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Abstract. At CT-RSA 2006, Wang et al. [WYHL06] introduced the MFE cryptosystem, which
was subsequently broken by Ding et al. [DHNW07]. Inspired by their work, we present a more
general framework for multivariate public key cryptosystems, which combines ideas from both
triangular and oil-vinegar schemes. We also propose a new public key cryptosystem, based on
Diophantine equations, which implements the framework.

1. Introduction

1.1. Multivariate Public Key Cryptography. Public key cryptography plays an integral role
in secure digital communication. Cryptosystems such as RSA and ElGamal have gained much
popularity; however, if large enough quantum computers can be built, number theoretic systems
such as these will be rendered useless due to Shor’s algorithm [Sho97]. Also, these systems suffer
from slow speeds, so it would be desirable to develop systems which operate more efficiently.

Multivariate public key cryptosystems (MPKC) are one possible alternative to the current public
key schemes. The public key of an MPKC is a system of multivariate polynomials, usually quadratic,
over a finite field. This idea is based on the fact that solving a multivariate polynomial system
over a finite field is an NP-complete problem. In recent years, much inquiry has been made into
the subject of multivariate public key cryptography, and several schemes have been proposed. In
general, MPKCs have the following structure. Let k be a finite field with q elements. Although the
public key, F̄ : kn → km will appear to be a random system of multivariate polynomials, we build
it by composing three maps:

F̄ = L1 ◦ F ◦ L2

where L1 : km → km and L2 : kn → kn are two random invertible affine transformations, and the
central map F : kn → km is a nonlinear multivariate polynomial map which has the property that
we can find preimages. This is the trapdoor that will facilitate decryption. (Note that in some
systems, m > n, but in others, as we shall see in the next section, m = n.) The private key consists
of L1 and L2, and sometimes F . Creating such an F requires adding structure, and though many
ideas have been suggested, in most cases, the added structure has led to the discovery of some
weakness.
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In this paper, we begin by discussing two existing types of MPKCs: triangular and oil-vinegar
systems. Then in Section 2, we introduce a new framework for multivariate systems that combines
these two types of systems. We next show that the MFE cryptosystem [WYHL06] can be viewed
as an example of our proposed framework. In Sections 3 and 4, we give an implementation of the
framework, and Section 5 presents the cryptanalysis of the system. We conclude in Section 6 by
posing some open questions and making some final remarks.

1.2. Triangular Encryption Schemes. Triangular maps make up one family of easily inverted
multivariate maps. A triangular map F : kn → kn has the form:

F (x1, . . . , xn) =


x1

x2 + g2(x1)
...
xn−1 + gn−1(x1, x2, . . . , xn−2)
xn + gn(x1, x2, . . . , xn−2, xn−1)


T

,

where each gi ∈ k[x1, . . . , xn] is quadratic. Given (y1, . . . , yn) ∈ kn, it is easy to find (x1, . . . , xn) ∈
kn such that F (x1, . . . , xn) = (y1, . . . , yn) by iteratively solving for each component.

Because the transformations L1 and L2 are linear, they cannot hide the linearity of the first
equation in F , and we cannot build a secure system which simply has a triangular map as the
central map. At least two possible ideas have been proposed to circumvent this issue. One is
to simply discard several of the initial polynomials and use the remaining system to create a
signature scheme [YC05]. Another is to compose more than one triangular system. The inherent
difficulty in the latter is that composition in general makes the degree grow very quickly, which is
problematic since we desire our central maps to be quadratic. Moh [Moh99] found a way of doing
this by composing two triangular maps, one having degree eight, and by using injections (basically
adding new variables which are set to zero). However, Moh’s original system is susceptible to the
minrank attack [GC00], and later modified systems are vulnerable to linearization equation attacks
[NJHD07].

Wang et al. [WC04] proposed a generalization of triangular maps that they called tractable
rational maps. They define a tractable rational map F : kn → kn as having the form:

F (x1, . . . , xn) =



r1(x1)
r2(x2) · p2(x1)

q2(x1) + f2(x1)
g2(x1)

...
rn−1(xn−1) · pn−1(x1,x2,...,xn−2)

qn−1(x1,x2,...,xn−2) + fn−1(x1,x2,...,xn−2)
gn−1(x1,x2,...,xn−2)

rn(xn) · pn(x1,x2,...,xn−2,xn−1)
qn(x1,x2,...,xn−2,xn−1) + fn(x1,x2,...,xn−2,xn−1)

gn(x1,x2,...,xn−2,xn−1)



T

,

where pi, qi, fi, and gi are polynomials, and ri is a permutation polynomial over k. As in the
triangular case, we can find preimages by iteratively solving for each component. However, notice
that the rational functions limit the invertibility of F to the set

{(x1, . . . , xn) ∈ kn : (piqigi)(x1, . . . , xn) 6= 0 for i = 2, . . . , n}.

Rather than composing two maps as Moh did, they introduce the idea of using basic injections and
projections to effectively discard the weak top part of the triangle while still being able to compute



MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY 3

unique preimages by exploiting other structure. Using this structure, Wang et al. [WYHL06]
proposed the MFE cryptosystem, which we will discuss in Section 2.2.

