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Gauss periods yield (self-dual) normal bases in finite fields, and these normal bases can
be used to implement arithmetic efficiently. It is shown that for a small prime power q

and infinitely many integers n, multiplication in a normal basis of Fqn over Fq can be
computed with O(n log n loglog n), division with O(n log2 n loglog n) operations in Fq ,
and exponentiation of an arbitrary element in Fqn with O(n2 loglog n) operations in Fq .

We also prove that using a polynomial basis exponentiation in F2n can be done with
the same number of operations in F2 for all n. The previous best estimates were O(n2)
for multiplication in a normal basis, and O(n2 log n log log n) for exponentiation in a
polynomial basis.
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1. Introduction

For a prime power q and an integer n ≥ 1, let Fqn be a finite field with qn elements.
A fundamental question for applications is how to do arithmetic fast in finite fields, i.e.
addition, multiplication, division, and exponentiation. A polynomial basis representation
of Fqn over Fq is of the form Fqn = Fq[x]/(f), where f ∈ Fq[x] is irreducible of degree n,
and every element of Fqn is represented by a polynomial in Fq[x] of degree less than n. In
such a representation, these four operations can be done with O(n), O(n log n loglog n),
O(n log2 n loglog n), and O(n2 log n loglog n log q) operations in Fq, respectively, with fast
multiplication (Karatsuba and Ofman, 1962; Schönhage and Strassen, 1971; Schönhage,
1977; see also Cantor, 1989; Cantor and Kaltofen, 1991), and repeated squaring. We
may always assume an exponent to be less than qn. Implementation reports are given
in Shoup (1993) and Von zur Gathen and Gerhard (1999,Section 9.7). Fast polynomial
factorization software is also discussed in Montgomery (1991) and Von zur Gathen and
Gerhard (1996).

Brickell et al. (1992) show that in a polynomial basis, exponentiation can be executed
with O(n/log n) multiplications in Fqn , thus O(n2 loglog n) operations in Fq; their al-
gorithm seems to require a preprocessing stage of about n multiplications in Fqn and
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storage for O(n/log n) elements from Fqn . For an arbitrary f , the preprocessing takes
O(n2 log n loglog n) operations in Fq. For q = 2 and for a sparse f , say with O(log n)
nonzero terms, squaring in Fqn can be done in O(n) operations in Fq, so that the pre-
processing takes O(n2 loglog n) operations in Fq. It is conjectured that sparse irreducible
polynomials exist; see Gao et al. (1999) for experiments with this type of polynomials.
Under this conjecture, the algorithm of Brickell et al. (1992) takes time O(n2 loglog n)
for exponentiation in F2.

Our main result of Section 2 is an exponentiation algorithm that works for an arbitrary
polynomial basis representation of F2n and uses O(n2 loglog n) operations in F2.

Another standard way of representing the elements in Fqn is using a normal basis
representation. For an integer n ≥ 1, an element α ∈ Fqn is normal over Fq if and only if
its conjugates α, αq, . . . , αqn−1

are linearly independent over Fq. When α is normal, the
basis (α, αq, . . . , αqn−1

) is the normal basis generated by α.
When Fqn is represented by a normal basis, the qth power of an element is just a cyclic

shift of its coordinates. Agnew et al. (1988), Stinson (1990) (for q = 2) and Von zur
Gathen (1991) showed that in any normal basis, exponentiation can be computed with
O(n/logq n) multiplications in Fqn for q small (compared with n), with a storage for
O(n/ log2

q n) elements of Fqn . The question is how to implement multiplication efficiently
under normal bases. Hardware implementations of large finite fields (Massey and Omura,
1986; Calmos, 1988; Onyszchuk et al., 1988; Rosati, 1989; Agnew et al., 1991, 1993)
exploit the symmetry in the multiplication table of a normal basis. In an attempt to
minimize hardware cost, Mullin et al. (1989) introduced optimal normal bases. For a
normal basis N = (α, αq, . . . , αqn−1

