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Abstract

A deterministic polynomial time algorithm is presented for finding the
distinct-degree factorization of multivariate polynomials over finite fields.
As a consequence, one can count the number of irreducible factors of poly-
nomials over finite fields in deterministic polynomial time, thus resolving
an open problem of Kaltofen from 1987.

1. Introduction

It is a classical result in algorithmic number theory that one may compute the
distinct-degree factorization of a univariate polynomial over a finite field in deter-
ministic polynomial time. For a polynomial f of degree n this is a factorization
of the form f =

∏n
d=1 f [d] where f [d] is the product of all irreducible factors

of f of degree d. That this may be done follows easily from the theory of fi-
nite field extensions; von zur Gathen and Gerhard (1999, notes to section 14)
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trace the standard algorithm back to C. F. Gauss. For polynomials in more than
one variable no such analogous theory is available. Moreover, a straightforward
approach based upon computing the distinct-degree factorization of some uni-
variate image of a multivariate polynomial fails. We take a different approach
and present a deterministic polynomial time algorithm for distinct-degree fac-
torization of multivariate polynomials over finite fields, which does not use any
univariate factorization subroutine. The algorithm is based upon earlier work of
Kaltofen, who was able to show that one may test irreducibility of multivariate
polynomials in deterministic polynomial time (Kaltofen 1987). In the same pa-
per, Kaltofen asks whether it is also possible to count the number of irreducible
factors; that this may be done is a consequence of our more general result.

Our paper is organised in the following way. Section 2 contains preliminary
results on linear systems over polynomial algebras. In Section 3 we describe an
algorithm for distinct-degree factorization, based upon the method of Kaltofen,
which uses a randomised univariate factoring algorithm as a subroutine. Next
in Section 4 we modify this algorithm using the methods of Section 2 so as to
remove the need for any univariate factorization, just computing gcds instead.
As in (Kaltofen 1987) for simplicity we shall focus on the bivariate case; the
method extends to all multivariate polynomials, and we shall briefly discuss this
at the end of the paper.

2. Linear systems over polynomial algebras

In this section we consider homogeneous linear systems over rings of the form

Rf := Fq[z]/(f(z)) ∼=
r⊕

j=1

Fq[z]/(fj(z))

where f ∈ Fq[z] is a squarefree polynomial of degree n with irreducible factors
fj. The Berlekamp subalgebra of Rf is

Bf := {g ∈ Rf | gq = g}.
We have

Bf
∼=

r⊕
j=1

Bfj

and each Bfj
∼= Fq. We shall denote by πfj

the projection of Rf onto the jth
summand Fq[z]/(fj(z)), and also the restriction of this map to Bf (which has
codomain Bfj

∼= Fq). Thus for g ∈ Rf ,

πfj
(g) := g mod fj.

Let L be a linear system given by

Lv = 0 (1)
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where L is a matrix with entries in Rf . This is a linear system over Rf , however
we wish to find solutions v to this system which have entries in Bf . Note the
embeddings Fq ⊆ Bf ⊆ Rf . The set of vectors with entries in Bf which are
solutions to L forms a Bf -module and also an Fq-vector space, under the usual
vector addition and multiplication by scalars. It will not in general be a Rf -
module, unless Bf = Rf . Note that not all sets of vectors with entries in Bf

which form a Fq-vector space necessarily form a Bf -module. For example, the
ring Fq itself is a Fq-vector space but not a Bf -module, unless Fq = Bf , and the
methods we discuss are not directly relevant to this situation.

Lemma 2.1: One may compute a basis over Fq of solutions to (1) with entries
in Bf in deterministic polynomial time.