1.3. Oil-Vinegar Systems. A second type of MPKC that is interesting for our purposes is called
an oil-vinegar signature scheme. Patarin’s oil-vinegar polynomial scheme [Pat97] finds its roots
in his linearization equation attack [Pat95] on the Matsumoto-Imai cryptosystem. An oil-vinegar
polynomial f ∈ k[x̌1, . . . , x̌v, x1, . . . , xo] has the form:

f =
o∑

i=1

v∑
j=1

aijxix̌j +
v∑

i=1

v∑
j=1

bij x̌ix̌j +
o∑

i=1

cixi +
v∑

j=1

dj x̌j + e,

where aij , bij , ci, dj , e ∈ k. The variables x1, . . . , xo are called oil variables and the variables
x̌1, . . . , x̌v are called vinegar variables. The important property of these polynomials is that they
have no xixj terms (i.e. there are no terms quadratic in the oil variables). So, if we substitute
v field values for the vinegar variables, f becomes linear in the oil variables. Basic oil-vinegar
systems may be used for signatures as follows: let the private key be given by F = (f1, . . . , fo),
where each fi is a random oil-vinegar polynomial, along with an invertible affine transformation
L : ko+v → ko+v. The public key is the map F̄ = F ◦ L. Let (y1, . . . , yo) ∈ ko be a document
that a user wants to sign. The user chooses (x̌′1, . . . , x̌

′
v) ∈ kv at random and attempts to compute

(x1, . . . , xo) that satisfies the linear system

F (x̌′1, . . . , x̌
′
v, x1, . . . , xo) = (y1, . . . , yo).

A solution will exist as long as the system is nonsingular. If the resulting matrix for the linear
system is singular, simply choose a different (x̌′1, . . . , x̌

′
v) ∈ kv and try again. With high probability,

one should be able to compute a solution (x′1, . . . , x
′
o) ∈ ko in very few attempts. Finally, the

signature is (z1, . . . , zo+v) = L−1(x̌′1, . . . , x̌
′
v, x
′
1, . . . , x

′
o). Signature verification is done by simply

checking that F̄ (z1, . . . , zo+v) = (y1, . . . , yo).
Kipnis and Shamir [KS98] first broke the system in the case where o = v using the observation

that the matrices corresponding to the quadratic forms of the private key have a special form (i.e.
a large block of zeros). This allows attackers to separate the oil and vinegar variables and generate
an equivalent system that can be used to create forgeries. Later Kipnis et al. [KPG99b] proposed
an unbalanced (o < v) scheme, extended the original attack to this case, and gave parameters they
believed would be good for a secure system. Later, Ding and Schmidt proposed a more efficient
“multi-layer” unbalanced oil-vinegar scheme, called Rainbow [DS05].

However, these are signature schemes, and our goal is to build a secure cryptosystem.

2. Combining Triangular and Oil-Vinegar Schemes

Recall that the difficulty in creating a secure triangular system is that it is hard to hide the
triangular structure, especially the top equations. Though attempts have been made to use high
degree “lock polynomials” through composition with another triangular map ([Moh99], [MCY04],
[Moh07]), these have been shown to be insecure ([GC00], [DS03], [NJHD07]). However, this method
is not the only way to achieve the necessary hiding of the triangular structure. We propose a new
way of introducing lock polynomials to completely hide the triangular system by combining the
triangular system with a series of oil-vinegar systems.

Let k be a finite field with q elements, and let F be a degree d extension of k. Notice that
although we are working in an extension field, our polynomials will be multivariate, as opposed to
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the univariate polynomials used to build “big-field” systems such as Matsumoto-Imai and HFE.
Our approach might be called an “intermediate” (or as Wang et al. [WYHL06] say, “medium”)
field construction.

In particular, fix a basis {α1, . . . , αd} of F over k. We identify F with kd, via the natural map
π : F→ kd given by

π(a1α1 + · · ·+ adαd) = (a1, . . . , ad).
Similarly we can view a polynomial f ∈ F[X1, . . . , Xn] component-wise over k by writing Xi =
xi1α1 + · · ·+xidαd, and then f = f1α1 + · · ·+fdαd with fi ∈ k[x11, . . . , xnd]. Finally, we can extend
π to the polynomial rings via

f ∈ F[X1, . . . , Xn] 7→ (f1, . . . , fd) ∈ k[x11, . . . , xnd]d.

2.1. A general framework. As mentioned above, the public key will be given by F̄ = L1 ◦F ◦L2,
where L1 and L2 are invertible affine transformations. Suppose (Y1, . . . , Yn) = φ(X1, . . . , Xn) is a
triangular system when viewed component-wise over the base field k:

Y1 = X1 + φ1(X1)
Y2 = X2 + φ2(X1, X2)

...
Yn = Xn + φn(X1, . . . , Xn).

(1)

More specifically, viewing each polynomial as having d components:

Yi =


Yi1

Yi2
...
Yid


T

=


xi1 + φi1(x11, . . . , xi−1,d)
xi2 + φi2(x11, . . . , xi−1,d, xi1)

...
xid + φid(x11, . . . , xi−1,d, xi1, . . . , xi,d−1)


T

.

where each φij is quadratic. To invert, we solve iteratively for x11, . . . , x1d, . . . , xn1, . . . , xnd.
Similar to Rainbow [DS05], we will define several, say `, layers of oil-vinegar systems. However,

in our framework, we make the following relaxation: rather than requiring an oil-vinegar system
with o oil variables and v vinegar variables to have o oil-vinegar polynomials, we allow more general
systems, with t (≥ o) polynomials, as long as at least o of them are true oil-vinegar polynomials.

