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Abstract

An explicit basis of incidence vectors for the p-ary code of the design of points
and hyperplanes of the affine geometry AGm(Fp) for any prime p and any integer
m ≥ 2 is obtained, which, as a corollary, gives a new elementary proof that this
code is a generalized Reed-Muller code. In the proof a class of non-singular matrices
related to Vandermonde matrices is introduced.

1 Introduction

If V is a vector space of finite dimension m over a finite field Fq then the projective
geometry P(V ) and the affine geometry A(V ) provide designs by taking the structures
consisting of points and subspaces or flats of a fixed dimension. The codes over Fp,
where q is a power of p, are the well known Reed-Muller (for q = 2) or generalized Reed-
Muller codes, as was proved first in a series of papers by Delsarte [11, 12], Goethals
[13] and MacWilliams [10] (see [2, Chapters 5 and 6],or [3], for detailed references).
The dimensions of these codes are known from the general definitions of the Reed-
Muller or generalized Reed-Muller codes. The minimum weight and the nature of the
minimum-weight vectors in the special cases when these codes are the codes of designs
from geometries is also known: the minimum-weight vectors are the scalar multiples
of the incidence vectors of the blocks of the design, i.e. of the flats or subspaces. Thus
these codes are all known to be spanned by minimum-weight vectors. However, apart
from a few somewhat isolated cases, an explicit basis of minimum-weight vectors is
not known, and the general aim here will be to find suitable bases of such vectors, in
convenient geometric or algebraic terms. We exhibit such a basis for the affine, and
hence also the projective, designs of points and hyperplanes of geometries over prime
fields and will prove the following result:
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Theorem 1 Let D be the design AGm,m−1(Fp) of points and hyperplanes, i.e. (m−1)-
flats, in the affine space AGm(Fp) of dimension m over the prime field Fp. For 0 ≤
t ≤ µ = min(m,p− 1) define a set Kt of hyperplanes with equations as follows:

K0 = {X1 + 1 = 0}

Kt = {
t∑

j=1

ajXij + b = 0}

for all choices of {i1, i2, . . . , it, a1, a2, . . . , at, b} such that 1 ≤ i1 < i2 < . . . < it ≤ m,

1 = a1 < a2 < . . . < at ≤ p− 1 and b = 0 or 1 < b < a2. (When t = 1 we interpret a2

as equal to p in the last inequality.)
If K =

⋃µ
t=0Kt, then the incidence vectors of the hyperplanes in K form a basis for

the p-ary code Cp(D) of dimension
(p+m−1

m

)
.

As a corollary we obtain a basis for the symmetric design of points and hyperplanes
in PGm(Fp). Here we use the space spanned by a column vector 〈(a0, a1, . . . , am)t〉 to
denote the hyperplane with equation

∑m
i=0 aiXi = 0.

Corollary 2 A basis for the p-ary code of PGm,m−1(Fp) for any m and p is given by the
incidence vectors of the following set H of hyperplanes, using homogeneous coordinates
and writing

ei−1 = (0, 0, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0)t for i = 1, . . . ,m+ 1 :

H =
⋃µ
i=0Hi where

H0 = {〈e0 + e1〉, 〈e0〉},

and Ht, for 1 ≤ t ≤ µ = min(m,p− 1), is the collection of hyperplanes

〈be0 +
t∑

j=1

ajeij 〉

for all choices of {i1, i2, . . . , it, a1, a2, . . . , at, b} such that 1 ≤ i1 < i2 < . . . < it ≤ m,

1 = a1 < a2 < . . . < at ≤ p− 1 and b = 0 or 1 < b < a2. (When t = 1 we interpret a2

as equal to p in the last inequality.) The code has dimension
(p+m−1

m

)
+ 1.

As a by-product of Theorem 1 we obtain an elementary proof that the code of the affine
design of points and hyperplanes is a generalized Reed-Muller code for the prime case:
see Corollary 8. There are also applications of our bases to visible sets, in the sense of
Ward [20]: see the note after Corollary 8 in Section 4.

