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ABSTRACT
In this paper, we present a new algorithm for computing
Gröbner bases. Our algorithm is incremental in the same
fashion as F5 and F5C. At a typical step, one is given a
Gröbner basis G for an ideal I and any polynomial g, and it
is desired to compute a Gröbner basis for the new ideal 〈I, g〉,
obtained from I by joining g. Let (I : g) denote the colon
ideal of I divided by g. Our algorithm computes Gröbner
bases for 〈I, g〉 and (I : g) simultaneously. In previous algo-
rithms, S-polynomials that reduce to zero are useless, in fact,
F5 tries to avoid such reductions as much as possible. In our
algorithm, however, these “useless” S-polynomials give ele-
ments in (I : g) and are useful in speeding up the subsequent
computations. Computer experiments on some benchmark
examples indicate that our algorithm is much more efficient
(two to ten times faster) than F5 and F5C.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic Algorithms; F.2.1 [Analysis of Algo-
rithms and Problem Complexity]: Numerical Algorithms
and Problems—Computations on Polynomials

Keywords
Gröbner basis, Buchberger’s Algorithm, Colon ideal, F5 Al-
gorithm

1. INTRODUCTION
In Buchberger’s algorithm (1965, [1, 2, 3]), one has to re-

duce many “useless” S-polynomials (i.e. those that reduce to
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0 via long division), and each reduction is time consuming.
Faugère (1999, [9]) introduced a reduction method (F4) that
can efficiently reduce many polynomials simultaneously; see
also Joux and Vtse (2010, [11]) for a recent variant of F4.
Lazard (1983, [13]) pointed out the connection between a
Gröbner basis and linear algebra, that is, a Gröbner basis
can be computed by Gauss elimination of Macaulay matri-
ces (1902, [14]). This idea is implemented as XL type algo-
rithms by Courtois et al. (2000,[5]), Ding et al. (2008, [7]),
Mohammed et al. (2008–2009, [15, 16]), and Buchman et al.
(2010, [4]). The linear algebra approach can be viewed as
a fast reduction method. The main problem with these ap-
proaches is that the memory usage grows very quickly, and
in practice the computation for even a small problem can
not be done simply due to memory running out.

Faugère (2002, [10]) introduced the idea of signatures and
rewriting rules that can detect many useless S-polynomials
hence saving a significant amount of time that would be
used in reducing them. By computer experiments, Faugère
showed that his algorithm F5 is many times faster than pre-
vious algorithms. However, F5 seems difficult to both under-
stand and implement. Eder and Perry (2009, [8]) simplified
some of the steps in F5 and gave a variant called F5C which
is almost always faster than F5. We should note that Sun
and Wang (2009, [17]) also give a new proof and some im-
provement for F5.

Our main purpose of the current paper is to present a
new algorithm that is both simpler and more efficient than
F5 and F5C. Our algorithm is incremental just like F5 and
F5C. Let F be any field and R = F[x1, · · · , xn]. Fix an ar-
bitrary monomial order on R. At a typical iterative step, a
Gröbner basis G for an ideal I in R is already computed, and
it is desired to compute a Gröbner basis for the new ideal
〈I, g〉 for a given polynomial g ∈ R. In F5, the basis G may
not be reduced, thus containing many redundant polynomi-
als. F5C is the same as F5 except that G is replaced by a
reduced Gröbner basis in the next iterative step. Our algo-
rithm will use a reduced Gröbner basis G as in F5C, but the
crucial difference is that we introduce a so-called “super top-
reduction” to detect “useless” polynomials. Furthermore, if
there happens to be a polynomial that reduces to 0, it will be
used to detect more “useless” polynomials. Hence reduction
to 0 in our algorithm is not “useless” at all. In fact, it gives
us a polynomial in the colon ideal

(I : g) = {u ∈ R : ug ∈ I}. (1)

It is of independent interest to have an efficient algorithm for
computing Gröbner bases for colon ideals of the form (I : g),



as it is a routine repeatedly used in primary decomposition,
especially in separating components of different dimensions.

