recover a Gröbner basis for S<i by augmenting the coefficient set with
the leading coefficients of the polynomials having xn-degree smaller than mi. The
interesting fact is that this property holds for every minimal Gröbner basis for I(P),
as we show in Theorem 6 below.

For an f ∈ R viewed as a polynomial in xn with coefficients in F[x1, . . . , xn−1],
we write degxn(f) to represent the degree of f in xn, and ltxn(f) to represent
its leading term, which is a polynomial in F[x1, . . . , xn−1]. Let G be a Gröbner
basis for I(P) and suppose the distinct degrees in xn of the polynomials in G are
m1 > · · · > mr > 0 = mr+1. For 1 ≤ i ≤ r, define

Gi = {ltxn(g) : g ∈ G and degxn(g) < mi} ⊆ F[x1, . . . , xn−1]. (4)

We say that G has the fibre property for xn provided the following hold: (a)
m1, · · · ,mr are exactly the sizes of the fibres in P, and (b) for 1 ≤ i ≤ r, Gi
is a Gröbner basis for points in S that are projections of fibres of size ≥ mi. This
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means, in particular, that Gr is a Gröbner basis for S. Note Gr consists of those
polynomials in G that do not contain xn. Certainly, one can define the fibre prop-
erty for any other variable, and the following theorem holds similarly.

Theorem 6. Let F be any field and P ⊆ Fn a finite nonempty set. With respect
to an elimination order for xn in R, every minimal Gröbner basis for I(P) has the
fibre property for xn.

Proof: First note that Gröbner basis Ĝ from Theorem 4 has the fibre property.
The minimal Gröbner basis obtained from Ĝ by removing polynomials whose lead-
ing terms are divisible by other polynomials in G still has the fibre property (as

the ideals generated by the sets Ĝi remain the same). Hence we may assume that
there is a minimal Gröbner basis for I(P) having the fibre property.

Next we show that basis reduction does not change the fibre property. Let G
be any minimal Gröbner basis with the fibre property. Since no leading term of a
minimal Gröbner basis divides another leading term, a typical reduction is of the
form:

g′ = g + q · h,

where g, h ∈ G, q ∈ R, and lt(q · h) < lt(g). Note g′ ∈ I(P) and lt(g′) = lt(g).
Write G′ to denote the set that results when g is replaced by g′ in G. Then G′

is also a minimal Gröbner basis for I(P). Suppose we can show that G′ has the
fibre property. Then every minimal Gröbner basis for I(P) has the fibre property,
because G can be reduced to the unique reduced Gröbner basis using a sequence of
such replacements, and every minimal basis can be generated from the reduced basis
by reversing reduction (which is again a sequence of such replacements). Therefore
it suffices to prove G′ has the fibre property.

What remains is to show that whenever 1 ≤ i ≤ r, the set G′i is a Gröbner
basis for I(S≤i). It suffices to prove that, for each i, we have 〈G′i〉 = I(S≤i),
and 〈lt(G′i)〉 = 〈lt(I(S≤i))〉. For any f ∈ R, we have degxn(f) = degxn(lt(f)).
In particular, this means degxn(g

′) = degxn(lt(g
′)) = degxn(lt(g)) = degxn(g).

Also, lt(ltxn(f)) = ltxn(lt(f)), hence lt(ltxn(g
′)) = ltxn(lt(g

′)) = ltxn(lt(g)) =
lt(ltxn(g)).

If ltxn(g
′) = ltxn(g), thenG

′
i = Gi, so assume ltxn(g

′) 6= ltxn(g). Then ltxn(g
′) =

ltxn(g) + ltxn(q) · ltxn(h). Suppose degxn(g) = degxn(g
′) = mj+1. If i > j, then

G′i = Gi, so assume i ≤ j. Since lt(h) < lt(g) we must have degxn(h) ≤ mj+1, and
because G has the fibre property, ltxn(g) and ltxn(h) both kill S≤i. This means
ltxn(g

′) does as well, so G′i kills S≤i. Since ltxn(g) = ltxn(g
′) − ltxn(q) · ltxn(h),

we have 〈G′i〉 = 〈Gi〉 = I(S≤i). Moreover, lt(G
′
i) = lt(Gi), which means 〈lt(G

′
i)〉 =

〈lt(Gi)〉 = 〈lt(I(S≤i))〉. �

Finally, we prove the theorem described in the introduction. For convenience,
we restate it here.