We now build the central map F : Fn+`o → Fn+`t. Let {X1, . . . , Xn} be the initial set of vinegar
variables, and define the first oil-vinegar system:

Yn+i = fn+i(X1, . . . , Xn, Xn+1, . . . , Xn+o), 1 ≤ i ≤ t,
where Xn+1, . . . , Xn+o are the oil variables. In the next layer,

Yn+i = fn+i(X1, . . . , Xn+o, Xn+o+1, . . . , Xn+2o), t+ 1 ≤ i ≤ 2t,

the set of vinegar variables is {X1, . . . , Xn+o}, and the set of oil variables is {Xn+o+1, . . . , Xn+2o}.
Similarly, we create the other layers, ending with the `-th layer,

Yn+i = fn+i(X1, . . . , Xn+(`−1)o, Xn+(`−1)o+1, . . . , Xn+`o), (`− 1)t+ 1 ≤ i ≤ `t,

where {X1, . . . , Xn+(`−1)o} is the set of vinegar variables, and {Xn+(`−1)o+1, . . . , Xn+`o} is the set
of oil variables. (Here, we are assuming that each oil-vinegar system has t polynomials. We could
be more general by letting the i-th system have ti polynomials.)
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We will use these oil-vinegar systems to completely mask the triangular system (1). Decryption
will involve first unmasking the triangular system, solving it for the initial set of vinegar variables,
then sequentially solving the oil-vinegar systems for the oil variables.

Suppose we can define the fi in each oil-vinegar system in such a way that there exists nonlinear
polynomials

gi ∈ F[Yn+(i−1)t+1, . . . , Yn+it], 1 ≤ i ≤ `,
such that each gi(fn+(i−1)t+1, . . . , fn+it), 1 ≤ i ≤ `, factors as a product of quadratic factors in
F[X1, . . . , Xn+`o]. If we have n such quadratic factors, say ψ1, . . . , ψn, then we can use them as lock
polynomials by adding one factor to each Yi in the triangular system (1). That is, let

Yi = fi(X1, . . . , Xn+`o) = Xi + φi(X1, . . . , Xi) + ψi(X1, . . . , Xn+`o) 1 ≤ i ≤ n. (2)

Appending the oil-vinegar systems to the updated triangular system gives our central map:

F (X1, . . . , Xn+`o) = (f1, . . . , fn+`t).

Notice that as long as each ψi has terms involving at least one of the variables Xi+1, . . . , Xn+`o, the
triangular structure of the first n equations is destroyed. Also, we make the observation that we
can shrink the size of the triangular system, and hence the number of necessary quadratic factors,
to n− 1, if one of the ψi can be viewed as an oil-vinegar polynomial in X1, . . . , Xn with a single oil
variable Xn.

Now, in order to unmask and decrypt the triangular part, we must be able to compute the values
of the ψi. Say there exist functions hi in the rational function field over F in ` variables such that

hi(g1, . . . , g`) = ψi, 1 ≤ i ≤ n.

Then during decryption, we simply use L−1
1 to compute Yn+1, . . . , Yn+`t from the ciphertext, sub-

stitute the values into g1, . . . , g`, then evaluate each hi, and substitute for each ψi in (2), restoring
the original triangular structure. There is actually much freedom in the hi since we can view them
as functions of the transformed ciphertext values Yn+1, . . . , Yn+`t ∈ F, so we are not limited to poly-
nomials, but may also compute inverses and roots (depending on the characteristic of the field).
However, we must note that computing inverses will require that the involved Yi’s are nonzero.

So, our proposed framework, which is simply a masked triangular system combined with a series
of oil-vinegar systems, requires the existence of two crucial sets of functions:

• Polynomials fn+(i−1)t+j ∈ F[X1, . . . , Xn+io] and gi ∈ F[Yn+(i−1)t+1, . . . , Yn+it] such that
each gi(fn+(i−1)t+1, . . . , fn+it) factors into quadratics (the ψi’s) over F[X1, . . . , Xn+io].
• Functions hi which, upon evaluation at the transformed ciphertext values Yn+1, . . . , Yn+`t,

yield the value of ψi. We require that there must not exist linear relationships involving
the ψi and Yj .

Notice that masking the triangular system and adding oil-vinegar polynomials has introduced
two possibilities for decryption failure:

• We may not be able to compute inverses needed when evaluating the hi.
• For any of the oil-vinegar systems, after we have computed the values of the vinegar vari-

ables, the remaining linear system in the oil variables may not be solvable.
Obviously, any practical cryptosystem must keep decryption failures to a minimum, so for any
implementation, the probability of either of the above two problems occurring must be small. One
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possible solution is to make use of the embedding (↗) modifier for MPKCs, first introduced in
[DWY07].

2.2. Example: MFE cryptosystem. The MFE cryptosystem, although built using tractable
rational maps, can be viewed (with slight modification) as an instance of our proposed framework.
In fact, it was this system that inspired us to try to develop a more general system that avoids the
known flaws of MFE.

We now present the central map of the MFE system in the context of our proposed framework,
working only with polynomials over the extension field for ease of exposition. Let F have charac-
teristic two. MFE’s central map will be F : F12 → F15, where there are three oil-vinegar systems,
given by (Y4, . . . , Y7), (Y8, . . . , Y11), and (Y12, . . . , Y15).

To motivate the definition of the functions gi and ψi, define the following matrices:

M1 =
(
X1 X2

X3 X4

)
, M2 =

(
X5 X6

X7 X8

)
, M3 =

(
X9 X10

X11 X12

)
,

and

Z3 = M1M2 =
(
Y4 Y5

Y6 Y7

)
, Z2 = M1M3 =

(
Y8 Y9

Y10 Y11

)
,

Z1 = MT
2 M3 =

(
Y12 Y13

Y14 Y15

)
.

The gi and ψi come from relationships between determinants. First notice that det(Z3) =
det(M1) det(M2), so letting g1 = det(Z3), ψ3 = det(M1), and ψ1 = det(M2), we have

g1 = Y4Y7 + Y5Y6 = (X1X4 +X2X3)(X5X8 +X6X7) = ψ3ψ1.