In Section 2, we shall present a relation between the Gröb-
ner bases of 〈I, g〉 and (I : g). This is based on the exact
sequence of R-modules:

0 −→ R/(I : g) −→ R/I −→ R/〈I, g〉 −→ 0

where the second morphism is defined by multiplication by
g, which is injective by the definition in (1), and the third
is the canonical morphism. The exactness of the sequence
implies that

dimF(R/I) = dimF(R/〈I, g〉) + dimF(R/(I : g)). (2)

For an arbitrary ideal I, we show in Section 2 how to compute
F-linear bases for all of these vector spaces from a given
Gröbner basis for I. In particular, we have the following
result.
Theorem. Suppose I is a zero-dimensional ideal in R =
F[x1, · · · , xn]. Let N = dimF(R/I) (which is equal to the
number of common solutions of I over the algebraic closure
of F, counting multiplicities). Then, given a Gröbner basis
for I (under any monomial order) and a polynomial g ∈ R,
Gröbner bases for 〈I, g〉 and (I : g) can be computed deter-
ministically using O((nN)3) operations in F.

The time complexity claimed by the theorem is of interest
only when N is small compared to n (say N = nO(1)). For
when N is large or ∞, we introduce an enhanced algorithm
in Section 3. We shall define regular top-reductions and su-
per top-reductions, as well as J-polynomials and J-signatures
for any pair of polynomials. A J-polynomial means the joint
of two polynomials, which is different from an S-polynomial
but plays a similar role. Our algorithm is very similar to
Buchberger’s algorithm, where we replace S-polynomials by
J-polynomials and “reduction” by “regular top-reduction”.
There are, however, two new features: (a) a super top-
reduction is introduced to detect a useless J-polynomial, and
(b) each reduction to zero gives a polynomial in (I : g) and is
subsequently used in detecting future useless J-polynomials.
We have implemented the resulting algorithm in Singular. In
Section 4, we present some comparisons with F5 and F5C.
Our computer experiments on several benchmark examples
show that the new algorithm is more efficient, often two to
ten times faster than F5 and F5C.

2. THEORY
We give a computational proof for the correspondence of

linear bases for the equation (1) and the theorem mentioned
in the previous section. The proof itself is more important
than the theorem for our algorithm presented in the next
section.

Let I be an arbitrary ideal in R = F[x1, . . . , xn] and g any
polynomial in R. Suppose we know a Gröbner basis G for I
with respect to some monomial order ≺. Then we can find
the standard monomial basis for R/I:

B(I) = {xα1 = 1, xα2 , . . . , xαN } ,

that is, B(I) consists of all the monomials that are not re-
ducible by LM(I).1 Then B(I) is a linear basis for R/I over
F. We assume the monomials in B(I) are ordered in increas-
ing order, that is, xαi ≺ xαj whenever i < j. Please note

1We say that a polynomial f is reducible by a set of poly-
nomials G if LM(f) is divisible by LM(g) for some g ∈ G.

that when I is not 0-dimensional, N is ∞ and it is possible
that there are infinitely many monomials between some two
monomials in B(I) (especially for lex order). The following
proof is for an arbitrary ideal I.

Suppose0BBB@
xα1

xα2

...
xαN

1CCCA · g ≡

0BBB@
h1(x)
h2(x)

...
hN (x)

1CCCA (mod G) (3)

= A(xα1 , xα2 , . . . , xαN )T , (4)

where hi ∈ spanF(xα1 , . . . , xαN ), 1 ≤ i ≤ N , that is, each
hi is the normal form of xαi · g mod G, and A ∈ FN×N is
a matrix with the ith row representing the coefficients of hi,
1 ≤ i ≤ N .

Note the matrix A in (4) has an important property that is
useful for finding points (or solutions) of the algebraic variety
defined by the ideal I. In fact, when I is zero-dimensional,
the eigenvalues of A correspond to the values of the polyno-
mial g when evaluated at the points in the variety of I (and
the corresponding eigenvectors are determined by the points
alone, independent of g); for more details see Chapter 2 in
[6].

Now apply the following row operations to both sides of
(3) (equivalently (4)):

(R1) for 1 ≤ i < j ≤ N and a ∈ F, subtract from the jth row
by the ith row multiplied by a (i.e. Aj := Aj − aAi),

(R2) for a ∈ F with a 6= 0, multiply the ith row by a.