Theorem 7. Let F be a perfect field, let I be a zero-dimensional radical ideal in
F[x1, . . . , xn], and let P be the set of zeros of I in F

n
. Assume the fibre sizes in P are

m1 > . . . > mr. Let G be any minimal Gröbner basis for I under an elimination
order for xn. View the elements of G as polynomials in xn with coefficients in
F[x1, . . . , xn−1].



8 GAO, RODRIGUES, AND STROOMER

(1) The xn-degrees of the polynomials in G are exactly the fibre sizes in P.
(2) For each i, 1 ≤ i ≤ r, let Gi be defined in (4) and let S≤i be defined as
above. Then Gi is a Gröbner basis for S≤i.

Proof: Let I(P) be the vanishing ideal of P in F[x1, . . . , xn]. Then I ⊆ I(P).
By Theorem 6 it suffices to prove that I and I(P) have the same reduced Gröbner
basis. To show this we employ Theorem 3.7.19 in [13, p253], which asserts that
when F is perfect, the cardinality of P is equal to dimFR/I. So for any Gröbner
basis G of I, ∆(G) = dimFR/I = |P|, thus G is also a Gröbner basis for I(P). The
claim follows as the reduced Gröbner basis for any ideal is unique. �

When F is not perfect, a radical ideal I ⊂ F[x1, · · · , xn] may have a zero of
multiplicity > 1, so the dimension of F[x]/I is greater than |P|, the number of
distinct zeros of I. In this case, I and I(P) do not have the same reduced Gröbner
basis. For a simple example, consider F = F2(u) where u is transcendental over F2,
and let I =

〈
x2 − u

〉
, a zero-dimensional radical ideal in F[x]. I has only one zero

in F, while F[x]/I has dimension two.

4. Construction of monomial bases

When a Gröbner basis for an ideal I ⊆ R is known, one can easily obtain the
leading terms of a minimal Gröbner basis for I, the monomial basis for I, and the
delta set ∆(I). Recall that the monomial basis is the set of monomials that are not
divisible by any of the leading terms of the polynomials in the minimal basis, and
∆(I) consists of the exponents α ∈ Nn for which xα is in the monomial basis.

In this section we show that when the order is lexicographic and the ideal is I(P),
one does not need to know a Gröbner basis to obtain the delta set. More precisely,
we give a construction of ∆(I(P)) that depends only on the structure of the points,
and does no computations in the field aside from comparisons for equality. From
the delta set one can easily obtain the monomial basis and the leading terms of a
minimal Gröbner basis.

Any nonempty finite set of points P ⊆ Fn can be represented as a rooted tree
T (P) of height n in a natural way: the nodes on each path from the root to a leaf
are labeled with the coordinates of a point. The root receives no label, its children
are labeled with the first coordinates of the points, their children with the second
coordinates, and so forth. If two points have the same k leading coordinates, then
their corresponding paths coincide until level k + 1. (We regard the root as being
at level zero.) Note T (P) contains |P| leaves, all at level n. When n = 1, then
T (P) consists of a root and |P| children, each labeled with the unique coordinate
of a point.

As an example, let P consists of the following 13 points in Z4: (1, 1, 2, 3),
(1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2), (3, 1, 1, 2), (3, 1, 2, 2),
(3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), and (3, 4, 1, 2). Then T (P) is the tree of Figure 1.

Every subtree of T (P) is, in effect, T (Q) for a set Q of points obtained from
P by discarding leading coordinates. To make this explicit, suppose S is the



GRÖBNER BASIS STRUCTURE OF FINITE SETS OF POINTS 9

3

12

 1

 1  2

root

1 2

1 2

4 3

322 1 1

11

1

3

 2 15 4

 2

2

Figure 1. Tree T (P) representing 13 points in Z4

subtree of T (P) corresponding to those points from P whose first k coordinates
are (a1, . . . , ak). Then (ignoring the label on its root), S is T (Q), where Q =
{(ak+1, . . . , an) ∈ Fn−k : (a1, . . . , ak, . . . , an) ∈ P}. Clearly, whenever S is a sub-
tree of T (P), the corresponding point set Q can be can be recovered from S. We
write P (S) to denote the recovered set.