Basis vectors for Reed-Muller and generalized Reed-Muller codes are given in the
general case in terms of polynomial functions. The geometrical interpretation of these
bases might not be immediately clear. In certain cases, when the geometry is over a
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prime field, the group algebra can give a more convenient basis, viz. the Jennings basis
[14], but again the geometrical interpretation of this basis is not, in general, helpful.
In the general case of a finite-geometry design, it is not immediate how a basis for the
code can be chosen from the incidence vectors of the design. In the prime case results of
Moorhouse [19] and of Blokhuis and Moorhouse [6] give methods of choosing a basis of
incidence vectors of lines for the desarguesian planes of prime order p. For the general
designs of points and lines over Fp, only the Jennings basis always applies and this is
not a basis of minimum weight vectors except in some special cases.

We will survey the known results below, after a section to explain the terminology.
The proof of the theorem will follow in the final section, where we reduce the proof
to showing that a class of matrices related to Vandermonde matrices are non-singular:
see Proposition 6.

2 Terminology and background

The notation and terminology will mostly be consistent with that used in Assmus and
Key [2].

An incidence structure D = (P,B) with point set P of size v and block set B is
a t-(v, k, λ) design if every block is incident with precisely k points and any set of t
distinct points are together incident with precisely λ blocks. For any field F , FP is the
vector space of functions from P to F with basis given by the characteristic functions
of the singleton subsets of P. If D = (P,B) is an incidence structure, the code CF (D)
of D over F is the subspace of FP spanned by the characteristic functions of the blocks
of D. If F = Fp we write also Cp(D) or C(D) and its dimension is referred to as the
p-rank of D. The weight of a vector is the number of its non-zero entries. Clearly the
code from a design will have minimum weight at most the block size k. The vector in
FP , all of whose entries are 1, is called the all-one vector and denoted by .

Let V be a vector space of dimension m over a finite field F . For 1 ≤ t ≤ m,
we denote by AGm,t(F ) the design of points and t-flats (i.e. t-dimensional cosets) in
the affine geometry AGm(F ). Similarly, for 1 ≤ t ≤ m − 1, denote by PGm−1,t(F )
the design of points and t-dimensional projective subspaces of the projective geometry
PGm−1(F ) defined by V . For these designs it is well known that the codes need to
be over a prime field of the same characteristic as that of F to be of interest: see [2].
The codes of these designs are the Reed-Muller codes in the case F = F2, or various
generalized Reed-Muller codes, as was proved mostly by the work of Delsarte et al.
[11, 12, 13, 10]. These results are described in [2, Chapter 5] or in [3], but we give a
brief definition here in terms of the so-called m-variable approach involving monomials,
as we shall need this concept in the proof of our theorem. Proofs of the statements can
be found in [2, Chapter 5] or in [3].

Let q = pt, where p is a prime. Set E = Fq and let V = Em be a vector space
of dimension m over E of m-tuples, with the usual standard basis. The codes will be
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codes over E, and the ambient space will be the function space EV where members
f ∈ EV are functions of the m-variables denoting the coordinates of a variable vector
in V , i.e. if x = (x1, x2, . . . , xm) ∈ V, then f ∈ EV is given by

f = f(x1, x2, . . . , xm)

and the xi take values in E. Since every element in E satisfies aq = a, the polynomial
functions in the m variables can be reduced modulo xqi − xi and we form the setM of
qm monomial functions

M = {xi11 x
i2
2 . . . x

im
m | 0 ≤ ik ≤ q − 1, k = 1, 2, . . . ,m}.

For a monomial in M the degree ρ is the total degree, i.e. ρ =
∑m
k=1 ik and clearly

0 ≤ ρ ≤ m(q − 1). M forms another basis for EV . The polynomial 1 − (xi − a)q−1 is
the characteristic function of the (m− 1)-flat in Em given by the equation Xi = a.

Definition 1 Let E = Fq, where q = pt and p is a prime, and set V = Em. Then
for any ρ such that 0 ≤ ρ ≤ m(q− 1), the ρth order generalized Reed-Muller code
RE(ρ,m) over E is the subspace of EV of all reduced m-variable polynomial functions
of degree at most ρ. Thus

RE(ρ,m) = RFq(ρ,m) =

〈
xi11 x

i2
2 . . . x

im
m ∈M|

m∑
k=1

ik ≤ ρ

〉
.

For any ρ such that 0 ≤ ρ ≤ m(q − 1),

dim(RFq(ρ,m)) =
ρ∑
i=0

m∑
k=0

(−1)k
(
m

k

)(
i− kq +m− 1

i− kq

)
.