This means that we only apply row operations downward
as one would perform Gauss elimination (to equation (4))
to get a triangular matrix. For example, suppose xβ is the
leading monomial of h1(x). We can use h1(x) to eliminate
the term xβ in all hj(x), 2 ≤ j ≤ N . In fact, we only
need to eliminate it if it’s the leading term. Then continue
with the leading monomial of the resulting h2(x) and so on.
Since a monomial order is a well ordering, there is no infinite
decreasing sequence of monomials, hence each hi(x) needs
only be reduced by finitely many rows above it (even if there
are infinitely many rows about the row of hi(x)). Therefore,
using downward row operations, the right hand side of (3)
can be transformed into a quasi-triangular form, say0BBB@

u1(x)
u2(x)

...
uN (x)

1CCCA · g ≡
0BBB@

v1(x)
v2(x)

...
vN (x)

1CCCA (mod G), (5)

where ui(x) and vi(x) are in spanF(xα1 , . . . , xαN ), and for
each 1 ≤ i, j ≤ N with vi(x) 6= 0 and vj(x) 6= 0, we have
LM(vi(x)) 6= LM(vj(x)), i.e. the nonzero rows of the right
hand side have distinct leading monomials.

Since row operations are downward only, and the B(I) are
written in increasing order, we have that each ui(x) is monic
and

LM(ui(x)) = xαi , 1 ≤ i ≤ N.

Let

G0 = G ∪ {ui(x) : 1 ≤ i ≤ N with vi(x) = 0}, and

G1 = G ∪ {vi(x) : 1 ≤ i ≤ N}.



Certainly, G1 ⊆ 〈I, g〉 and G0 ⊆ (I : g) (as ui(x) · g ∈ I
whenever vi(x) = 0). We prove the following:

(a) G0 is a Gröbner basis for (I : g), and

(b) G1 is a Gröbner basis for 〈I, g〉.

Since (5) is obtained from (3) by downward row operations,
there is an upper triangular nonsingular matrix M ∈ FN×N
(with each row containing only finitely many nonzero entries)
such that

(u1(x), . . . , uN (x))T = M (xα1 , . . . , xαN )T ,

and

(v1(x), . . . , vN (x))T = M (h1(x), . . . , hN (x))T .

Even though N could be infinite, M does have an inverse
M−1 with each row containing only finitely many nonzero
entries. For any w(x) ∈ R/I, we can write it as

w(x) =
NX
i=1

wix
αi , wi ∈ F, (6)

where there are only finitely many nonzero wi’s. Let

(c1, . . . , cN ) = (w1, . . . , wN )M−1 ∈ FN .

Note that the vector (c1, . . . , cN ) contains only finitely many
nonzero entries, as it is a linear combination of finitely many
rows of M−1. Then we have

w(x) = (w1, . . . , wN )M−1M(xα1 , . . . , xαN )T

= (c1, . . . , cN )(u1(x), . . . , uN (x))T ,

i.e.

w(x) =

NX
i=1

ciui(x), (7)

and

w(x) · g = (w1, . . . , wN )(xα1 , . . . , xαN )T · g
≡ (w1, . . . , wN )M−1M(h1(x), . . . , hN (x))T

= (c1, . . . , cN )(v1(x), . . . , vN (x))T ,

i.e.

w(x) · g ≡
NX
i=1

civi(x) (mod G). (8)

For (a), to prove that G0 is a Gröbner basis for (I : g), it
suffices to show that each f ∈ (I : g) can be reduced to zero
by G0 via long division. Indeed, for any f ∈ (I : g), since G
is a Gröbner basis, f can be reduced by G to some w(x) as
in (6). Then, by (7) and (8), we have

f ≡ w(x) ≡
NX
i=1

ciui(x) (mod G),

and

f · g ≡ w · g ≡
NX
i=1

civi(x) (mod G).

As f ∈ (I : g), we have f · g ∈ I, so f · g ≡ 0 (mod G).

This implies that
PN
i=1 civi(x) = 0, hence ci = 0 whenever

vi(x) 6= 0, as the nonzero vi(x)’s have distinct leading mono-
mials. Thus

f ≡ w(x) ≡
X
ui∈G0

ciui(x) (mod G). (9)

This implies that f can be reduced to 0 by G0 via long
division. Therefore, G0 is a Gröbner basis for (I : g).

For (b), for any f ∈ 〈I, g〉, there exists w(x) of the form
(6) such that

f ≡ w(x) · g (mod G).

By (8),

f ≡ w(x) ·g ≡
NX
i=1

civi(x) =
X

vi(x)6=0

civi(x) (mod G). (10)

Hence f can be reduced to 0 by G ∪ {vi(x) : 1 ≤ i ≤ N}
via long division. This shows that G1 is a Gröbner basis for
〈I, g〉.