) of Fqn over Fq, the number of nonzero terms in the
n products ααqi

expressed in the basis N itself is at least 2n− 1. If it is equal to 2n− 1,
then N is called optimal. Under an optimal normal basis, hardware cost (i.e. the number
of cell connections) is minimized to 2n − 1 (for q = 2) in the designs used by Massey
and Omura (1986) and Onyszchuk et al. (1988). However, the total number of operations
in Fq required for one multiplication in Fqn is still about n2, and exponentiation in Fqn

needs about n3/ log n operations in Fq. Can we reconcile fast multiplication and division
with normal bases?

We answer this question affirmatively in Section 4, where fast arithmetic is imple-
mented in Fqn when represented by a normal basis generated by Gauss periods. In
this case, multiplication and division can be also done with O(n log n loglog n) and
O(n log2 n loglog n) operations in Fq, respectively. Thus, exponentiation in Fqn can be
done in O(n2 loglog n) operations in Fq when q is small. In their implementation, Von zur
Gathen and Nöcker (1997) found exponentiation under a suitable normal basis to be sig-
nificantly faster than that under a polynomial basis.

It is interesting to note that exponentiation of Gauss periods of type (n, k), as defined
below, can be done with O(n2) operations in Fq for small k and q. No storage is required
here. Experimental results indicate that Gauss periods are often primitive, or at least
have high multiplicative order, see Gao and Vanstone (1994) and Gao et al. (1998).
Von zur Gathen and Shparlinski (1998) show that Gauss periods of type (n, 2) have
order at least 2

√
2n−2.

In Section 3, we present some well-known properties of Gauss periods in a form that
is convenient for us. As a by-product, we determine explicitly the dual basis of a normal
basis generated by Gauss periods and give a simple necessary and sufficient condition for
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them to be self-dual; such results may be useful for other applications. The second main
result is the combination of fast arithmetic with Gauss periods in Section 4.

A summary of the main results of this paper follows.

• Exponentiation in F2n can be performed with O(n/ log n) multiplications in F2n

using polynomial basis.
• Multiplication and division in Fqn in normal basis representation given by certain

Gauss periods can be performed with O(n log n loglog n) and O(n log2 n loglog n)
operations in Fq, respectively.
• For a small q, exponentiation in Fqn can be done with O(n2 loglog n) operations in

Fq, with storage for O(n/ log2
q n) elements of Fqn .

• The dual basis of the normal basis generated by a Gauss period over Fq is given
explicitly.

2. Fast Exponentiation Using Polynomial Bases

The main result of this section is an exponentiation algorithm that works for an arbi-
trary power basis representation of F2n , and uses only O(n/ log n) multiplications in F2n .
The proof of this result requires some lemmas.

We rely on the following result of Brickell et al. (1992).

Fact 2.1. There is an algorithm with the following properties. It takes as input an
element g from an arbitrary semi-group G and a positive integer m. The algorithm
constructs a table of powers of g, using O(m) squarings in G. After this precomputation,
the algorithm will compute ge for any 0 ≤ e < 2m using an additional O(m/ log m)
multiplications in G.

We shall also need an efficient algorithm for modular composition: given polynomials
f, g, h ∈ K[x], compute g(h) mod f . Here, K is a field, and the degrees of g and h are
less than that of f .

Let ω be a feasible exponent of matrix multiplication, so that we can multiply two
n×n matrices using O(nω) arithmetic operations. Moreover, let M(n) be a bound on the
time required to multiply polynomials in F2[x] of degree less than n. Using the classical
polynomial multiplication algorithm, we can take M(n) = O(n2). Using Karatsuba’s
algorithm, we can take M(n) = O(nlog2 3). Using the asymptotically fastest algorithm
currently known, due to Schönhage and Strassen (1971) and Schönhage (1977), we can
take M(n) = O(n log n log log n).