Proof: Note that we have an explicit basis for Rf over Fq, namely 1, z, . . .,
zn−1 mod f where n is the degree of f . Since qth power is a linear map of Rf

over Fq, a basis for Bf over Fq can be computed in deterministic polynomial time
((Butler 1954; Lidl and Niederreiter 1983); the idea goes back to Karel Petr in
1937 as cited in (Schwarz 1956)). Now any solution v ∈ Bf to (1) must have en-
tries which are a linear combination of the r basis elements of Bf . If v has length
t as a vector over Bf , we can treat the coefficients of the combinations as rt un-
knowns. Then equation (1) can be expanded into a linear system over Fq in these
unknowns, so a basis for the solution space over Fq can be found in determinis-
tic polynomial time. Specifically, each row of the matrix L contributes n linear
relations on the rt unknown coefficients, obtained by considering coefficients of
the n basis monomials for Rf over Fq. 2

We now suppose that t(z) is an irreducible factor of f . Given L we denote by
Lt the system of linear equations over Rt obtained by projecting each matrix
entry in L under πt. We shall call this the projected system of L under πt. Once
again we wish to find solutions of Lt which are vectors over Bt

∼= Fq. Certainly
any solution v of L with entries in Bf will be sent under the map on vectors
induced by πt to a solution of Lt with entries in Bt. Moreover, this solution will
be non-zero if and only if t(z) does not divide all of the entries in v thought of
as polynomials in Fq[z]. Conversely, any solution to Lt with entries in Bt can be
lifted using the Chinese remainder theorem to a solution for L with entries in
Bf . Precisely, we take the unique lifting of each entry in the solution from Bt to
Bf which reduces to zero for all other projections πfj

(fj 6= t).
Our deterministic factoring method is based upon the following proposition.

Proposition 2.1: Let L be any linear system over Rf . Let S ⊆ {1, 2, . . . , r}
with the following properties: The dimension over Fq of the solution space in
Bfj

(∼= Fq) of the projected system Lfj
is non-zero if and only if j ∈ S. Then we

can compute in deterministic polynomial time the factorisation

f = (
∏
j∈S

fj)(
∏
j 6∈S

fj).
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Proof: Compute a basis over Fq for the space of solutions in Bf of the linear
system L over Rf . We claim the greatest common divisor h, say, of f and the
polynomials which occur as entries in the basis vectors is exactly∏

j 6∈S

fj.

To see this, suppose j ∈ S. Then there exists some non-zero solution v̄ of the
linear system Lfj

which can be lifted to a non-zero solution v of the linear system
L, as previous described. This solution of L must lie in the span of the basis
vectors, and thus if fj divided all the entries in the basis vectors we would have
that fj divides all the entries in v, but then v̄ = 0 — a contradiction. Hence fj

does not divide the greatest common divisor h. Now suppose that j 6∈ S, and
also that fj does not divide h. Then fj does not divide all the entries in the basis
vectors of the solution space of L. Thus there exists at least one basis element
which projects down to a non-zero solution of Lfj

under πfj
— a contradiction.

Thus h is as claimed.
Now one may compute the factor h in deterministic polynomial time using only

the deterministic algorithm for computing bases for L from Lemma 2.1, and the
euclidean algorithm for greatest common divisors of univariate polynomials. This
completes the proof. 2

3. Randomised factorization

We present a variation of Kaltofen’s algorithm (Kaltofen 1982; von zur Gathen
and Kaltofen 1985; Kaltofen 1985). For simplicity, we only give the version for
bivariate polynomials, but his algorithm works for polynomials with any number
of variables.

Following tradition, we shall give the definition of a nice polynomial. We shall
say that f ∈ Fq[y, x] of total degree n is nice if the reduction modulo y of f is
squarefree and of degree n. Note that factors of nice polynomials are also nice.

Algorithm 3.1 [Randomised Distinct-Degree Factorization]
Input: A nice polynomial f(y, x) ∈ Fq[y, x] of total degree n. A positive integer
m such that f has no factors of degree strictly less than m.
Output: Nice polynomials g, h ∈ Fq[y, x] and integer s which satisfy the following
conditions: g is a product of s irreducible polynomials of degree m, and f = gh
where h has no factors of degree strictly less than m+1. (Note that s may equal
0.)