Now we explicitly describe B(I : g) and B(〈I, g〉), the stan-
dard monomial bases for R/(I : g) and R/〈I, g〉, respectively.
We first show that

B(I : g) = {xαj : 1 ≤ j ≤ N and vj(x) 6= 0}. (11)

Since I ⊆ (I : g), we have

B(I : g) ⊆ B(I) = {xα1 , . . . , xαN }.

Recall that LM(uj(x)) = xαj , 1 ≤ j ≤ N . For each 1 ≤
j ≤ N , if vj(x) = 0, then uj(x) ∈ G0, so xαj 6∈ B(I : g).
If vj(x) 6= 0, we claim that there is no f ∈ (I : g) such
that LM(f) = xαj . Suppose otherwise. Then f ≡ w(x)
(mod G) for some w(x) as in (6) and LM(w(x)) = LM(f) =
xαj . By (9), xαj must be equal to the leading monomial of
some ui(x) ∈ G0, hence uj(x) ∈ G0. This contradicts the
assumption that vj(x) 6= 0. Hence (11) holds.

Next we claim that

B(〈I, g〉) = B(I) \ {LM(vi(x)) : 1 ≤ i ≤ N}. (12)

This holds, as the equation (10) implies that the leading
monomial of any f ∈ 〈I, g〉 is either divisible by LM(G) or
equal to some LM(vi(x)), where vi(x) 6= 0, 1 ≤ i ≤ N .

Now back to the proof of the theorem. The equation
(2) follows from the equations (11) and (12), as the lead-
ing monomials of the nonzero vi(x) are distinct and are
contained in B(I). When I is zero-dimensional, the nor-
mal forms hi(x) in (3) can be computed in time cubic in
nN , say by using the border basis technique [12], and Gauss
elimination also needs cubic time. Hence the claimed time
complexity follows.

Finally, we make a few observations concerning the above
proof. They will be the basis for our algorithm below.

• LM(ui(x)) = xαi , so ui is not divisible by LM(G), for
all 1 ≤ i ≤ N . The monomial xαi is an index for
the corresponding row in (3), which will be called a
signature.

• For any i with vi(x) 6= 0, LM(ui(x)) is not divisible by
LM(G0). This follows from (11).

• In the process of computing the Gröbner bases, when-
ever we get some u · g ≡ 0 (mod G), we add u to G0.
So we never need to consider any u′ such that LT(u′)
is divisible by LT(u).



• Both G0 and G1 have many redundant polynomials.
We do not want to store most of them.

We need to decide which rows to store and how to perform
row operations while many rows are missing. In the next
section, we shall introduce regular top-reductions to emulate
the row operations above and super top-reductions to detect
rows that need not be stored.

3. ALGORITHM
Our algorithm computes a Gröbner basis for (I : g) in the

process of computing a Gröbner basis for 〈I, g〉. The Gröbner
basis for (I : g) is stored in the list H in the algorithm
described in figure 1. If one does not need a Gröbner basis
for (I : g), one is free to retain only the leading monomials of
H. This improves efficiency when only the Gröbner basis for
〈I, g〉 is required. We provide Singular code for this version
at http://www.math.clemson.edu/∼sgao/code/g2v.sing.

Let R = F[x1, · · · , xn] with any fixed monomial order ≺ as
above. Let G = {f1, f2, . . . , fm} be any given Gröbner basis
for I and let g ∈ R. Consider all pairs (u, v) ∈ R2 satisfying

ug ≡ v (mod G). (13)

Certainly, G ⊂ 〈I, g〉 and G ⊂ (I : g). That is, we have the
trivial solutions (f1, 0), (f2, 0), . . . , (fm, 0) and

(0, f1), (0, f2), . . . , (0, fm). (14)

The first nontrivial solution for (13) is (1, g).
We need to introduce a few concepts before proceeding.

For any pair (u, v) ∈ R2, LM(u) is called the signature
of (u, v). We make the convention that LM(0) = 0. Our
definition of signature is similar in purpose to that of Faugère
[10]. To simulate the row operation (R1), we introduce the
concept of regular top-reduction. Our regular top-reduction
is similar to the top-reduction used by Faugère [10], but our
use of super top-reduction below seems to be new. We say
that (u1, v1) is top-reducible by (u2, v2) if

(i) LM(v2) | LM(v1), and

(ii) LM(tu2) � LM(u1) where t = LM(v1)

LM(v2)
.