The following result is due to Brent and Kung (1978).

Fact 2.2. For a field K and polynomials f, g, h ∈ K[x] with deg f = n and degrees
of g and h less than n, we can compute the modular composition g(h) mod f using
O(M(n)n1/2 + n(ω+1)/2) operations in K.

Using the classical algorithm, we can take ω = 3. For the proof of our main theorem,
we shall require ω < 3, which can be obtained using one of several algorithms; Strassen
(1969) algorithm, giving ω = log2 7, will suffice.

We will use modular composition as follows. Let K = F2. If h = x2m

mod f ∈ F2[x],
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then for any g ∈ F2[x], g2m ≡ g(h) mod f . Thus, for powers of 2, we can replace expo-
nentiation by modular composition.

We do not make any claims about the practicality of this algorithm; however, it does
not seem entirely impossible that it, or some variant of it, could lead to a practical
improvement.

Algorithm 2.3. (Exponentiation via modular composition)
Input: f, g ∈ F2[x] with deg f = n and deg g < n, and an exponent e with 0 ≤ e < 2n

Output: ge mod f

1. Set m = dn/ log2 ne, write e in base 2m as e =
∑`−1

i=0 ei2mi, where ` = dlog2 ne.
2. Run the precomputation stage of the algorithm in Fact 2.1 on inputs (g mod f) and

m.
3. For 0 ≤ i < `, compute gi = gei mod f , using the algorithm of Fact 2.1.
4. Compute h = x2m

mod f .
5. Now we compute c = ge mod f using the following Horner-like scheme.

c← 1
for i← `− 1 down to 0 do

c← c(h) mod f

c← c · gi mod f

Theorem 2.4. The algorithm works correctly as specified and uses O(n/ log n) multi-
plications in F2[x]/(f), plus additional time of O(nλ), where λ < 2 is a constant. In
particular, it runs in time O(n/ log n ·M(n)) for any choice of M(n) ≥ n.

Proof. Let f , g, and e be inputs and n = deg f . Each execution of c← c(h) mod f has
the effect of raising c to the power 2m, from which the correctness easily follows.

Step 2 takes time O(M(n)m), or O(M(n)n/ log n). Step 3 takes time O(M(n)`m/ log m),
or O(M(n)n/ log n). Using standard repeated squaring, step 4 takes time O(M(n)m), or
O(M(n)(n/ log n)). The running-time is dominated by ` modular compositions, which
cost in total time O((M(n)n1/2 + n(ω+1)/2) log n).

The running-time of the entire algorithm is then

O(M(n)n/ log n + n(ω+1)/2 log n).

Choosing any ω < 3 proves the theorem for an arbitrary M(n) ≥ n. If, however,
M(n) = Ω(n1+ε) for some constant ε > 0, we can attain the running-time bound of
O(M(n)n/ log n) with ω = 3. 2

We also prove the following, which is of interest when the exponent has small Hamming
weight (number of nonzero digits ei).

Theorem 2.5. Let ν(e) denote the number of 1-bits in e. The algorithm in Theorem 2.4
can be modified so that its running-time is

O(n1.85 + ν(e)n log n log log n).

Proof. We set m = dn1−αe for a constant α determined below. This takes time
O(M(n)m). In step 1, we simply compute g2i

mod f for 0 ≤ i < m. This takes time
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O(M(n)m). In step 2, we compute each gi using the precomputed values in step 1 in the
most obvious fashion. This takes in total time O(M(n)ν(e)). Steps 3 and 4 are as before.
Altogether, the algorithm runs in time

O(M(n)(n1−α + nα+1/2 + ν(e)) + n(ω+1)/2+α).

The theorem then follows by plugging in M(n) = O(n log n log log n) and ω < 2.376
(Coppersmith and Winograd, 1990), and optimizing the value of α (see also Kaltofen
and Shoup, 1998). 2

3. Normal Bases Generated by Gauss Periods

In this section, we discuss when Gauss periods generate normal bases in finite fields
and when the normal bases generated are self-dual.