Step 0: Set s ← 0, g ← 1, h ← f . Factor f(0, z) = f0(z) =
∏r

i=1 f
(i)
0 (z) using

a randomised algorithm and for each irreducible factor t(z) := f
(i)
0 (z) do Steps

1 and 2.

Step 1: [Approximate a root of f(y, x) in Rt[[y]] where Rt = Fq[z]/(t(z)).]
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Letting k = (2n − 1)n and a0 := z mod t ∈ Rt, by Newton iteration compute
a1, . . . , ak ∈ Rt such that

f(y, a0 + a1y + . . . + aky
k) ≡ 0 mod yk+1.

For 0 ≤ i ≤ m compute

α(i) := (a0 + . . . + aky
k)i mod yk+1 ∈ Rt[y].

Step 2: [Try to find a polynomial of degree ≤ m in Fq[y, x] for which α(1) is
the approximation of one of its roots.]
Compute a basis over Fq for solutions over Bt(∼= Fq) of the linear system Lt over
Rt given by

m∑
i=0

ui(y)α(i) ≡ 0 mod yk+1, (2)

where ui(y) ∈ Fq[y], degy(ui) ≤ (m − i), and the coefficients of ui(y) are the
unknowns. If there exists a non-zero solution {ui} then it is unique up to scaling
by Fq. In which case define

u =
m∑

i=0

ui(y)xi,

which is necessarily an irreducible factor of f of degree m whose reduction mod-
ulo y is divisible by t(x). Now check whether u|h, for we may have already found
this factor. If so set g ← gu, h ← h/u and s ← s + 1.

Step 3: Output g, h, s.

The justification of the correctness of this algorithm follows from Theorem 1
in (Kaltofen 1985). Comment must be made however on certain minor aspects
which distinguish this algorithm from the version in (Kaltofen 1985). First, we
take as an input assumption that f does not have any factors of degree less than
m, whereas in (Kaltofen 1985) m is increased from 1 until the first factor is found.
Second, we allow solutions to the linear system (2) in which um(y) may be zero.
In (Kaltofen 1985) the author fixes um(y) to be the unity in Fq. We remove this
restriction simply to make (2) a homogeneous system so the theory developed in
Section 2 directly applies. Indeed any solution will necessarily have um(y) 6= 0,
since factors of nice polynomials are nice. Note that only those irreducible factors
t(z) of degree not greater than m can possibly yield non-zero solutions to Lt.
Also each such factor can yield at most one non-zero solution, up to scaling, as
t(z) can occur as a factor of the reduction modulo y of at most one irreducible
factor of f . This justifies the claim on the uniqueness of u.

It is perhaps helpful to also explain precisely how Step 2 of the algorithm
relates to Section 2. The linear system Lt may be made into a more explicit
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linear system of the form “Lv = 0” by equating coefficients of each power of
y. In this case the matrix L would be of size (k + 1) × ((m + 1)(m + 2)/2)
with entries from Rt. Note also that the rather unwieldy sentence “Compute a
basis . . . ” could be replaced by “Solve the following linear system over Fq . . . ”.
However, we choose the more cumbersome version to preserve the analogy with
Section 2, and in preparation for Section 4.

As in (Kaltofen 1987) the problem is that the univariate factor t(z) cannot be
computed in deterministic polynomial time. Following Kaltofen, our approach is
to work in Rf0 = Fq[z]/(f0(z)) and construct an analogous linear system to (2),
only with solutions as vectors over the Berlekamp algebra Bf0 of Fq[z]/(f0(z)).

4. Deterministic distinct-degree factorization

We begin with nice polynomials.

Algorithm 4.1 [Deterministic Distinct-Degree Factorization]
Input: A nice polynomial f(y, x) ∈ Fq[y, x] of total degree n. A positive integer
m such that f has no factors of degree strictly less than m.
Output: Nice polynomials g, h ∈ Fq[y, x] and an integer s which satisfy the
following conditions: g is a product of s irreducible polynomials of degree m,
and f = gh where h has no factors of degree strictly less than m + 1. (Note that
s may equal 0.)