The corresponding top-reduction is then

(u1, v1)− ct(u2, v2) ≡ (u1 − ctu2, v1 − ctv2) (mod G),

where c = LC(v1)/LC(v2). The effect of a top-reduction
is that the leading monomial in the v-part is canceled. A
top-reduction is called super, if

LM(u1 − ctu2) ≺ LM(u1),

that is, the leading monomial in the u-part is also canceled.
A super top-reduction happens when

LM(tu2) = LM(u1) and
LC(u1)

LC(u2)
=

LC(v1)

LC(v2)
.

A top-reduction is called regular if it is not super. The
signature is preserved by regular top-reductions, but not by
super top-reductions.

In our algorithm, we only perform regular top-reductions.
We also keep all the u monic (or 0 for trivial solutions).
Hence, for each regular top-reduction of (u1, v1) by (u2, v2)
where u1 and u2 are monic, we perform the following steps:

• u := u1 − ctu2, and v := v1 − ctv2 where t = LM(v1)

LM(v2)

and c = LC(v1)/LC(v2);

• if LM(u1) = tLM(u2) then u := u/(1 − c) and v :=
v/(1− c);

• u := Normal(u, G) and v := Normal(v, G), the normal
forms of u and v modulo G.

Note that, if LM(u1) = tLM(u2) and c = 1, then (u1, v1) is
super top-reducible by (u2, v2). We never perform super top-
reductions in our algorithm. In the case that (u1, v1) is not
regular top-reducible by other pairs known but is super top-
reducible, we discard the pair (u1, v1), which corresponds to
a row in the equation (5) that needs not be stored (in this
case v1 is redundant in G1).

Now we introduce a new concept of so-called J-pair for
any two pairs of polynomials. Initially, we have the trivial
solution pairs in (14) and the pair

(1, v), where v = Normal(g, G), assuming v 6= 0.

We find new solution pairs that are not top-reducible by
the known pairs, hence must be stored. For any monomial t,
consider the pair t(1, v). If t(1, v) is not top-reducible by any
(0, f) where f ∈ G, then t(1, v) mod G is super top-reducible
by (1, v), hence we don’t need to store this pair. However,
if t(1, v) top-reducible by some (0, f) where f ∈ G, then the
new pair after reduction by (0, f) may not be top-reducible
by (1, v) any more, hence it must be stored. This means we
find the smallest monomial t so that the pair t(1, v) is top-
reducible by some (0, f). This can happen only if tLM(v) is
divisible by LM(f) for some f ∈ G. Hence t should be such
that tLM(v) = lcm(LM(v), LM(f)). We consider all these t
given by f ∈ G. More generally, suppose we have computed
a list of solution pairs

(u1, v1), (u2, v2), . . . , (uk, vk), (15)

including the pairs in (14). We consider all pairs t(ui, vi),
1 ≤ i ≤ k, that may be top-reducible by some pair in (15).
The t must come from lcm(LM(vi), LM(vj)) for some j 6= i.
This leads us to the concept of a joint pair from any two
pairs as defined below.

Let (u1, v1) and (u2, v2) be two pairs of polynomials with
v1 and v2 both nonzero. Let

lcm(LM(v1), LM(v2)) = t, t1 =
t

LM(v1)
, t2 =

t

LM(v2)
.

Find max(t1LM(u1), t2LM(u2)), say equal to tiLM(ui). Then

• tiLM(ui) is called the J-signature of the two pairs;

• tivi is called the J-polynomial of the two pairs;

• ti(ui, vi) = (tiui, tivi) is called the J-pair of the two
pairs;

where J means “joint”. In comparison, the S-polynomial of
v1 and v2 is t1v1 − (c1/c2)t2v2 where ci = LC(vi). Hence
our J-polynomials are related to S-polynomials. Notice that
the J-signature of (u1, v1) and (u2, v2) is the same as the
signature of the J-pair of (u1, v1) and (u2, v2).