Similarly det(Z2) = det(M1) det(M3) and det(Z1) = det(M2) det(M3) give

g2 = Y8Y11 + Y9Y10 = (X1X4 +X2X3)(X9X12 +X10X11) = ψ3ψ2,
g3 = Y12Y15 + Y13Y14 = (X5X8 +X6X7)(X9X12 +X10X11) = ψ1ψ2.

Also,
h1 = (g1g3g−1

2 )1/2 = ((ψ3ψ1)(ψ1ψ2)(ψ3ψ2)−1)1/2 = ψ1,
h2 = g3h

−1
1 = ψ2,

h3 = g1h
−1
1 = ψ3.

Finally, the central map F : F12 → F15 is given by

Y1 = X1 + φ1(X1) + ψ1

Y2 = X2 + φ2(X1, X2) + ψ2

Y3 = X3 + φ3(X1, X2, X3) + ψ3

Y4 = X1X5 +X2X7 Y5 = X1X6 +X2X8

Y6 = X3X5 +X4X7 Y7 = X3X6 +X4X8

Y8 = X1X9 +X2X11 Y9 = X1X10 +X2X12

Y10 = X3X9 +X4X11 Y11 = X3X10 +X4X12

Y12 = X5X9 +X7X11 Y13 = X5X10 +X7X12

Y14 = X6X9 +X8X11 Y15 = X6X10 +X8X12

The public key is given by F̄ = L1 ◦ F ◦ L2 where L1 : F15 → F15 and L2 : F12 → F12 are random
invertible affine transformations.
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Notice that the framework definition suggests that MFE’s central map should be F : F16 → F16

(since n = 4, o = t = 4, and ` = 3), however, it is given as F : F12 → F15. This is because the
third oil-vinegar system does not utilize any new input variables, therefore shrinking the number
of input variables by four. Also, ψ3 is actually an oil-vinegar polynomial in X1, . . . , X4 with single
oil variable X4, so the triangular system only needs three polynomials.

To decrypt a ciphertext (Y ′1 , . . . , Y
′
15), first calculate (Y1, . . . , Y15) = L−1

1 (Y ′1 , . . . , Y
′
15), then use

h1, h2, and h3 to calculate ψ1, ψ2, and ψ3. Adding these to Y1, Y2, and Y3 respectively, restores
the triangular structure of the first three polynomials and enables us to recover X1, X2, and X3.
We then use ψ3 = X1X4 + X2X3 to compute X4. Finally, using the values of the initial oil
variables X1, . . . , X4, we solve in sequence the first two oil-vinegar systems to recover the values of
the remaining variables, X5, . . . , X12. Note that the last system is not used in decryption, but is
necessary for the gi and ψi polynomials.

Weakness of MFE. The creators of the MFE specifically defined Z1 = MT
2 M3 instead of

Z1 = M2M3. Otherwise linearization equations (equations linear in both X and Y ) exist. For
instance, the relationship

Z3M3 = M1Z1 (= M1M2M3)

yields four linearization equations.
However, Ding et al. [DHNW07] showed that other types of linearization equations still exist,

called high order linearization equations, where the degree in Y is higher than one. Their second
order linearization equations are derived by examining M3M

∗
3M

∗
1M1M2, where M∗i is the adjoint

of Mi. In particular,

M3M
∗
3M

∗
1M1M2 = M3(M1M3)∗(M1M2) = M3Z

∗
2Z3

and
M3M

∗
3M

∗
1M1M2 = det(M3) det(M1)M2 = det(Z2)M2,

therefore,
M3Z

∗
2Z3 = det(Z2)M2.

This equation gives four equations that are linear in X and quadratic in Y . They show that enough
of these second order linearization equations exist to break MFE.

We observe that in both cases, the linearization equation attacks result from the fact that the
Z matrices are defined as a product of 2× 2 matrices. So, while the determinant relationships are
crucial in giving the nice expressions for the gi and ψi, the underlying matrix relationships are the
critical weakness of the system.

3. Polynomial Identities

Although the original form of MFE has been broken, our general framework may be used to
create other systems. For instance, notice that each of three gi in MFE can be viewed as the right
hand side of the Diophantine equation (over a polynomial ring):

AB = CD + EF, (3)

where C,D,E, F are oil-vinegar polynomials in 8 variables. In particular, for ψ3ψ1 = g1 in MFE,
we have

(X1X4 +X2X3)(X5X8 +X6X7) = Y4Y7 + Y5Y6,
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where Yi ∈ F[X1, . . . , X8]. So, solutions to equations like (3) will possibly yield families of cryp-
tosystems in our proposed framework. This is in fact the case, and we now show how to construct
a cryptosystem based on a Diophantine equation of the form

AB = CD + EF +GH + IJ +KL, (4)

where C,D, . . . , J are oil-vinegar polynomials in 8 oil and 8 vinegar variables, and there are no
restrictions on K or L. In the context of our framework, we rewrite (4) as

ψ1ψ2 = f1f2 + · · ·+ f9f10, (5)

where each polynomial has degree two, and
(1) ψ1 ∈ F[X1, . . . , Xn], ψ2 ∈ F[Y1, . . . , Yn],
(2) fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], 1 ≤ i ≤ 8, are oil-vinegar polynomials, and
(3) fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], i = 9, 10.

Assume F has characteristic two. We begin our work in the polynomial ring

R = F[x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4],

and introduce the following notation:

pij
xy = xiyj + xjyi, 1 ≤ i < j ≤ 4,

pij(x, y, z, w) = pij
xz + pij

yz + pij
yw, 1 ≤ i < j ≤ 4.

