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Abstract. Ostrowski established in 1919 that an absolutely irreducible in-
tegral polynomial remains absolutely irreducible modulo all sufficiently large
prime numbers. We obtain a new lower bound for the size of such primes in
terms of the number of integral points in the Newton polytope of the polyno-
mial, significantly improving previous estimates for sparse polynomials.

1. Introduction

A polynomial f ∈ Z[x, y], absolutely irreducible over Q, is said to have a good
reduction at a prime p (or p is good for f) if it remains absolutely irreducible
modulo p; otherwise f is said to have a bad reduction at p (or p is bad for f).
In 1919, Ostrowski [6] proved that a multivariate integral polynomial, absolutely
irreducible over the rationals, has good reduction at all sufficiently large primes.
This well-known result motivates the search for lower bounds for such primes.

In 1976, Schmidt [11] gave a triple exponential bound for good primes based on
the total degree d > 0 of the polynomial f . He proved that f has a good reduction
at all primes p with

p > (4‖f‖1)
k2
k

,

where k =
(
d+1
2

)
and ‖f‖1 is the sum of the absolute values of its coefficients. A

substantial improvement of this result was given by Kaltofen [4] in 1985 (see also
[5]). For f monic in x he obtained

p ≥ (2d ·H(f))10d
8

,

where H(f) is the height of f , i.e. the maximum of the absolute values of its
coefficients. In 1986, Ruppert [8] presented a sharper estimate:

p > d3d
2−3 ·H(f)d

2−1.
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In 1997, Zannier [12] derived a bound for good primes in terms of the degrees of
f with respect to x and y:

p > e12n
2m2(4n2m)8n

2m ·H(f)2(2n−1)
2m,

where deg(f) = (m,n).1 His result was improved by Ruppert [9], who in 1999
obtained the estimate

p > [m(n+ 1)n2 + (m+ 1)(n− 1)m2]mn+(n−1)/2 ·H(f)2mn+n−1. (1)

In this paper we present a new lower bound that improves (1), specially when
f is sparse. Our estimate is given in terms of the bidegree of f and the number of
integral points in its Newton polytope, which gives a nice geometric visualization of
the values involved in the computation and allows the shape of f to be exploited.

The Newton polytope of a polynomial f =
∑
i,j aijx

iyj ∈ F[x, y], where F is

any field, is defined as the convex hull in the Euclidean plane R2 of the exponent
vectors (i, j) of all the nonzero terms of f . We denote it by P (f) (see Figure 1
for an example). Newton polytopes carry a lot of information about irreducibil-
ity and factorization of polynomials. Indeed, Gao [1] presents several criteria for
absolute irreducibility of polynomials based on the explicit construction of indecom-
posable polytopes, generalizing the well-known Eisenstein’s irreducibility criterion.
Also, Gao and Lauder [3] study computational problems about decomposition of
polytopes and polynomials. Here we show how Newton polytopes can be used to
estimate the size of the primes that preserve absolute irreducibility of polynomials.
Our main contribution is the following result.

Theorem 1. Let f =
∑
i,j aijx

iyj ∈ Z[x, y] be absolutely irreducible over Q with
bidegree (m,n), where m,n ≥ 1. Then f is absolutely irreducible over Zp for every
prime p such that

p >
(√
m2 + n2 · ‖f‖2)

)2t−3
, (2)

where t is the number of integral points in the Newton polytope of f , and ‖f‖2 =
(
∑
i,j a

2
ij)
1/2, the Euclidean norm of f .

For an example of bound (2), consider the polynomial f = x2 + y3 + 3x4y5.
Its Newton polytope is the triangle with vertices (2, 0), (0, 3) and (4, 5), shown in
Figure 1. P (f) contains 11 integral points, so Theorem 1 guarantees that f has
a good reduction at any prime p greater than 1.64 × 1025. For this polynomial,
Ruppert’s bound (1) is 1.573 × 1086. The big difference between these estimates
can be explained in terms of Newton polytopes: (1) essentially corresponds to
considering the integral points in the rectangle with vertices (0, 0), (m, 0), (0, n)
and (m,n), where (m,n) is the bidegree of f , while our result implies that it suffices
to count only those in P (f).