As before, we use ∆(P) as a shorthand for ∆(I(P)). There is a recursive algo-
rithm to produce ∆(P) directly from T (P). Before we describe it, we explain what
it means to merge delta sets.

Let ∆1, . . . ,∆k ⊆ Nn−l be delta sets. For any point a = (a2, . . . , an) ∈ Nn−1,
let δ(a) denote the number of delta sets ∆i that contain a. Then to merge the
∆i is to form the delta set ∆ ⊆ Nn consisting of all points (j, a2, . . . , an), where
0 ≤ j < δ(a2, . . . , an).

The algorithm to construct ∆(P) is the following:

(1) Construct T (P) from P.
(2) If n = 1 then ∆(P) is {0, 1, . . . , |P| − 1}.
(3) Otherwise, let the subtrees of the root node of T (P) be S1, . . . , Sk, and
assume this algorithm has recursively constructed each ∆(P (Si)). Then
∆(P) is produced by merging the ∆(P (Si)), 1 ≤ i ≤ k.

To illustrate this algorithm, we show how to produce a delta set from the tree
T (P) of Figure 1. For each node at the next-to-last level n − 1 of T (P) we build
the corresponding delta set. For a given node, this set is {0, 1, . . . , t − 1}, where
t is the number of children for the node. Next, for each node at level n − 2 we
form the delta set by merging the delta sets for its children. We continue in this
fashion, forming the delta sets for level k nodes by merging child delta sets from
level k+1. At the end, we produce the delta set for the root node of T (P), which,
as we prove in Theorem 8, is ∆(P). This process is shown in Figure 2 below. In
the figure, we represent delta sets as trees. The top row shows the level n− 1 delta
sets, next row the level n − 2 delta sets, and so on. The bottommost row shows
the level 0 delta set, i.e., ∆(P). Arrows connecting the rows indicate which delta
sets are merged to form the sets in the next row. Expressed as a set, the final
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delta set ∆(P) is {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),
(0, 1, 0, 1), (0, 2, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 0, 1)}.
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Figure 2. Merging delta sets to form ∆(P)

Now we prove that the algorithm produces the correct result.

Theorem 8. The delta set ∆ the algorithm constructs equals ∆(P).

Proof: Recall that Corollary 5 asserts

∆(P) =
r⋃
i=1

(
∆(S≤i)⊗mi

)
. (5)

In particular, P and ∆(P) have identical fibre structures, i.e., given m, the number
of fibres of size m in P equals the number of fibres of the same size in ∆(P). Our
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strategy is to show that ∆ equals the set on the right hand side of (5) above. We
use the following facts:

(1) In a delta set, each fibre of size m consists of points whose trailing coordi-
nates are 0, . . . ,m− 1.

(2) The set ∆ contains the same number of points as does P.
(3) Suppose P ′ is obtained from P by discarding one point, and let ∆′ be the
delta set the algorithm constructs from T (P ′). Then ∆′ ⊆ ∆.

(4) The fibre structures of ∆ and P are identical.

Facts (1) and (2) are obvious, and (3) follows from a straightforward induction on
n. We prove (4) in Lemma 9 below.

Our proof is by simultaneous induction on n and |P|, with the cases n = 1 and
|P| = 1 being clear. Assume first that P contains points p1 and p2 belonging to
fibres of different sizes. For i = 1, 2 let Pi = P \ {pi} and let ∆i be the set the
algorithm constructs for T (Pi). Note the ∆i cannot be identical because their fibre
structures differ. Since |∆| = |P| and, for each i, ∆i ⊆ ∆ and |∆i| = |P| − 1, it
follows that ∆ = ∆1 ∪∆2. Similar reasoning shows ∆(P) = ∆(P1) ∪∆(P2). The
induction hypothesis on |P| implies ∆i = ∆(Pi) for each i, so

∆ = ∆1 ∪∆2 = ∆(P1) ∪∆(P2) = ∆(P).

This reduces the problem to the case where every fibre in P has the same size, say
m.