From an algebraic geometry perspective, the pij
xy are simply Plücker coordinates, which are known

to satisfy certain quadratic relations. The following identity is easily verified:

0 = (p12
xy + p12

zw)p34(x, y, z, w) + (p13
xy + p13

zw)p24(x, y, z, w) +

(p14
xy + p14

zw)p23(x, y, z, w) + (p23
xy + p23

zw)p14(x, y, z, w) +

(p24
xy + p24

zw)p13(x, y, z, w) + (p34
xy + p34

zw)p12(x, y, z, w). (6)

To put (6) in the required oil-vinegar form, define ρ : R → F[X1, . . . , X8, Y1, . . . , Y8] as a ring
isomorphism induced by

(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4) 7→
(X1, X3, Y1 + Y5, Y3 + Y7, X4, X2, Y5, Y7, X5, X7, Y4 + Y8, Y2 + Y6, X8, X6, Y8, Y6),

i.e., ρ(x1) = X1, ρ(x2) = X3, ρ(x3) = Y1 + Y5, and so on. Then set

ψ1 = ρ(p12
xy + p12

zw) = X1X2 +X3X4 +X5X6 +X7X8

ψ2 = ρ(p34(x, y, z, w)) = Y1Y2 + Y3Y4 + Y5Y6 + Y7Y8

f1 = ρ(p13
xy + p13

zw) = X4Y1 +X8Y4 + (X1 +X4)Y5 +X5Y8

f2 = ρ(p24(x, y, z, w)) = (X2 +X3)Y2 +X7Y3 +X2Y6 +X6Y7

f3 = ρ(p14
xy + p14

zw) = X8Y2 +X4Y3 +X5Y6 + (X1 +X4)Y7

f4 = ρ(p23(x, y, z, w)) = X7Y1 + (X2 +X3)Y4 +X6Y5 +X2Y8

f5 = ρ(p23
xy + p23

zw) = X2Y1 +X6Y4 + (X2 +X3)Y5 +X7Y8

f6 = ρ(p14(x, y, z, w)) = (X1 +X4)Y2 +X5Y3 +X4Y6 +X8Y7

f7 = ρ(p24
xy + p24

zw) = X6Y2 +X2Y3 +X7Y6 + (X2 +X3)Y7

f8 = ρ(p13(x, y, z, w)) = X5Y1 + (X1 +X4)Y4 +X8Y5 +X4Y8

f9 = ρ(p34
xy + p34

zw) = Y1Y7 + Y2Y8 + Y3Y5 + Y4Y6

f10 = ρ(p12(x, y, z, w)) = X1X7 +X2(X5 +X8) +X3X5 +X4(X6 +X7)

(7)



MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY 9

thus satisfying (5).
We now examine the oil-vinegar part of this system, i.e. f1, . . . , f8. First consider the case where

X1, . . . , X8 are the vinegar variables. This yields the following linear system:

X4 0 0 X8 X1 +X4 0 0 X5

0 X2 +X3 X7 0 0 X2 X6 0
0 X8 X4 0 0 X5 X1 +X4 0
X7 0 0 X2 +X3 X6 0 0 X2

X2 0 0 X6 X2 +X3 0 0 X7

0 X1 +X4 X5 0 0 X4 X8 0
0 X6 X2 0 0 X7 X2 +X3 0
X5 0 0 X1 +X4 X8 0 0 X4





Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8


=



f1

f2

f3

f4

f5

f6

f7

f8


When Xi and fi, 1 ≤ i ≤ 8, take on values in F, we hope to be able to solve uniquely the above
system for the oil variables Y1, . . . , Y8. This will be possible whenever the coefficient matrix has
nonzero determinant. The determinant is(

(X1 +X5 +X8)(X2 +X7) + (X3 +X6 +X7)(X4 +X5)
)4
.

On the other hand, if we view Y1, . . . , Y8 as the oil variables, the determinant of the resulting linear
system in X1, . . . , X8 becomes(

(Y1 + Y8)(Y2 + Y7) + (Y3 + Y6)(Y4 + Y5)
)4
.

In both cases, the probability that the determinant is zero is 1
|F| + 1

|F|2 −
1
|F |3 .

4. Building a cryptosystem

Unfortunately, a cryptosystem based directly on (7) will be susceptible to a separation of oil and
vinegar variables attack, so we must introduce three additional, slightly different subsystems. Note
that each permutation of x, y, z and w in (6) yields a new identity. In particular, when exchanging x
with y, or z with w, the first factor of each term of (6) remains unchanged. We shall take advantage
of this. Renaming each ψj and fj in (7) as ψ1,j and f1,j respectively, we define

ψi,1 = ψ1,1 and fi,j = f1,j , i = 2, . . . , 4, j = 1, 3, . . . , 9.

Then, interchanging z with w in (6), we define

ψ2,2 = ρ(p34(x, y, w, z))

f2,2 = ρ(p24(x, y, w, z))

f2,4 = ρ(p23(x, y, w, z))

f2,6 = ρ(p14(x, y, w, z))

f2,8 = ρ(p13(x, y, w, z))

f2,10 = ρ(p12(x, y, w, z)).