Step 1: [Approximate a root of f(y, x) in Rf0 [[y]] where Rf0 := Fq[z]/(f0(z))]
Define k := (2n−1)n and a0 := z mod f0(z) ∈ Rf0 . By Newton iteration compute
a1, a2, . . . , ak ∈ Rf0 such that

f(y, a0 + a1y + . . . + aky
k) ≡ 0 mod yk+1.

For 0 ≤ i ≤ m compute

α(i) := (a0 + . . . + aky
k)i mod yk+1.

Step 2: [Try to find a polynomial of degree ≤ m in Bf0 [y, x] for which α(1) is
the approximation of one of its roots, where Bf0 is the Berlekamp subalgebra of
Rf0 .]
Compute a basis over Fq of solutions over Bf0 to the homogeneous linear system
L over Rf0 given by,

m∑
i=0

ui(y)αi ≡ 0 mod yk+1, (3)

where the coefficients of ui(y) ∈ Bf0 [y], degy(ui) ≤ (m − i), are the unknowns.
If the dimension is zero then output “s = 0, g = 1, and h = f” and halt.
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Step 3: Compute the gcd of f0(z) and the entries of all basis elements of the
solution space of L, thought of as polynomials in Fq[z]. Denote this by h0 and
the cofactor of h0(z) in f0(z) by g0(z).

Step 4: We have the factorization f0(x) = g0(x)h0(x). Using Hensel lifting
compute a factorization f = gh with g ≡ g0 mod y and h ≡ h0 mod y. Output
g and h, and also s := degx(g0(x))/m.

Proposition 4.1: Algorithm 1 outputs correctly and runs in deterministic poly-
nomial time.

Proof: For each irreducible factor t(z) of f0(z), the linear system (2) is the
projection Lt of the linear system L defined by (3) under πt. (It was briefly
explained how to present these linear systems in the form “Lv = 0” in the
second paragraph following Algorithm 1 and we will not labour this point.) Now
Lt has a non-zero solution if and only if f has a factor of degree not greater than
m whose reduction modulo y is divisible by t(x). Such a factor must have degree
exactly m and be irreducible by the input assumption on f .

Thus we are in the situation of Proposition 2.1 and we may compute in deter-
ministic polynomial time the factorization

f0(z) = (
∏
j∈S

fj︸ ︷︷ ︸
g0

)(
∏
j 6∈S

fj︸ ︷︷ ︸
h0

)

where S is the set of all indices j such that the polynomial fj(x) is a divisor of the
reduction modulo y of an irreducible factor of f of degree m. We have that the
first factor g0(x) is exactly the product of all fj(x) such that f has an irreducible
factor of degree m whose reduction modulo y is divisible by fj. That is, g0(x) is
just the reduction modulo y of the product g, say, of all irreducible factors of f of
degree m. Hence using Hensel lifting we may recover in deterministic polynomial
time this factor g and its cofactor h, say, in f . Finally, we can compute the
number of irreducible factors of f of degree exactly m as degx(

∏
j∈S fj(x))/m.

This completes the proof. 2

Note that the above algorithm may be used to remove equal-degree irreducible
factors of a squarefree univariate polynomial in a somewhat different manner
from the usual method (von zur Gathen and Gerhard 1999, Section 14.2). It
is illuminating to describe the main features of the algorithm in this special
case: Given such a univariate polynomial f ∈ Fq[x] ⊆ Fq[y, x] we have that
f0 := f mod y = f . In Step 1 of the algorithm the approximate root α of f
in Rf [[y]] is just the exact root z mod f . In Step 2, in the linear system L we
may ignore higher powers of y, and the problem reduces to finding a sequence
of elements u0, u1, . . . , um ∈ Rf such that

∑m
i=0 uiz

i = 0 in Rf . Now suppose
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that fj is an irreducible factor of f of (total) degree m, and write fj =
∑m

i=0 vix
i

where vi ∈ Fq. For 0 ≤ i ≤ m, define ui as (0, 0, . . . , vi, . . . , 0) ∈ Bf
∼= ⊕r

i=1Fq,
where the non-zero entry is in the jth position. Then the sequence ui gives a
solution to our linear system. For this reason essentially, in Step 3 one recovers
the product of all irreducible factors of degree m of the univariate polynomial f .
Note that the above approach does not seem to lead to an asymptotically faster
algorithm than the current best (von zur Gathen and Shoup 1992; Kaltofen and
Shoup 1998).