Suppose m > 1. Let p be a point in P, let P ′ = P \ {p}, and let ∆′ be the delta
set the algorithm constructs for T (P ′). The fibre structures of ∆′ and P ′ agree, so
∆′ contains exactly one fibre of size m − 1, and ∆ is obtained from ∆′ by adding
one point to this fibre. Similarly, ∆(P ′) contains exactly one fibre of size m − 1,
and ∆(P) is obtained from ∆(P ′) by adding one point to this fibre. In each case,
the added point has m − 1 as its last coordinate. Using the induction hypothesis
on |P| we have ∆′ = ∆(P ′), so ∆ = ∆(P).

Finally, suppose m = 1. The structure theorem tells us

∆(P) = ∆(S)⊗ 1.

Note T (S) is obtained by discarding each leaf node from T (P). When m = 1, the
last coordinate of every point in ∆ is 0. A moment’s reflection about the algorithm
reveals that in this case, the last coordinate essentially plays no role when sets are
merged. To make this precise, let ∆′ denote the delta set the algorithm produces
for T (S). Then ∆ is obtained by appending a trailing 0 to each point in ∆′, i.e.,
∆ = ∆′⊗ 1. Since, by the induction hypothesis on n we have ∆′ = ∆(S), it follows
that ∆ = ∆(P). �

To complete Theorem 8, the following remains to be shown:

Lemma 9. The fibre structures of ∆ and P are identical.

Proof: The proof is by induction on |P|, with the case |P| = 1 being obvious.
Suppose the smallest fibre in P has sizem, and write P ′ for the set that results when
a point from such a fibre is discarded. Let ∆′ denote the delta set the algorithm
produces for T (P ′). By the induction hypothesis, ∆′ and P ′ have identical fibre
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structures. If m > 1, then ∆′ contains exactly one fibre of size m − 1. Since ∆
is produced by adding a point to this fibre, the fibre structures of ∆ and P are
identical. If m = 1, then ∆ contains one more fibre of size one than does ∆′, so
again the fibre structures of ∆ and P are identical. �
Corollary 10. Let ∆ be the delta set constructed by the algorithm for T (P). The
set {xα : α ∈ ∆} is the monomial basis for the vanishing ideal of P with respect to
the lexicographic order in R.

The algorithm provides a way, with respect to the lexicographic order, to calcu-
late the leading terms of each minimal Gröbner basis for I(P). Recall that c ∈ Nn

is co-minimal for the delta set D ⊆ Nn if it is a minimal element of Nn \D.

Corollary 11. Again let ∆ be the delta set constructed by the algorithm for T (P).
The set of leading terms of every minimal Gröbner basis for the vanishing ideal of
P, with respect to the lexicographic order, is given by

{xc : c is co-minimal for ∆}.

5. Decomposing polynomial systems and an example

In this section we first show how our structure theorem can be used to decom-
pose a system of equations into smaller systems, then illustrate the method with a
nontrivial example.

Let F be a perfect field, let I be a zero-dimensional radical ideal in F[x1, . . . , xn],

and let P be the solution set in F
n
. Suppose we have computed a Gröbner basis G

for I under an elimination order for xn. Let the distinct degrees of polynomials in
G in xn be m1 > · · · > mr > 0. For 1 ≤ i ≤ r, let Gi be the set

Gi = {ltxn(g) : g ∈ G and degxn(g) < mi} ⊆ F[x1, . . . , xn−1]. (6)

Let J1 = 〈G1〉, and for 2 ≤ i ≤ r let Ji be a Gröbner basis for the ideal quotient
(〈Gi〉 : 〈Gi−1〉). Recall that for two ideals I, J in R, (I : J) is defined to be

(I : J) = {h ∈ R : hg ∈ I for all g ∈ J}.

Theorem 12. For each 1 ≤ i ≤ r, Ji is a Gröbner basis for the points in S = π(P)
that are projections of fibres of size exactly mi.