Gauss periods were introduced by Gauss in 1796 to investigate when a regular polygon
can be constructed by ruler and compass (Gauss, 1801,Articles 343–366). Gauss periods
were originally defined in cyclotomic number fields. One can adapt the definition to any
finite Galois extension of fields, see Pohst and Zassenhaus (1989). Here we consider Gauss
periods over finite fields only.

Let r = nk + 1 be a prime not dividing q, and K the unique subgroup of order k of
the multiplicative group Z×r of Zr. Let K0, . . . ,Kn−1 be the cosets of K in Z×r . Since r
divides qnk − 1, there is a primitive rth root of unity β ∈ Fqnk . For 0 ≤ i < n, define

αi =
∑
a∈Ki

βa.

Then α0, α1, . . . , αn−1 are called Gauss periods of type (n, k) over Fq. It is easy to see
that a Gauss period of type (n, k) over Fq belongs to Fqn , and the set of Gauss periods
of type (n, k) does not depend on the particular choice of β as a primitive rth root of
unity.

Gauss periods have been used to construct normal bases in finite fields by Mullin et
al. (1989) and Ash et al. (1989). The texts by Menezes et al. (1993) and Jungnickel
(1993) present detailed discussions. Wassermann (1990) gives the exact condition for a
Gauss period of type (n, k) to form a normal basis for Fqn over Fq. We give a form of
Wasserman’s condition that is somewhat easier to handle computationally.

Theorem 3.1. Let r = nk + 1 be a prime not dividing q, e the index of the subgroup
generated by q in Z×r , K the unique subgroup of order k of Z×r , and β be a primitive rth
root of unity in Fqr . Then the Gauss period

α =
∑
a∈K

βa

is a normal element in Fqn over Fq if and only if gcd(e, n) = 1.

Proof. If two subgroups of a cyclic additive group have indices i1 and i2, then the
subgroup generated jointly by the two has index gcd(i1, i2). For the two subgroups K
and 〈q〉 of Z×r of indices n and e, respectively, this means that

gcd(e, n) = 1 ⇐⇒ Z×r = 〈q,K〉.
The latter condition is equivalent to α being normal over Fq (see Wassermann, 1990, or
Wassermann, 1993, Theorem 3.1.3). 2
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We say that a pair (n, k) is admissible for q if r = nk +1 is a prime not dividing q and
gcd(e, n) = 1, where e is the index of q modulo r. When q is understood, we simply say
that (n, k) is admissible, and also that k is admissible for n. The condition gcd(e, n) = 1
can be easily verified, without actually calculating e, by checking that qnk/` 6≡ 1 mod r
for every prime divisor ` of n, since

gcd(e, n) = 1⇐⇒ ∀`|n ` - e⇐⇒ ∀`|n qnk/` 6≡ 1 mod r.

Theorem 3.1 suggests that to construct a normal basis in Fqn over Fq we just need to
find k such that (n, k) is admissible for q. Then Gauss periods of type (n, k) will suffice.
For this algorithm to be efficient, we need to know the size of smallest such k. In general,
we do not know how to get a good upper bound. However assuming the extended Riemann
hypothesis, Bach and Shallit (1989) and Adleman and Lenstra (1986) prove that for all
prime p and positive integer n with p - n, there is an integer k ≤ cn3(log(np))2 such that
(n, k) is admissible for p.

When n is divisible by p, there may not exist any admissible k. Wassermann (1993)
proved that, for q = pm and a positive integer n, there is an admissible k for n and q if
and only if

gcd(n, m) = 1, 2p - n if p ≡ 1 (mod 4), and 4p - n if p ≡ 2, 3 (mod 4).