Also, for 0 ≤ r ≤ m and ρ ≥ r(q − 1), RFq(ρ,m) contains the incidence vector of any
(m− r)-flat of AGm(Fq), since the polynomial function that gives the incidence of an
(m− r)-flat with equations

m∑
j=1

aijXj = wi, for i = 1, 2, . . . , r

where all aij and wi are in Fq is

p(x1, . . . , xm) =
r∏
i=1

1− (
m∑
j=1

aijxj − wi)
q−1

 ,
of degree r(q − 1).
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When q = p is a prime the codes in the affine case have been shown to be powers
of the nilpotent radical of a group algebra: see a treatment of this aspect in [3]. Let G
be an additive elementary abelian p-group of order pm and F a field of characteristic
p, and let F [G] denote the group algebra of G over F . Then we identify G with the
underlying vector space Fmp . If M denotes the nilpotent radical of F [G], then we have,
following Delsarte [12] and Charpin [8]:

Result 1 For any prime p, the p-ary code of the design AGm,r(Fp) is RFp((m−r)(p−

1),m) which is equal to M r(p−1).

Notice of course that the codes in the projective case are all cyclic, and that a
generator polynomial can be given quite easily, and thus also a generator matrix can
be found: see [2, Chapter 5]. Similarly, the definition of the generalized Reed-Muller
codes allows a basis to be constructed. However, none of these bases have a convenient
geometrical description, and do not, in general, consist of minimum-weight vectors.

The theorem of Jennings gives a basis for any of the generalized Reed-Muller codes
when p is prime, as follows:

Result 2 (Jennings) Let G be an additive elementary abelian p-group of order pm

and F a field of characteristic p. Denote a basis for the group algebra F [G] by {Xg | g ∈
G}. For any basis {g1, . . . , gm} of G, the pm elements

m∏
ν=1

(Xgν − 1)eν

where 0 ≤ eν < p form a linear basis for F [G]. Further,

{
m∏
ν=1

(Xgν − 1)eν |
m∑
ν=1

eν ≥ t, 0 ≤ eν < p}

form a basis of M t, for t = 1 . . . m(p− 1), where M is the radical of F [G].

Such a basis for F [G] was exhibited by Jennings [14] and is called a Jennings
basis of the group algebra, although it first appeared in the work of Lombardo-Radice
[18]. In particular, when t = r(p − 1), and F = Fp, then M r(p−1) = Cp(AGm,r(Fp)),
by Result 1. These are all Reed-Muller or generalized Reed-Muller codes, as described
above. Those elements of the basis that have eν = (p − 1) for precisely r values of
ν are incidence vectors of subspaces of dimension r. See [3] or [1] for more details
and properties of the Jennings basis. We mention also that Beth [5] uses the discrete
Fourier transform to show that the incidence vectors of the lines of the affine geometry
generate the code Mp−1.

Finally we give the terminology (based on that given in [9]) for the ordering of
the rows and columns of the matrix defined in Proposition 6. Let n = (n1, n2, . . . nr)
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and m = (m1,m2, . . . ,mr) be r-tuples of non-negative integers. Using [9], inverse
lexicographic order on these r-tuples defines n > m if the right-most non-zero entry
of n − m is positive. In contrast, inverse reverse lexicographic order on these
r-tuples defines n > m if the right-most non-zero entry of n−m is negative.

3 Known bases of minimum-weight vectors

Bases of incidence vectors of blocks for the p-ary codes of AGm,t(Fq) and PGm,t(Fq),
where q is a power of p, are known in the following cases:

• AGm,r(F2) and PGm,r(F2) all r and all m: see Proposition 3;

• PG3,2(F2s): see [4];

• AGm,1(F3) and PGm,1(F2) all m: see [16, 17];

• AG2,1(Fp) and PG2,1(Fp) all p: see [19, 6] and Result 3 below.

See also [15] for a survey.
The Jennings basis allows us to obtain a basis of minimum-weight vectors for the

binary code of AGm,r(F2) for any m and r, i.e. for the Reed-Muller code R(m− r,m).
(See Note 2 at the end of Section 4 for a further correspondence between the group-
algebra notation and the incidence vectors of hyperplanes.)

Proposition 3 For any r and any m such that 1 ≤ r < m the binary code of
AGm,r(F2) has a basis of incidence vectors of r-flats corresponding to all the following
elements of the group algebra:

r∏
j=1

(Xgij − 1)
r+t∏

j=r+1

X
gij (1)

for 0 ≤ t ≤ m − r, where 1 ≤ i1 < i2 < . . . < ir+t ≤ m, and where {g1, . . . , gm} is a
basis for the additive elementary abelian 2-group that acts as the translation group of
Fm2 . The dimension of the code is

∑r
s=0

(m
s

)
.