Similarly, by interchanging x with y in (6), we define ψ3,2 and f3,j , j = 2, 4, . . . , 10. Finally, by
interchanging x with y, and z with w in (6), we define ψ4,2 and f4,j , j = 2, 4, . . . , 10. Then we have
four identities:

ψi,1ψi,2 = fi,1fi,2 + · · ·+ fi,9fi,10, 1 ≤ i ≤ 4.
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Using these four subsystems, we define the central map,

(Z1, . . . , Z74) = F (X1, . . . , X24, Y1, . . . , Y32),

by
Z1 = X1 + φ1(X1) + ψ1,1(X1, . . . , X8)
Z2 = X2 + φ2(X1, X2) + ψ1,2(Y1, . . . , Y8)
Z3 = X3 + φ3(X1, . . . , X3) + ψ2,2(Y9, . . . , Y16)
Z4 = X4 + φ4(X1, . . . , X4) + ψ3,2(Y17, . . . , Y24)
Z5 = X5 + φ5(X1, . . . , X5) + ψ2,1(X9, . . . , X16)
Z6 = X6 + φ6(X1, . . . , X6) + ψ3,1(X17, . . . , X24)
Z7 = X7 + φ7(X1, . . . , X7) + ψ4,2(Y25, . . . , Y32)
Z7+i = f1,i(X1, . . . , X8, Y1, . . . , Y8) 1 ≤ i ≤ 10
Z17+i = f2,i(X1, . . . , X8, Y9, . . . , Y16) 1 ≤ i ≤ 10
Z27+i = f2,i(Y1, . . . , Y8, Y9, . . . , Y16) 1 ≤ i ≤ 8
Z36 = f2,10(Y1, . . . , Y8, Y9, . . . , Y16)
Z36+i = f3,i(X1, . . . , X8, Y17, . . . , Y24) 1 ≤ i ≤ 10
Z46+i = f2,i(X9, . . . , X16, Y9, . . . , Y16) 1 ≤ i ≤ 8
Z55 = f2,10(X9, . . . , X16, Y9, . . . , Y16)
Z55+i = f3,i(X17, . . . , X24, Y17, . . . , Y24) 1 ≤ i ≤ 8
Z64 = f3,10(X17, . . . , X24, Y17, . . . , Y24)
Z64+i = f4,i(X9, . . . , X16, Y25, . . . , Y32) 1 ≤ i ≤ 10

Notice f2,9(Y1, . . . , Y8, Y9, . . . , Y16) has been omitted from the central map to avoid redundancy as

f2,9(Y1, . . . , Y8, Y9, . . . , Y16) = f2,9(X1, . . . , X8, Y9, . . . , Y16) = Z26. (8)

Similarly, f2,9(X9, . . . , X16, Y9, . . . , Y16) and f3,9(X17, . . . , X24, Y17, . . . , Y24) are also omitted. Since
the central map is from F56 to F74, the information rate of this cryptosystem is 56

74 ≈ .76.

4.1. Inverting the central map. Recall that decryption proceeds by unmasking the triangular
system (Z1, . . . , Z7), and then solving the oil-vinegar systems. We start by focusing on the first three
equations of the triangular system. Using the notation we introduced for the general framework,
let

g1 = Z8Z9 + Z10Z11 + Z12Z13 + Z14Z15 + Z16Z17 = ψ1,1(X1, . . . , X8)ψ1,2(Y1, . . . , Y8)
g2 = Z18Z19 + Z20Z21 + Z22Z23 + Z24Z25 + Z26Z27 = ψ2,1(X1, . . . , X8)ψ2,2(Y9, . . . , Y16)
g3 = Z28Z29 + Z30Z31 + Z32Z33 + Z34Z35 + Z26Z36 = ψ2,1(Y1, . . . , Y8)ψ2,2(Y9, . . . , Y16).

Note that Z26 appears in both g2 and g3 because of (8). Then, since

ψ2,1(X1, . . . , X8) = ψ1,1(X1, . . . , X8) and ψ2,1(Y1, . . . , Y8) = ψ1,2(Y1, . . . , Y8),

we have
h1 = (g1g2g−1

3 )1/2 = ψ1,1(X1, . . . , X8)
h2 = g1h

−1
1 = ψ1,2(Y1, . . . , Y8)

h3 = g2h
−1
1 = ψ2,2(Y9, . . . , Y16).

We can then substitute the transformed ciphertext values into h1, h2, h3 and subsequently restore
the triangular structure of Z1, Z2, Z3, respectively. The next step is to unmask the final four
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equations in the triangular portion. To do this, we define

g4 = Z37Z38 + Z39Z40 + Z41Z42 + Z43Z44 + Z45Z46 = ψ3,1(X1, . . . , X8)ψ3,2(Y17, . . . , Y24)
g5 = Z47Z48 + Z49Z50 + Z51Z52 + Z53Z54 + Z26Z55 = ψ2,1(X9, . . . , X16)ψ2,2(Y9, . . . , Y16)
g6 = Z56Z57 + Z58Z59 + Z60Z61 + Z62Z63 + Z45Z64 = ψ3,1(X17, . . . , X24)ψ3,2(Y17, . . . , Y24)
g7 = Z65Z66 + Z67Z68 + Z69Z70 + Z71Z72 + Z73Z74 = ψ4,1(X9, . . . , X16)ψ4,2(Y25, . . . , Y32).

Then, since ψ3,1(X1, . . . , X8) = ψ1,1(X1, . . . , X8) and ψ4,1(X9, . . . , X16) = ψ2,1(X9, . . . , X16), we
have

h4 = g4h
−1
1 = ψ3,2(Y17, . . . , Y24)

h5 = g5h
−1
3 = ψ2,1(X9, . . . , X16)

h6 = g6h
−1
4 = ψ3,1(X17, . . . , X24)

h7 = g7h
−1
5 = ψ4,2(Y25, . . . , Y32).

Using h4, . . . , h7, we can restore the triangular structure of Y4, . . . , Y7, and easily recover X1, . . . , X7.
To recover X8, we use the value of h1 = ψ1,1(X1, . . . , X8), as long as X7 is nonzero.