We should also remark that for q = 2, if either 8|n, or 4|n and 2|k, or 2|n and 4|k, then
(n, k) is never admissible for q, since if 8|(r − 1) then 2 is a quadratic residue modulo r.

In the remainder of this paper, we assume that (n, k) is admissible and r = nk + 1.
We fix the order of Gauss periods as follows. For i ≥ 0, we define

Ki = {aqi : a ∈ K} ⊆ Z×r , αi =
∑
a∈Ki

βa. (3.1)

Then K0 = K and α0 = α. Since Ki = Ki−1q = Kqi, we have αi = αq
i−1 = αqi

. Then
(α0, α1, . . . , αn−1) is a normal basis for Fqn over Fq.

To do arithmetic in Fqn , we need to know the products αiαj expressed again in the
basis (α0, α1, . . . , αn−1). For 0 ≤ j, h < n, let tjh be the number of elements a ∈ Kj such
that 1 + a ∈ Kh, i.e.

tjh = |(1 +Kj) ∩ Kh|. (3.2)

In the theory of cyclotomy (Storer, 1967), the tjh are called cyclotomic numbers. Let
j0 < n be the unique index such that −1 ∈ Kj0 . If k is even then j0 = 0, and if k is odd
then j0 = n/2. For 0 ≤ j < n, let

δj =
{

0 if j 6= j0,
1 if j = j0.

Lemma 3.2. For 0 ≤ i, j < n,(∑
a∈K

xaqi

)(∑
b∈K

xbqj

)
≡ kδj−i +

∑
0≤h<n

tj−i h

(∑
a∈K

xaqi+h

)
mod Φr, (3.3)

where Φr = (xr − 1)/(x − 1) is the rth cyclotomic polynomial, and the subscripts of δ
and t are reduced modulo n.
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Proof. Since xr ≡ 1 mod Φr, if a ≡ b mod r then xa ≡ xb mod Φr. Therefore(∑
a∈K

xaqi

)(∑
b∈K

xbqj

)
≡
∑

a,b∈K

xaqi+bqj

≡

( ∑
a,b∈K

xa(1+bqj−i)

)qi

mod Φr.

For each b ∈ K, either 1 + bqj−i ≡ 0 mod r, or 1 + bqj−i ∈ Kh for a unique h with
0 ≤ h < n. If 1 + bqj−i ≡ 0 mod r then∑

a∈K
xa(1+bqj−i) ≡ k mod Φr.

If 1 + bqj−i ∈ Kh, then ∑
a∈K

xa(1+bqj−i) ≡
∑
a∈K

xaqh

mod Φr.

Thus, (3.3) follows from a direct counting when b runs through K. 2

Since β is a root of Φr, by replacing x by β in the above lemma, the next result follows
immediately.

Theorem 3.3. For any 0 ≤ i, j < n,

αiαj = kδj−i +
∑

0≤h<n

tj−i hαh+i =
∑

0≤h<n

(tj−i h − kδj−i)αh+i. (3.4)

Since 1 + Kj has k nonzero elements if j 6= j0 and k − 1 if j = j0, there are at most k
nonzero tjh for any j. So the n products ααj have at most nk nonzero terms, including
the k in ααj0 . In practice, one should store the matrix (tjh) sparsely when k is small.

When k = 1, or k = 2 and q = 2, the normal bases generated by Gauss periods are
optimal, see Mullin et al. (1989) and Menezes et al. (1993, Chapter 5). Gao and Lenstra
Jr. (1992) determined all optimal normal bases for all Galois extensions of an arbitrary
field, in particular all optimal normal bases in finite fields come from Gauss periods with
k = 1 or k = 2.

Since self-dual bases are useful in implementing finite fields (Berlekamp, 1982; Geisel-
mann and Gollmann, 1989; Wang, 1989; Jungnickel, 1993), we next determine when
normal bases formed by Gauss periods are self-dual.