Algorithm 1 may be iterated in a straightforward manner to compute the
complete distinct-degree factorisation of a nice bivariate polynomial. That is,
one starts with an arbitrary nice f taking m = 1 and by repeated application of
the algorithm with m incremented by one each time successively remove factors
of increasing degree. So we have

Proposition 4.2: There is an algorithm for computing the distinct-degree fac-
torisation of a nice polynomial in Fq[y, x] in deterministic polynomial time.

Now we show how to reduce general polynomials to nice ones. Let f ∈ Fq[y, x]
of total degree n. By the algorithm of Yun (Yun 1976), one can compute its
squarefree decomposition in deterministic polynomial time. Hence we may as-
sume that f is already squarefree in Fq[y, x].

For small q, say q < 2n2, since Berlekamp’s algorithm (Berlekamp 1967; Lidl
and Niederreiter 1983) for univariate polynomials runs in deterministic polyno-
mial time, Kaltofen’s original version of Algorithm 1 in the previous section can
factor f in deterministic polynomial time. So in this case one can certainly find
the distinct-degree factorization of f .

Assume that q ≥ 2n2. Consider the following substitution:

f̃ = f(y + ax + b, x)

for some a, b ∈ Fq. Certainly, any factorization of f gives a factorization of f̃ and
vice versa. Note that the coefficient of xn in f̃ is a polynomial h in a of degree
at most n, and

f̃0 = f(ax + b, x).

To make f̃ nice, we just need to pick a ∈ Fq such that h(a) 6= 0 and then find
b ∈ Fq such that

Resultantx(f̃0,
∂

∂x
f̃0) 6= 0,

which is a nonzero polynomial in b of degree at most n(2n − 1) < 2n2, since f
is squarefree in Fq[y, x]. Hence both a and b can be found after trying at most
2n2 elements in Fq. So a and b can be found in deterministic polynomial time.
Combining with Proposition 4.2, we have the following result.

Theorem 4.1: There is an algorithm for computing the distinct-degree factor-
ization of any polynomial in Fq[y, x] in deterministic polynomial time.



Gao, Kaltofen and Lauder: Deterministic factorisation 9

When the distinct-degree factorization of f is computed, it is simple to find the
number of irreducible factors of f .

Corollary 4.1: There is an algorithm for counting the number of irreducible
factors of any polynomial in Fq[y, x] in deterministic polynomial time.

This resolves an open problem posed by Kaltofen in (Kaltofen 1987).
Note that having obtained a distinct total degree factorisation, one may at-

tempt to find finer factorisations by considering different degree orderings. In the
algorithm we restrict to the standard degree ordering obtained by giving both
variables equal “weight” and defining the (total) degree of a polynomial to be
the greatest weight of any monomial. This is an inessential restriction, and our
algorithm works with different degree orderings, such as degree in x or degree
in y, or other degree orderings in which the two variables are assigned differ-
ent weights. The easiest way to obtain a nice input while accounting for these
degree orders is to work with a new main variable z and factor the tri-variate
polynomial f(az + b + y, z + x).

We should remark that the method applies equally well to polynomials with
more than two variables where one uses dense input size. The Newton approx-
imation in Step 1 of Algorithm 1 can be carried out similarly as in Kaltofen
(Kaltofen 1985) and gcds of multivariate polynomials can be computed in de-
terministic polynomial time (Brown 1971). Hence one can count the number of
irreducible factors of any multivariate polynomial, in the dense representation,
in deterministic polynomial time.
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