The basic idea of our algorithm is as follows. Initially,
we have the pair (1, g) mod G and the trivial pairs in (14).
From these pairs, we form all J-pairs and store them in a list
JP. Then take the smallest J-pair from JP and repeatedly



perform regular top-reductions until it is no longer regular
top-reducible. If the v part of the resulting pair is zero,
then the u part is a polynomial in (I : g), and we store
this polynomial. If the v part is nonzero, then we check
if the resulting J-pair is super top-reducible. If so, then
we discard this J-pair; otherwise, we add this pair to the
current Gröbner basis and form new J-pairs and add them to
JP. Repeat this process for each pair in JP. The algorithm is
described more precisely in Figure 1 below. In the algorithm,
we include two options: in first option we only keep the
leading monomials of u’s and there is no need to update u’s
in each regular top-reduction, so we compute a Gröbner basis
for LM(I : g); in the second option, we actually update u in
each regular top-reduction as specified above, so we compute
a Gröbner basis for (I : g).

It can be proved that, when JP is empty, LM(H) is a
Gröbner basis for LM(I : g) and V is a Gröbner basis for
〈I, g〉, which may not be minimal. Also, for each solution
(u, v) to (13), we have either LM(u) is reducible by H, or
(u, v) can be top-reduced to (0, 0) by (U, V ) (using both reg-
ular and super top-reductions). The proof of the algorithm
will be included elsewhere for a more general version of this
algorithm that needs not be incremental.

It should be remarked that in our algorithm we always
pick the J-pair with minimal signature to reduce. This is to
emulate the downward row operations of the matrix. The
algorithm may not work if one uses another strategy, say
picking J-pairs with minimal total degree in the v part.

4. COMPARISONS AND CONCLUSIONS
In order to determine how our algorithm compared to, say

F5 and F5C, we computed Gröbner basis for various bench-
mark examples as provided in [8]. We used the examples
and algorithm implementation for F5 and F5C provided by
the URL in [8] which was all implemented in the Singular
computer algebra system. Our implementation was meant to
mirror the F5C implementation in terms of code structure
and Singular kernel calls. For example, both implementa-
tions use the procedure “reduce” to compute normal form
of a polynomial modulo a Gröbner basis. Reasonable dif-
ferences were unavoidable though. For example, F5C uses
Quicksort while G2V performs one step of a Mergesort in
the function “insertPairs”.

All examples considered were over the field of 7583 ele-
ments with the graded reverse lexicographic ordering. In
addition to the usual wall clock times, several other mea-
sures of performance were considered, namely

1. Wall clock time (from a single run),

2. Extraneous generators,

3. Memory usage,

4. Count of J-pairs or S-pairs reduced, and

5. Count of normal forms computed.

The run-times and ratios of run-times are presented in Table
1. One can see that, for these examples, our algorithm is two
to ten times faster than F5 and F5C.

F5, F5C and our algorithm G2V are all incremental. That
is, given a list of polynomials g1, . . . , gm, a Gröbner basis is
computed for 〈g1, g2, . . . , gi〉 for i = 1, 2, . . . , m. Hence, in
each iteration, all three algorithms are given a polynomial

Test Case (#generators) F5 F5C G2V

Katsura5 (22) 1.48 0.93 0.36
Katsura6 (41) 2.79 2.34 0.37
Katsura7 (74) 30.27 22.76 4.64
Katsura8 (143) 290.97 177.74 29.88

Schrans-Troost (128) 1180.08 299.65 21.34
F633 (76) 30.93 29.87 2.06

Cyclic6 (99) 28.44 22.06 5.65
Cyclic7 (443) 4591.20 2284.05 732.33

Test Case (#generators) F5/G2V F5C/G2V

Katsura5 (22) 4.11 2.58
Katsura6 (41) 7.54 6.32
Katsura7 (74) 6.52 4.91
Katsura8 (143) 9.74 5.95

Schrans-Troost (128) 55.30 14.04
F633 (76) 15.01 14.50

Cyclic6 (99) 5.03 3.90
Cyclic7 (443) 6.27 3.12

Table 1: Run-times in seconds and ratios of run-
times for various test cases in Singular 3.1.0.6 on
an Intel Core 2 Quad 2.66 GHz. The #generators
refers to a reduced Gröbner basis.