The Euclidean norm of a polynomial depends only on its nonzero coefficients,
while the number of integral points in the Newton polytope depends on its shape,

1We say that a bivariate polynomial f has bidegree (m,n) and write deg(f) = (m,n), when
degx(f) = m and degy(f) = n. We make the convention that if deg(f) ≤ (m,n) and m or n is

negative, then f is identically zero.



IRREDUCIBILITY MODULO p VIA NEWTON POLYTOPES 3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

P
f
 

Fig. 1: The Newton polytope of f = x2 + y3 + 3x4y5.

hence both the sparsity and the shape of f are incorporated in bound (2). To
compare it with (1), note that ‖f‖2 ≤

√
t ·H(f), and so (2) implies that

p >
(√
(m2 + n2)t ·H(f)

)2t−3
(3)

is sufficient to preserve the absolute irreducibility of f over Zp. Estimate (3) (and
hence estimate (2)) improves Ruppert’s bound (1) for t ≤ m(n− 1), .

The proof of Theorem 1, presented in Section 2, is based on a partial differential
equation used by Ruppert [9], and on a result of Gao [2] that characterizes the
dimension of the solution space of this PDE as the number of absolutely irreducible
factors of the given polynomial. We show that the shape of the solutions depends
only on the Newton polytope of the polynomial, which yields a linear system of size
depending on the number of integral points in the Newton polytope.

In Section 3 we give explicit examples showing the coefficient matrix of the
linear system from which (2) is derived. We present polynomials that have the
same Newton polytope and Euclidean norm, but have bad primes varying greatly
in size.

2. Deriving the New Bound

In his study of irreducibility of polynomials Ruppert [9] presented a criterion for
reducibility based on the existence of solutions of the partial differential equation

∂

∂y

(
g

f

)
=
∂

∂x

(
h

f

)
, (4)

where f ∈ F[x, y] is given, g, h ∈ F[x, y] are unknown, F is an algebraically closed
field, deg f = (m,n), deg g ≤ (m− 1, n), and deg h ≤ (m,n− 2).

A new method for factoring bivariate polynomials was recently developed by
Gao [2] using PDE (4) with a slightly relaxed condition on the degree of h. He
considered

deg f = (m,n), deg g ≤ (m− 1, n), and deg h ≤ (m,n− 1), (5)
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and showed that the solutions g, h of (4) and (5) have a special format, which we
exploit to derive our bound for the size of good primes.

Let F be any field and F its algebraic closure. Let f ∈ F[x, y] with bidegree
(m,n) and consider the solution spaces

G = {g ∈ F[x, y] : (4) and (5) hold for some h ∈ F[x, y]},

G = {g ∈ F[x, y] : (4) and (5) hold for some h ∈ F[x, y]}.

Note that G and G are vector spaces over F and F, respectively, and G ⊆ G.

Theorem 2 (Gao [2]). Suppose f = f1f2 · · · fr, where fi ∈ F[x, y] are distinct and
irreducible over F, and suppose gcd(f, fx) = 1. If F has characteristic either zero
or greater than (2m− 1)n, then

dimF(G) = dimF(G) = r,

and each g ∈ G is of the form

g =
r∑
i=1

λiEi, (6)

where λi ∈ F and

Ei =
f

fi

∂fi

∂x
∈ F[x, y], 1 ≤ i ≤ r.

A consequence of this result is a criterion for irreducibility depending on the
dimension of the solution space G:

f is absolutely irreducible over F if and only if dimF(G) = 1,

where F has characteristic either zero or greater than (2m − 1)n. A similar result
for characteristic zero was obtained by Ruppert in [9].