We finish the inversion process by solving for the remaining variables X9, . . . , X24 and Y1, . . . , Y32,
using 6 of the 7 oil-vinegar systems:

subsystem oil-vinegar polynomials oil variables vinegar variables
1 Z8, . . . , Z15 Y1, . . . , Y8 X1, . . . , X8

2 Z18, . . . , Z25 Y9, . . . , Y16 X1, . . . , X8

4 Z37, . . . , Z44 Y17, . . . , Y24 X1, . . . , X8

5 Z47, . . . , Z54 X9, . . . , X16 Y9, . . . , Y16

6 Z56, . . . , Z63 X17, . . . , X24 Y17, . . . , Y24

7 Z65, . . . , Z72 Y25, . . . , Y32 X9, . . . , X16

(9)

4.2. Decryption failures. In this section, we let N = |F|. From Section 2, we know that decryp-
tion may fail 1) if we are unable to perform a necessary inversion in F while computing the hi’s, or
2) if we are unable to solve an oil-vinegar subsystem. To compute h1, h2, h3, notice that we must
have ψ1,1(X1, . . . , X8), ψ1,2(Y1, . . . , Y8), and ψ2,2(Y9, . . . , Y16) all nonzero. It can be shown that
when N is large, each of these is zero with probability approximately 1

N . Notice that to compute
h4, . . . , h7, the only additional requirements are ψ3,2(Y17, . . . , Y24) 6= 0 and ψ2,1(X9, . . . , X16) 6= 0.
Again, each of these are zero with probabilty approximately 1

N , so the total probability that we
will not be able to unmask the triangular system is approximately 5

N .
Recall that we can use h1 to recover X8 as long as X7 is nonzero. However, if X7 = 0, we can

instead use Z17 as long as X2 6= 0. Hence we fail to recover X8 with probability 1
N2 .

We have already addressed in Section 3 the solvability of the oil-vinegar subsystems. Notice
that in (9), we have 6 oil-vinegar systems, but only 4 sets of vinegar variables. Hence the total
probability of failing to invert the oil-vinegar systems is approximately 4

N .
So, we conclude that decryption failure occurs with total probability approximately 9

N . Practical
implementations may avoid this problem by choosing N large enough to ensure that decryption
failure is negligible, or by using the embedding (↗) modifier.
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5. Security

Since the theory of provable security for MPKCs has not yet been sufficiently developed, and,
not able to make a contribution in that area ourselves, we instead show that our system is safe
from known attacks on MPKCs.

Throughout this section, q is the size of the base field, k, and d is the degree of F over k.

5.1. Attacks based on linear algebra. We now examine the specific linear algebra-based at-
tacks, examining the minrank and dual rank, separation of oil and vinegar variables, and finally,
linearization equations attacks. These attacks have been perhaps the most devastating to attempts
at building MPKCs.

Minrank attack. We first note that the quadratic part of each polynomial (in the central map,
or in the public key) can be viewed as a quadratic form, with which we associate a symmetric matrix.
In particular, when the field has characteristic two, given a quadratic form f =

∑
i≤j fijXiXj with

fij ∈ F, we form the matrix Ā where Āij = fij . Then we associate with f the symmetric matrix
A = Ā+ ĀT , and define the rank of f to be the rank of A.

If a variable Xi does not appear in the quadratic part of a polynomial, then the associated matrix
will not have full rank, since the i-th row and column are zero. So, loosely speaking, if an equation
has too few variables, the associated matrix will have small rank. This is the foundation for the
minrank attack. Since the public polynomials are just combinations of the central map polynomials
(via L1) after a change of variables (via L2), if the matrix for a central map polynomial has low
rank, r, then some combination of the public key polynomials also must have rank r. After such a
combination is found, the system may be broken.

From [GC00], the complexity of the attack is qd
m
n
er, where m is the number of central map

polynomials, n is the number of variables, and r is the smallest rank. Considering the ranks of
the central map polynomials, viewed component-wise over k, the smallest rank is 8d, hence the
complexity of attack is qd

74
56
e8d = q16d.

Dual rank attack. While minrank succeeds when an equation has too few variables, the dual
rank attack is effective when a variable appears in too few equations. In this case, the matrix
corresponding to the quadratic part of a polynomial in which the variable does not appear will
have less than full rank. In particular, if a variable only appears in the quadratic part of u central
map equations, then some combination of (u + 1) of the public polynomials must have less than
full rank. Finding such a combination will again enable us to break the system. The complexity of
this attack is at least n3qu [YC04].

In our case, viewing the central map polynomials component-wise over k, each of the 56d variables
appears in at least 6d equations, so the complexity of the attack is (56d)3q6d.

Separation of oil and vinegar variables attack. As mentioned in Section 1, the goal of this
attack is to find the space of the transformed oil variables (i.e. after L2 has been applied). Kipnis
et al. [KPG99b] give a complexity of o4qv−o−1 where o and v are the number of oil and vinegar
variables, respectively. Determining the transformed oil space may possibly lead to breaking the
system, so we show that the complexity for our system is sufficiently high.

Recall that in an oil-vinegar system, no terms in the system may be quadratic in the oil variables.
This means that given a system of polynomials, adding terms may result in a decrease of the size
of the oil set, but never an increase, hence the vinegar set cannot possibly shrink by adding terms.
So, disregarding the φi of the triangular system and viewing our central map F as a system of
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oil-vinegar polynomials with coefficients in F, we can determine the size of the minimal vinegar
set by computing the maximum size of an oil set. This can be done by finding the clique number
of the graph with vertices given by the 56 variables and edges occuring whenever the product of
two variables does not appear in any polynomials of F . Using Magma, we found that the clique
number is 20, so the smallest vinegar set has 36 variables. This gives a complexity of 204q15d.