Let (γ1, γ2, . . . , γn) and (δ1, δ2, . . . , δn) be two bases for Fqn over Fq. They are said to
be dual to each other if T (γiδj) is 0 when i 6= j, and 1 when i = j, where T denotes the
trace function from Fqn to Fq, with T (A) = A + Aq + · · ·+ Aqn−1

for A ∈ Fqn . For any
basis there is a unique dual basis. If a basis is dual to itself, we say that it is self-dual.
We now determine the dual basis of the normal basis generated by a Gauss period.

Theorem 3.4. Let αi, j0 be as in Theorem 3.3, and γ = (αj0−k)/r. Then the dual basis
of (α0, α1, . . . , αn−1) is (γ, γq, . . . , γqn−1

).

Proof. T is a linear functional over Fq, and T (αi) = −1 for 0 ≤ i < n. Theorem 3.3
implies that for all 0 ≤ i, j < n, T (γqi

αj) is 0 if i 6= j, and is 1 if i = j. 2

Corollary 3.5. For n > 2, a normal basis of Gauss periods of type (n, k) over Fq is
self-dual if and only if k is even and divisible by the characteristic of Fq.



886 S. Gao et al.

Proof. We know that

γ = (αj0 − k)/r =
1
r

αj0 +
∑

0≤l<n

k

r
αl.

Since n > 2 and the representation is unique, it is obvious that γ = α if and only if
j0 = 0 and k is divisible by the characteristic of Fq. Note that j0 = 0, i.e. −1 ∈ K, if and
only if k is even. 2

When q = 2, a different form of the above result appears in Ash et al. (1989) and
Theorem 5.1.5 of Jungnickel (1993). Lempel and Weinberger (1988) showed that Fqn has
a self-dual normal basis over Fq if and only if either n is odd or n ≡ 2 mod 4 and q is
even.

4. Fast Arithmetic Using Normal Bases

In this section, we show how multiplication, division and exponentiation can be done
efficiently in finite fields represented under normal bases generated by Gauss periods.

Theorem 4.1. Suppose that Fqn is represented by a normal basis over Fq generated by
a Gauss period of type (n, k). Then multiplication in Fqn can be computed with O(nk
log(nk) loglog(nk)), division with O(nk log2(nk) loglog(nk)) and exponentiation with
O(n2k log(k) loglog(nk)) operations in Fq, for exponents less than qn and small q, say
q5 ≤ n. Exponentiation requires storage for O(n/ log2

q n) elements of Fqn .

Proof. We may assume that we have α, β, αi,Ki for 0 ≤ i < n as in Section 3. Then
(α0, α1, . . . , αn−1) is the normal basis for Fqn over Fq generated by Gauss periods of type
(n, k). Let

A =
∑

0≤i<n

aiαi, B =
∑

0≤i<n

biαi ∈ Fqn , with ai, bi ∈ Fq,

be arbitrary elements of Fqn . We want to compute C = A · B =
∑

0≤i<n ciαi where
ci ∈ Fq.

For A =
∑

0≤i<n aiαi ∈ Fqn , we have

A =
∑

0≤i<n

ai

∑
j∈Ki

βj =
∑

1≤j≤nk

a′jβ
j ,

where a′j = ai if j ∈ Ki. Let R = Fq[x]/(Φr) and ξ = x mod Φr ∈ R, where Φr =
(xnk+1 − 1)/(x− 1) = xnk + · · ·+ x + 1 ∈ Fq[x] is the rth cyclotomic polynomial. Then
R has two bases (1, ξ, . . . , ξnk−1) and (ξ, ξ2, . . . , ξnk) over Fq, and it is easy to go from
one basis to another:∑

0≤i<nk

aiξ
i = (−a0)ξnk +

∑
1≤i<nk

(ai − a0)ξi,
∑

1≤i≤nk

aiξ
i =

∑
0≤i<nk

(ai − ank)ξi.