The group-algebra element (1) corresponds to the incidence vector of the r-flat given
by the m− r equations

Xi = 0 for i 6∈ {i1, . . . , ir+t} and Xi = 1 for i ∈ {ir+1, . . . , ir+t}

with the same conditions on the ij and t as above.

Proof: The proof is really almost immediate from the Jennings basis in the binary
case. 2

The basis obtained by Moorhouse [19] for the desarguesian affine plane of prime
order is as follows:



4 PROOF OF THE THEOREM 7

Result 3 Let π denote the desarguesian affine plane of prime order p. A basis for the
code Cp(π) can be found by taking the incidence vectors of the following lines: all the p
lines from any one parallel class; any p− 1 lines from any other parallel class; and so
on, until a single line is chosen from one of the final two parallel classes, and no lines
are chosen from the remaining class. This gives

p+ (p− 1) + (p− 2) + · · ·+ 1 =
1

2
p(p+ 1) =

(
p+ 1

2

)

lines, whose incidence vectors form a basis for Cp(π).

In the case m = 2 our bases are all of this type.
A different basis of minimum-weight vectors for PG2,1(Fp) (and hence for the affine

case as well) is described by Blokhuis and Moorhouse [6] and involves any conic in the
plane. In [17] and [16] bases for the codes of Steiner triple systems arising from finite
geometries, i.e. PGm,1(F2) and AGm,1(F3), are described.

4 Proof of the theorem

We now proceed to the proof of the theorem, using the monomial basis. In terms of
the monomial basis for RFp(p− 1,m), the incidence vector of the hyperplane

t∑
j=1

ajXij + b = 0

is given by the function in m variables

h(x1, x2, . . . , xm) = 1− (
t∑

j=1

ajxij + b)p−1.

Thus the monomials in the terms of Kt have at most t of the variables xi appearing.
First notice that for Kt we can choose the sets τ = {i1, . . . , it} in

(m
t

)
ways,

and for each τ we can choose the distinct coefficients {b, a2, . . . , at} from the ele-
ments {0, 2, . . . , p − 1} in

(p−1
t

)
ways, so we have |Kt| =

(m
t

)(p−1
t

)
, and thus |K| =∑µ

t=0

(m
t

)(p−1
t

)
=
(p+m−1

m

)
, which is the required dimension of the code.

In order to prove our theorem we will express our sets Kt in monomial notation;
then we will form a

(p+m−1
m

)
×
(p+m−1

m

)
transformation matrix A with rows indexed by

the elements of Kt for t ∈ {0, 1, 2, . . . , µ} and with columns indexed by the monomials
on x1, x2, . . . , xm, in RFp(p− 1,m) starting with 1, then those in one variable xeii , then
those in two xeii x

ej
j , and so on. Further, within those monomials in t variables, we start

with those of the form xe1i1 . . . x
et
it

where
∑t
i=1 ei = p−1. We wish of course to show that
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A is non-singular over Fp, and thus that all these monomials are in the code spanned
by K.

Next we need to partition our matrix A and order the hyperplanes in each section
Kt in a particular way. The vectors from K should be arranged according to ascending
values of t. For t = 0 we replace the incidence vector of X1 + 1 = 0 with the all-one
vector ; this is allowed since the sum of all the incidence vectors of the hyperplanes
X1 + b = 0 for b ∈ Fp is , which corresponds to the constant function 1. This
makes the first row of A have a single entry 1 in the left-most position and 0 in all
the other positions. For each value of t ≥ 1 we collect all those with the same set
τ = {i1, i2, . . . , it} and form

(m
t

)
square

(p−1
t

)
×
(p−1
t

)
matrices, At,τ . Furthermore, we

take for the first
(p−2
t−1

)
rows of At,τ the hyperplanes with b = 0. In this way we will have

the matrix A partitioned with square submatrices of size
(p−1
t

)
×
(p−1
t

)
on the diagonal,

for t = 0 to µ, with only zero entries above this diagonal. If we can show that the
determinant of each of these submatrices is nonzero, then the determinant of A will be
nonzero. There are µ + 1 distinct submatrices, since all those for the same value of t
will be the same. Thus let us write At instead of At,τ for the square submatrix for t,
for t = 0, . . . , µ, and further notice that for t ≥ 1 At is partitioned into submatrices
with square submatrices on the diagonal corresponding to the choice of b = 0 in the
first rows of At. The monomials involved with the values b = 0 must all have total
degree p − 1 and thus again we will get a block of zeros above the second submatrix,
i.e. we get, for 1 ≤ t ≤ µ,

At =

[
Bt 0
? Ct

]
where Bt and Ct are square of size bt and ct, respectively, and bt + ct =

(p−1
t

)
. Define

C0 to be A0.