Linearization equations attack. We have verified using Magma that there are no first order
linearization equations. Regarding second order linearization equations, we point out an important
contrast between our system and MFE. In MFE, each ψi has rank 4, and can therefore be expressed
as the determinant of a 2× 2 matrix. The fi are defined as elements of the product of two of these
matrices, and the identity (3) holds by the multiplicative property of the determinant. Since the ψi

in our system have rank 8, no simple matrix decomposition exists, as each ψi has an expression as
the sum of two 2×2 determinants. Further, the fi are not defined as elements of a matrix product,
so the multiplicative property of the determinant is of no use.

However, the above argument obviously cannot completely rule out the possibility of second
order linearization equations. A search for second order equations would involve solving a linear
system in approximately

(
56d+1

1

)(
74d+2

2

)
coefficients. So, for d = 1, naive Gaussian elimination

would require > 251 field operations, and for d = 2, it would require > 260 field operations.

5.2. Algebraic attacks. At the heart of these attacks are the F4 and F5 algorithms of Faugére
[Fau99] and [Fau02], as well as the XL algorithm of Courtois et al. [CKPS00]. There have been
some recent contributions to complexity estimates for these algorithms, assuming general systems.

Barget et al. [BFSY05] give the total number of operations in k for F5 (and hence XL) as

O

((
n+ dreg

n

)ω)
,

where ω is the exponent in Gaussian reduction and dreg is the degree of regularity of the ideal formed
by the polynomials in the system, given by the degree of the first term with negative coefficient in
the expansion of ∏m

i=1(1− zdi)
(1− z)n

, (10)

where di is the total degree of the i-th polynomial. But since each of our polynomials have total
degree two, (10) simplifies to (1− z)m−n(1 + z)m. For us, if we take the degree of F over k to be 1
(so m = 74 and n = 56), we have dreg = 15. Hence the attack requires 2ω log (71

56) > 249ω operations
in k. If we instead take the degree of F over k to be 2, dreg becomes 26, and the attack requires
> 292ω operations.

One other attack of note in this category is the attack of Joux et al. [JJMR05] against an earlier
tractable rational map cryptosystem of Wang and Chen [WC04]. The authors exploit the fact
that within the central map, there is a smaller subsystem of 11 equations in 7 variables. However,
because of the design of our system, there appears to be no such overdetermined subsystem.

5.3. Parameters. Based on the preceding discussion, Table 1 presents security levels for different
choices of q = |k| and d = [F : k]. To compute the complexity of F5, we have used ω = 2.3.



14 GAO AND HEINDL

Table 1. Security

Claimed Input Output Parameters Complexity Key Size [kBytes]
Security [bits] [bits] q d F5 Rank/UOV Public Private

2113 896 1184 216 1 2114 2113 245 18
2212 1792 2368 216 2 2213 2212 1907 70
2114 1792 2368 232 1 2114 2209 490 36

5.4. Efficiency. Consider our proposed system with q = 216 and d = 1. We compare it to MFE-1,
which was shown to have a significant advantage over RSA-1024 in decryption speed [WYHL06].
Since MFE-1 uses a degree 4 extension of F216 , multiplications in the extension field require 42

operations over the base field. A rough count of multiplications over F216 yields about 2400 for
MFE-1 and 3200 for our system. We implemented both systems in a straightforward way using
Magma on a 1600MHz UltraSPARC IIIi. The results are recorded in Table 2.

Table 2. Implementation results

System Input Output Encryption Time Decryption Time
[bits] [bits] Central Map Total

MFE-1 768 960 52ms 2ms 2.7ms
Our System 896 1184 94ms 1.4ms 2.3ms

As expected, encryption in our system is slower since it uses 74 equations in 56 variables over
F216 , whereas MFE-1 uses 60 equations in 48 variables. However, even though the multiplication
count for our system is larger, decryption is actually faster. This is because the division and square
root operations are slower in the large extension field of MFE-1; furthermore, decrypting MFE-1
requires converting back and forth between the base field and the extension field.

6. Conclusion

6.1. Open questions. We pose the following open questions:
• How can we find all quadratic solutions to the general Diophantine equations (3) and (4)?
• One solution to (4) gives several possible cryptosystems. How can we effectively choose the

best one?
• What strategies can be formulated to help minimize the decryption failure rate?
• What other polynomial identities may be used to construct cryptosystems in the proposed

framework?
• Rather than having gi factor into two distinct quadratics, can we find gi =

∑
αjkYjYk = ψi,

or gi = ψ2
i ? This would make hi much simpler: hi = gi and hi = g

1/2
i , respectively, and the

first type of decryption failure would become irrelevant.
• A further generalization of the framework would be to omit the gi’s and simply require the

existence of rational functions hi ∈ F(Yn+1, . . . , Yn+`t) such that each hi(fn+1, . . . , fn+`t) is
quadratic in X1, . . . , Xn+`o, and could be used as a lock polynomial. Can other systems be
successfully created using this generalization?
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6.2. Concluding remarks. We have presented a new framework for multivariate public key cryp-
tosystems that combines the ideas of triangular and oil-vinegar systems. Also, we have proposed a
cryptosystem, based on a Diophantine equation, which implements the framework, and have shown
the system to be secure against known MPKC attacks. Our framework has much freedom, and
should provide a fertile ground for new research in the area of multivariate public key cryptography.

6.3. Acknowledgment. The authors would like to thank Jintai Ding, Zhuojun Liu, Zuowen Tan
and Mingsheng Wang for their help and encouragement throughout this work, and Jerome Hoffman
for a particularly inspiring lecture given at the Chinese Academy of Sciences in Beijing.
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