Test Case (#generators) F5 F5C G2V

Katsura5 (22) 61 44 63
Katsura6 (41) 74 65 52
Katsura7 (74) 185 163 170
Katsura8 (143) 423 367 335

Schrans-Troost (128) 643 399 189
F633 (76) 237 217 115

Cyclic6 (99) 202 183 146
Cyclic7 (443) 1227 1006 658

Table 2: The number of generators in the Gröbner
basis in the last iteration but before computing a re-
duced Gröbner basis. Of course, F5 never computes
the reduced Gröbner basis.

g ∈ R and a Gröbner basis G for some ideal I, and they
compute a Gröbner basis for 〈I, g〉. The computed Gröbner
basis is not necessarily reduced, and any redundant poly-
nomials in the basis will result in extra S-polynomials or
J-polynomials to be reduced. Fewer generators at any given
time means that fewer S-polynomials or J-polynomials need
to be considered. F5 uses G as it was computed, so may not
be reduced, however, F5C and our algorithm always replace
G by a reduced Gröbner basis. Table 2 lists the number of
polynomials in the Gröbner bases that were output by each
algorithm on the last iteration of each example. Computa-
tion time is not the only limiting factor in a Gröbner basis
computation. Storage requirements also limit computation.
Table 3 lists the maximum amount of memory each algo-
rithm needed in the processing of examples. Again, we can-
not make generalizations from the memory results because
this is only one possible implementation of each algorithm
in one possible CAS.

The last two criteria were also measured, but the results
were not nearly as interesting. Each algorithm outperformed
the other (and usually not by much) in nearly half the ex-
amples.



Input: G = [f1, f2, . . . , fm], a Gröbner basis for an ideal I, and
g a polynomial.

Output: A Gröbner basis for 〈I, g〉, and a Gröbner basis for LM(I : g) or for (I : g).
Variables: U a list of monomials for LM(u) or of polynomials for u;

V a list of polynomials for v;
H a list for LM(u) or u so that u ∈ (I : g) found so far,
JP a list of pairs (t, i), where t is a monomial so that t(ui, vi)

is the J-pair of (ui, vi) and (uj , vj) for some j 6= i.
We shall refer (t, i) as the J-pair of (ui, vi) and (uj , vj).

Step 0. U = [0, . . . , 0] with length m, and V = [f1, . . . , fm]
(so that (ui, vi) = (0, fi), 1 ≤ i ≤ m);

H = [LM(f1), LM(f2), . . . , LM(fm)] or H = [f1, f2, . . . , fm];
Compute v = Normal(g, G);
If v = 0, then append 1 to H and return V and H (stop the algorithm);

else append 1 to U and v to V ;
JP = [ ], an empty list;
For each 1 ≤ i ≤ m,

compute the J-pair of the two pairs (um+1, vm+1) = (1, v)
and (ui, vi) = (0, fi), such a J-pair must be of the form (ti, m + 1),
insert (ti, m + 1) into JP whenever ti is not reducible by H.
(store only one J-pair for each distinct J-signature).

Step 1. Take a minimal (in signature) pair (t, i) from JP , and delete it from JP .
Step 2. Reduce the pair t(ui, vi) repeatedly by the pairs in (U, V ), using regular top-

reductions, say to get (u, v), which is not regular top-reducible.
Step 3a. If v = 0, then append LM(u) or u to H and delete every J-pair (t, `) in JP

whose signature tLM(u`) is divisible by LM(u).
Step 3b. If v 6= 0 and (u, v) is super top-reducible by some pair (uj , vj) in (U, V ), then

discard the pair (t, i).
Step 3c. Otherwise,

append u to U and v to V ,
form new J-pairs of (u, v) and (uj , vj), 1 ≤ j ≤ #U − 1, and
insert into JP all such J-pairs whose signature are not reducible by H
(store only one J-pair for each distinct J-signature).

Step 4. While JP is not empty, go to step 1.
Return: V and H.

Figure 1: Algorithm

Test Case (#generators) F5 F5C G2V

Katsura5 (22) 1359 828 1255
Katsura6 (41) 1955 1409 1254
Katsura7 (74) 8280 4600 5369
Katsura8 (143) 40578 20232 20252

Schrans-Troost (128) 130318 50566 32517
F633 (76) 3144 2720 2824

Cyclic6 (99) 2749 2280 1789
Cyclic7 (443) 48208 23292 24596

Table 3: The maximum amount of memory (in KiB)
Singular 3.1.0.6 used from startup to the conclu-
sion of the Gröbner basis computation. Memory
amounts obtained with “memory(2);”.

In conclusion, we presented a precise relationship among
the degrees of the ideals I, 〈I, g〉 and (I : g), and a connection
between the Gröbner bases of 〈I, g〉 and (I : g). This allowed
us to design a new algorithm, which is conceptually simpler
and yet more efficient than F5 and F5C.
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