Thus the elements in R can be viewed as polynomials of degree at most nk − 1, or
polynomials of degree at most nk with constant coefficient zero. We define a map ϕ :
Fqn −→ R by

ϕ(A) =
∑

1≤j≤nk

a′jξ
j ∈ R.
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Obviously ϕ is injective and additive. We have ϕ(αi) =
∑

a∈K ξaqi

for 0 ≤ i < n, and

ϕ(b) = b for b ∈ Fq. By Theorem 3.3, ϕ(αiαj) = kδj−i +
∑

0≤h<n tj−i h

(∑
a∈K ξaqi+h

)
.

It follows from Lemma 3.2, replacing x by ξ, that ϕ(αiαj) = ϕ(αi)ϕ(αj) for 0 ≤ i, j < n.
So ϕ is multiplicative, hence a ring homomorphism. Furthermore, ϕ(Fqn) is equal to the
subring

R′ = {c1ξ + · · ·+ cnkξnk ∈ R: c1, . . . , cnk ∈ Fq and cj = cj′ for j, j′ ∈ Ki, 0 ≤ i < n}

of R. Thus ϕ(A) is invertible in R for every nonzero A ∈ Fqn .
To compute C = A · B ∈ Fqn , we first multiply, by fast multiplication algorithms of

Schönhage and Strassen (1971) and Cantor and Kaltofen (1991), the two polynomials
ϕ(A), ϕ(B) of degree at most nk, using O(nk log(nk) loglog(nk)) operations in Fq. Then
we reduce all exponents of the product polynomial modulo r, in effect reducing it modulo
xr − 1. Finally, we reduce the result modulo Φr, by replacing the constant coefficient c0

by −c0

∑
1≤i≤nk ξi, to obtain C̃ ∈ R. Then C̃ =

∑
1≤i≤nk c′iξ

i = ϕ(A)ϕ(B) ∈ R′. For
0 ≤ i < n, let ci = c′j for j ∈ Ki. Then C = ϕ−1(C̃) =

∑
0≤i<n ciαi. This shows that

A ·B can be computed in O(nk log(nk) log log(nk)) operations in Fq.
We now focus on the division of A, B ∈ Fqn , B 6= 0. We can first compute B−1 and

then compute A · B−1. To compute B−1, note that ϕ(B) ∈ R is invertible, i.e. ϕ(B) is
relatively prime to Φr. Applying the fast extended Euclidean algorithm (see Aho et al.,
1974,Section 8.9) to Φr and ϕ(B), we can find B1, the inverse of ϕ(B) in R′, as above
in O(nk log2(nk) log log(nk)) operations in Fq. Then ϕ−1(B1) ∈ Fqn is the inverse of B.

Agnew et al. (1988), Stinson (1990) (for q = 2) and Von zur Gathen (1991) showed
that exponentiation in a normal basis, where qth powers are computed for free, can be
done with O(n/logq n) multiplications in Fqn , and storage for O(n/ log2

q n) elements of
Fqn . The last result assumes that q5 ≤ n. (Under more specific assumptions, say q ≥ 3
or n ≥ 626, the constants in this estimate are calculated explicitly, and asymptotic
optimality of this algorithm, in an appropriate model, is proven.) 2

Corollary 4.2. Suppose that k and q are bounded and that Fqn is represented by the
normal basis generated by Gauss periods of type (n, k) over Fq. Then multiplication in
Fqn can be computed with O(n log n loglog n), division with O(n log2 n loglog n), and ex-
ponentiation with O(n2 loglog n) operations in Fq, for exponents less than qn and small q.

For any k and q, Von zur Gathen and Pappalardi (1995) proved that there are infinitely
many n such that Fqn have normal bases generated by Gauss periods of type (n, k) over
Fq.

Remark. A preliminary version of part of this paper appeared in Proceedings of Latin’95,
Valparáıso, Chile, LNCS 911 (1995), 311–322.
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