Proof: By Theorem 6 the assertion is true for J1 = 〈G1〉, so assume i > 1. Each
Gi is a Gröbner basis for the points in S that are projections of fibres of size ≥ mi.
Note that each ideal 〈Gi〉 is radical and zero-dimensional, as are the ideal quotients
(〈Gi〉 : 〈Gi−1〉). The zeros of (〈Gi〉 : 〈Gi−1〉) are precisely the zeros of Gi that are
not zeros of Gi−1, i.e., the points in S that are projections of fibres of size exactly
mi. �

As an application of the above theorem, we consider an example from [19] con-
cerning Nash equilibrium. The example describes a game with three players named
Adam, Bob, and Carl. Each player has two pure strategies, and each plays his
strategies with particular probabilities. Let a (respectively, b and c) be the prob-
ability that Adam (respectively, Bob and Carl) plays his first strategy. Obviously,
1 − a is the probability Adam plays his second, and similarly for Bob and Carl.
The payoff for each player depends on the probabilities a, b, c via a payoff matrix.
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A vector (a, b, c) is called a Nash equilibrium if no player can increase his payoff
by changing his strategy (i.e., by changing the value of a, b, or c) while the other
players keep their strategies fixed. The problem is to find all Nash equilibria for
a given payoff matrix. Let x, y, and z denote the payoffs for Adam, Bob, and
Carl respectively. For the game in [19, Section 6.2], the variables a, b, c, x, y, z must
satisfy the following equations:

a[x− 6b(1− c)− 11(1− b)c− (1− b)(1− c)] = 0,

(1− a)[x− 6bc− 4b(1− c)− 6(1− b)c− 8(1− b)(1− c)] = 0,

b[y − 12ac− 7a(1− c)− 6(1− a)c− 8(1− a)(1− c)] = 0,

(1− b)[y − 10ac− 12a(1− c)− 8(1− a)c− (1− a)(1− c)] = 0,

c[z − 11ab− 11a(1− b)− 3(1− a)b− 3(1− a)(1− b)] = 0,

(1− c)[z − 14a(1− b)− 2(1− a)b− 7(1− a)(1− b)] = 0.

For a valid solution, a, b, and c must take values in the interval [0, 1], and the
expressions in square brackets above must be nonnegative. It is shown in [19] that
there are 16 solutions. We show below how Theorem 12 can be used to decompose
the above polynomial system into smaller ones.

Let I be the ideal in Q[a, b, c, x, y, z] generated by the six polynomials in the
above equations. By [19], I is in fact a zero-dimensional radical ideal. We compute
the reduced Gröbner basis for I under the lexicographic order with z > y > x >
c > b > a. The basis polynomials are listed below:

g1 = z − 9cba− 5cb− ca+ 4c+ 9ba+ 5b− 7a− 7,

g2 = y − 16cba+ 9cb+ 9ca− 7c+ 12ba− 7b− 11a− 1,

g3 = x+ 20cba− 4cb− 12ca+ 2c− 9ba+ 4b+ 7a− 8,

g4 = 45199440c2 + (−62777000b2 + 62777000b+ 579451165ab2 − 678659660a3

+478183955a− 1290811744ab− 45199440− 747553276a2b+ 146706560ba4

+288499641a2 − 88023936a4 + 278457899a2b2 + 1905583540a3b

−871834144b2a3)c− 293364085a− 202536477a2b2 − 1069473161a3b

−66017952ba4 − 523660995ab2 + 392507815a3 + 784474280ab

+351016833a2b+ 51347296a4 − 150491026a2 + 726197472b2a3,

g5 = (315b2 − 512a2b+ 512ab− 315b)c− 384a2b2 + 404ab2 − 245b2 + 512a2b

−532ab+ 245b,

g6 = 8112(a2 − a)c+ 3500a3 − 22232a2 + 144900b3a2 − 179025b3a− 13125b3

+67200b2a3 − 264260a2b2 + 230810ab2 + 23625b2 − 7700a3b+ 82864a2b

−74789ab− 10500b+ 18732a,
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g7 = 2075920b3 + (−3736656 + 3077199a3 − 3502876a2 + 1641573a)b2 +

(1660736− 3661514a3 + 2666801a2 − 221183a)b− 332185a3 + 1660925a2

−1328740a,

g8 = 5365293087(a2 − a)b− 2920910449088a5 + 2317354275384a4

−230893240320a7 + 1520311154688a6 + 18879018760a− 734785390742a3

+30044631318a2,

g9 = 92160a8 − 664704a7 + 1547888a6 − 1663252a5 + 886352a4 − 207367a3

+5255a2 + 3668a.