Lemma 4 For 1 ≤ t ≤ µ, the matrix Bt is equivalent to Ct−1 under a monomial
transformation.

Proof: Since the matrices At for fixed t are independent of the choice of the set
τ = {i1, . . . , it} we can take the sets {1, . . . , t − 1} and {1, . . . , t} for Ct−1 and Bt,
respectively. The matrix Bt has terms from the expansion of the polynomials 1 −
(
∑t
j=1 ajxj)

p−1 where 1 = a1 < a2 < . . . < at ≤ p − 1, and we only take the terms
involving all the t variables; since there is no constant term, all the terms will have full
degree p− 1.

Further, the matrix Ct−1 has terms from the expansion of the polynomials 1 −
(
∑t−1
j=1 ajxj + b)p−1 where 1 = a1 < b < a2 < . . . < at−1 ≤ p− 1 where we take only the

terms involving all the t− 1 variables and of less than full degree. This means that we
take the same selection of terms as for Bt, with b taking the role of the tth variable.

If the rows of Bt are arranged such that we start with a2 = 2 and the rows of Ct−1

are arranged starting with b = 2, it is easy to see that the rows and columns can be
arranged so that we have exactly the same matrices. 2
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Lemma 5 For 1 ≤ t ≤ µ, the matrix Ct is equivalent to a matrix Mt of size
(p−2
t

)
with columns indexed by the distinct t-tuples (τ1, τ2, . . . , τt) where 0 ≤ τi and 0 ≤∑t
i=1 τi ≤ p− 2− t and with rows indexed by the distinct t-tuples (a1, a2, . . . , at) where

2 ≤ a1 < a2 < . . . < at ≤ p − 1 and with entry at column (τ1, τ2, . . . , τt) and row
(a1, a2, . . . , at) given by

Mt(a1, a2, . . . , at; τ1, τ2, . . . , τt) = aτ11 a
τ2
2 . . . aτtt .

Proof: Recall that Ct is of size ct =
(p−1
t

)
−
(p−2
t−1

)
=
(p−2
t

)
and has terms from the

expansion of 1 − (
∑t
j=1 ajxj + b)p−1. Taking out constant non-zero factors from the

rows and columns gives us the matrix Mt. 2

To complete the proof of the theorem we thus need to show that the matrix Mt is
non-singular for every t. We achieve this by formulating a more general proposition
which is of interest in its own right. Notice that here we assume that 0i = 1 for i = 0.

Proposition 6 For any integers m ≥ 0 and r ≥ 1, and any m + r elements
c1, c2, . . . , cm+r from a field F , define a matrix M(m, r) as follows: the rows are indexed
by r-tuples of integers (a1, a2, . . . , ar) with 1 ≤ a1 < a2 < . . . < ar ≤ m + r, and the
columns are indexed by r-tuples of integers (b1, b2, . . . , br) where bi ≥ 0 for 1 ≤ i ≤ r

and
∑r
i=1 bi ≤ m, and the entry at row (a1, a2, . . . , ar) and column (b1, b2, . . . , br) is

M(a1, a2, . . . , ar; b1, b2, . . . , br) =
r∏
i=1

cbiai .

Then
det(M(m, r)) =

∏
1≤i<j≤m+r

(ci − cj)
(m+r−1−j+i

r−1 ),

where the ordering of the columns is inverse lexicographic and the ordering of the rows
is inverse reverse lexicographic.

Proof: (See the end of Section 2 for our terminology for the ordering of the rows and
columns.) There is a one-one correspondence between the r-tuples (a1, a2, . . . , ar) and
(b1, b2, . . . , br) given by

a1 = 1 + b1, a2 = 2 + b1 + b2, . . . , ar = r + b1 + b2 + · · ·+ br,

or
b1 = a1 − 1, b2 = a2 − a1 − 1, . . . , br = ar − ar−1 − 1.

Thus M(m, r) is a square matrix of size
(m+r

r

)
×
(m+r

r

)
.

The proof is by induction on r. When r = 1, M(m, 1) is an (m + 1) × (m + 1)
Vandermonde matrix, and the proposition holds. Assume that the proposition holds
for r − 1 and any m. We prove it now for r.
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First divide M(m, r) into (m + 1)2 submatrices Mi,j according to the values of ar
and br: the submatrices in the first rows have ar = r + m, in the next set of rows
ar = r + m − 1, and so on until the last row has ar = r. The rows in each block
of submatrices with constant value of ar are further ordered by decreasing values of
ar−1, and so on. Similarly, the submatrices in the first columns have br = 0, in the
next br = 1, and so on, until the last column has br = m. Also write n = m + r for
convenience. Then

M(m, r) =



br = 0 br = 1 . . . br = j . . . br = m ar
M0,0 M0,1 . . . M0,j . . . M0,m n
M1,0 M1,1 . . . M1,j . . . M1,m n− 1

...
...

...
...

...
Mi,0 Mi,1 . . . Mi,j . . . Mi,m n− i

...
...

...
...

...
Mm,0 Mm,1 . . . Mm,j . . . Mm,m r


,

Thus Mi,j has ar = r + m − i = n − i and br = j. The number of columns in
Mi,j is equal to the number of (r − 1)-tuples (b1, b2, . . . , br−1) such that bt ≥ 0 and∑r−1
t=1 bt ≤ m − j, which is

(m−j+r−1
r−1

)
for 0 ≤ j ≤ m. The number of rows of Mi,j is

equal to the number of (r − 1)-tuples (a1, a2, . . . , ar−1) such that 1 ≤ a1 < a2 < . . . <

ar−1 ≤ r + m − i − 1, which is
(r+m−i−1

r−1

)
for 0 ≤ i ≤ m. Setting dj =

(m−j+r−1
r−1

)
for 0 ≤ j ≤ m, we have that Mi,j is a di × dj matrix for 0 ≤ i, j ≤ m. Clearly,
d0 > d1 > . . . > dm = 1. For each column of Mi,j indexed by (b1, b2, . . . , br−1, j), Mi,0

has a corresponding column indexed by (b1, b2, . . . , br−1, 0), where
∑r−1
t=1 bt ≤ m − j.

Since
M(a1, a2, . . . , ar; b1, b2, . . . , j) = cjarM(a1, a2, . . . , ar; b1, b2, . . . , 0),

we see that Mi,j is a submatrix of Mi,0 with a factor cjm+r−i, where the submatrix

consists of the columns of Mi,0 indexed by (b1, b2, . . . , br−1, 0) with
∑r−1
t=1 bt ≤ m − j.

Now we temporarily reorder the columns of each block of submatrices of M(m, r) by
decreasing values of

∑r−1
t=1 bt and by inverse lexicographical order (see Section 2) for

(b1, b2, . . . , br−1, 0) with fixed sum. Then the columns of Mi,j have exactly the same
order as the last dj columns of Mi,0 for 0 ≤ i ≤ m and 0 ≤ j ≤ m. Thus

Mi,j = cjn−iMi,0J0,j ,

where, for any k < j,

Jk,j =

[
0
Idj

]
is a dk × dj matrix with the first (dk − dj) rows equal to zero, and the last dj rows
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forming the identity matrix Idj . Writing J0,j = Jj we have

M(m, r) =



M0,0 cnM0,0J1 c2nM0,0J2 . . . cjnM0,0Jj . . . cmnM0,0Jm
M1,0 cn−1M1,0J1 c2n−1M1,0J2 . . . cjn−1M1,0Jj . . . cmn−1M1,0Jm

...
...

...
...

...

Mi,0 cn−iMi,0J1 c2n−iMi,0J2 . . . cjn−iMi,0Jj . . . cmn−iMi,0Jm
...

...
...

...
...

Mm,0 crMm,0J1 c2rMm,0J2 . . . cjrMm,0Jj . . . cmr Mm,0Jm


.

Now perform column operations on the blocks of M(m, r). Since Jj−1Jj−1,j = Jj for
1 ≤ j ≤ m, we can eliminate the submatrices in the first row by column operations on
the blocks. For j from m to 1, multiply column j − 1 by −cnJj−1,j on the right and
add to column j. Writing ei = (cn−i − cn) for i = 1 to m, the matrix becomes

M0,0 0 . . . 0 . . . 0

M1,0 e1M1,0J1 . . . cj−1
n−1e1M1,0Jj . . . cm−1

n−1 e1M1,0Jm
...