We see that x, y, z are completely determined by a, b, c, and g1, g2, g3 give the
interpolation polynomials, so we need only find all solutions (a, b, c). Consider the
elimination ideals

I1 = I ∩Q[a], I2 = I ∩Q[a, b], I3 = I ∩Q[a, b, c].

Since we used the lexicographic order with c > b > a, we automatically get a
Gröbner basis for each:

I1 = 〈g9〉 , I2 = 〈g7, g8, g9〉 , I3 = 〈g4, . . . , g9〉 .

We first decompose I2 using Theorem 12 under the projection (a, b) 7→ a. The
degrees of b in {g7, g8, g9} are 3 > 1 > 0, hence the fibre size of a zero a of I1 is
either 1 or 3. The zeros with fibre size 3 are determined by〈

a2 − a, g9
〉
=
〈
a2 − a

〉
,

hence the quotient ideal
(I1 :

〈
a2 − a

〉
) = 〈h9〉

where

h9 = g9/(a
2 − a)

= 92160a6 − 572544a5 + 975344a4 − 687908a3 + 198444a2 − 8923a− 3668

determines the zeros with fibre size 1. Therefore, the fibres in V (I2) of size 3 are
determined by

J1 =
〈
a2 − a, g7

〉
=
〈
a2 − a, h7

〉
,

where

h7 = g7 mod (a
2 − a)

= 2075920b3 + 1215896b2a− 3736656b2 − 1215896ba+ 1660736b.

The fibres of size 1 in V (I2) are determined by

J2 = 〈h9, h8〉

where

h8 =
g8

a2 − a
= 5365293087b− 230893240320a5 + 1289417914368a4

−1631492534720a3 + 685861740664a2 − 48923650078a− 18879018760.
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Therefore I3 is decomposed into two subsystems

I33 = 〈g4, g5, g6, J1〉 , I31 = 〈g4, g5, g6, J2〉

corresponding to the fibres in V (I2) of sizes 3 and 1 respectively.

To further decompose I31 and I33, we consider the projection (a, b, c) 7→ (a, b).
A Gröbner basis for I31 under the lexicographic order with c > b > a is

I31 = 〈h9, h8, h6〉

where

h6 = 75261732c+ 11664829440a5 − 65873451456a4 + 86189973480a3

−38220173498a2 + 3337199141a+ 790000183.

Since there is only one nonzero degree for c, I31 is not decomposable using Theorem
12. A Gröbner basis for I33 is

g31 = 1782c2 − 1782c− 235b2a− 1925b2 + 235ba+ 1925b,

g32 = 63(b2 − b)c+ 4b2a− 49b2 − 4ba+ 49b,

g33 = 70b3 + 41b2a− 126b2 − 41ba+ 56b,

g34 = a2 − a.

Here c has two nonzero degrees, so I33 can be decomposed. In fact, the (a, b) with
fibre size 2 are determined by〈

b2 − b, g33, g34
〉
=
〈
b2 − b, a2 − a

〉
,

with the corresponding equation for c being c2− c (= g31 modulo
〈
b2 − b, a2 − a

〉
),

and the (a, b) with fibre size 1 are determined by(
〈g33, g34〉 :

〈
b2 − b, a2 − a

〉)
=
〈
a2 − a, 70b+ 41a− 56

〉
,

with the corresponding c determined by 63c+ 4a− 49 = g32/(b2 − b).

Therefore the original polynomial system I is decomposed into three subsystems:〈
g1, g2, g3, c

2 − c, b2 − b, a2 − a
〉
,〈

g1, g2, g3, 63c+ 4a− 49, 70b+ 41a− 56, a
2 − a

〉
,

〈g1, g2, g3, I31〉 = 〈g1, g2, g3, h6, h8, h9〉 .

The first two systems are easy to solve: the first has 8 solutions and the second
two solutions. To further decompose the third system, one employs other tools, say
factoring the univariate polynomial

h9 = (12a− 7)(a− 4)(10a+ 1)(2a− 1)(384a
2 − 472a+ 131),

which gives 6 solutions. This gives all the 16 solutions for I.
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