...
...

...

Mi,0 eiMi,0J1 . . . cj−1
n−ieiMi,0Jj . . . cm−1

n−i eiMi,0Jm
...

...
...

...
Mm,0 emMm,0J1 . . . cj−1

r emMm,0Jj . . . cm−1
r emMm,0Jm


.

Note that M0,0 = M(m, r − 1) is a square matrix defined on c1, . . . , cm+r−1. Taking
the determinant we have

det(M(m, r)) =
m∏
i=1

edii det(M0,0) det(A)

where

A =


M1,0J1 . . . cj−1

n−1M1,0Jj . . . cm−1
n−1 M1,0Jm

...
...

...

Mi,0J1 . . . cj−1
n−iMi,0Jj . . . cm−1

n−i Mi,0Jm
...

...
...

Mm,0J1 . . . cj−1
r Mm,0Jj . . . cm−1

r Mm,0Jm

 .

Continue with the Gauss-like elimination to obtain a diagonal block matrix. We obtain

det(M(m, r)) = det(M0,0)
∏

r≤i<j≤n

(ci − cj)
dn−i

m∏
i=1

det(Mi,0Ji).

We now restore our original ordering of columns, and note that for 1 ≤ i ≤ m we have
Mi,0Ji = M(m− i, r − 1) defined on c1, . . . , cm−i+r−1.

We thus get a recursive formula:

det(M(m, r)) =
m∏
k=1

det(M(k, r − 1))
∏

r≤i<j≤m+r

(ci − cj)
dm+r−i , (2)
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where dj =
(m−j+r−1

r−1

)
so that dm+r−i =

(i−1
r−1

)
, and we interpret det(M(k, 0)) as 1, and

note that det(M(0, r)) = 1 for all r ≥ 1. Induction and the use of the identity(
m

n

)
=

m−1∑
i=n−1

(
i

n− 1

)
,

allow us to obtain, from the identity (2), the formula given for the determinant. 2

Since
(m−j+r−1+i

r−1

)
= 0 if j − i > m, we obtain

Corollary 7 The matrix M(m, r) is non-singular if and only if any m+1 consecutive
elements from the sequence c1, c2, . . . , cm+r are distinct.

The matrix we need for the theorem is simply a special case of the matrix M(m, r)
in Proposition 6, with F = Fp, r = t, m = p− 2− t, bi = τi, and cai = αai where α is
a primitive element for the field. Thus the theorem is also now proved. 2

We also have a new elementary proof of the prime case of a well-known result (see
[2, Corollary 5.7.1] or [1] for references to other proofs):

Corollary 8 For any m ≥ 2 and any prime p, the p-ary code of the affine-geometry
design AGm,m−1(Fp) of points and hyperplanes of the affine geometry AGm(Fp) over
the prime field Fp is the p-ary generalized Reed-Muller code RFp(p− 1,m).

Proof: The code of the design is evidently inside the code RFp(p − 1,m) since the
incidence vector of every block is. However, the non-singularity of the matrix A of
transformation to the monomial basis shows that the dimensions are the same, and the
codes are thus equal. 2
Note:

1. It seems to be the case that our bases provide visible sets (in the sense of Ward
[20]) in the ambient space F p

m

p , for any fixed prime p, by concatenating all our
bases for the affine spaces of dimension k where 2 ≤ k ≤ m, and inserting zeros
in the adjoined positions. This is equivalent to adding m − k equations Xi = 0
for i = k+1 to m for each hyperplane in the k-dimensional space, for 2 ≤ k ≤ m.
Then for any subset S of vectors from this sequence, the minimum weight of the
code spanned by S should be the minimum weight of the vectors in S. This
indeed appears to be true but we do not have a complete proof.

2. In the group algebra, the incidence vector of the hyperplane ((m−1)-flat) H with
equation

t∑
j=1

ajXij + b = 0
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is the element

m∏
i6∈τ

(Xgi − 1)p−1
t∏

j=2

(X−ajgi1+gij − 1)p−1X−bgi1 =
∑
h∈H

Xh

of the group algebra, where τ = {i1, i2, . . . , it}, and using the same notation as
in Sections 2 and 3. This is an element of M (m−1)(p−1), so that we get Result 1
for this case again, by a dimension argument.
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