Note that the partial differential equation (4) can be rewritten as

f ·
∂g

∂y
− g ·

∂f

∂y
− f ·

∂h

∂x
+ h ·

∂f

∂x
= 0, (7)

which is a homogeneous system of linear equations for the coefficients of g and h.
Let us denote byM the matrix of the system obtained by considering polynomials g
and h satisfying (7) and condition (5) on the degrees. So the number ρ of variables
of the system is the total number of coefficients of g and h, which is at most
2mn + m + n. The irreducibility criterion given above can then be restated as
follows.

Corollary 3. f is absolutely irreducible over F if and only if rank(M) = ρ − 1,
assuming F has characteristic either zero or greater than (2m− 1)n.

Another important consequence of Theorem 2 is that a possible solution g ∈ G
must be of the form (6). In addition, the same proof shows that the corresponding
h ∈ F[x, y] is of the form

h =

r∑
i=1

λiDi, (8)
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where

Di =
f

fi

∂fi

∂y
∈ F[x, y], 1 ≤ i ≤ r.

Examining expressions (6) and (8), we show in Lemma 4 that they reveal infor-
mation on the shape of the Newton polytopes of g and h, which yields a bound on
the number of nonzero coefficients of these polynomials.

Lemma 4. Let f be as in Theorem 2. Let t be the number of integral points in
P (f), tx the number of integral points in P (f) lying on the x-axis, and ty on the y-

axis. Then, for all polynomials g, h ∈ F[x, y] of the forms (6) and (8), respectively,
we have

P (xg) ⊆ P (f) and P (yh) ⊆ P (f), (9)

and g and h have at most t− ty and t− tx nonzero coefficients, respectively.

In the proof of this result we apply the following well-known result by Ostrowski
(1975), which states that the Newton polytope of a polynomial is the Minkowski
sum2 of the Newton polytopes of its factors.

Lemma 5 (Ostrowski [7]). Let f, f1, · · · , fr ∈ F[x, y] with f = f1 · · · fr. Then

P (f) = P (f1) + · · ·+ P (fr).

For a simple proof of this lemma see [1].

Proof of Lemma 4. Let g, h ∈ F[x, y] of the forms (6) and (8), respectively. In
(6) we have Ei =

f
fi

∂fi
∂x
, for i = 1, . . . , r. So,

P (xEi) = P
( f
fi
· x
∂fi

∂x

)
= P

( f
fi

)
+ P

(
x
∂fi

∂x

)
,

by Lemma 5. Note that the exponent vectors of each polynomial x∂fi
∂x
are of the

form (k, l), where k ≥ 1 and (k, l) is an exponent vector of fi. Hence P
(
x∂fi
∂x

)
⊆

P (fi) and

P (λixEi) ⊆ P (xEi) ⊆ P
( f
fi

)
+ P (fi) = P

( f
fi
· fi
)
= P (f),

for i = 1, . . . , r. Therefore,

P (xg) = P
( r∑
i=1

λixEi

)
⊆ P (f).

Similarly, from (8) we obtain

P (yh) = P
( r∑
i=1

λiyDi

)
⊆ P (f).

Since P (xg) is a subset of P (f), all the nonzero terms of xg have exponent
vectors corresponding to integral points inside the Newton polytope of f . Besides,
all of them have degree at least one in x, which implies that the Newton polytope
of xg does not have points lying on the y-axis. Thus xg has at most t− ty nonzero

2The Minkowski sum A + B of two sets A and B ∈ Rn is the set of all elements a + b with
a ∈ A and b ∈ B.
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coefficients and so does g, as they have the same nonzero coefficients. Similarly, the
Newton polytope of yh does not have points outside the Newton polytope of f nor
on the x-axis. Then t− tx is an upper bound for the number of nonzero coefficients
of yh and hence of h. �

From Lemma 4 it follows that the total number of nonzero coefficients of poly-
nomials g, h of the forms (6), (8) is bounded by

(t− tx) + (t− ty). (10)

Thus, since the shape of the Newton polytope of f reflects on the sizes of t, tx
and ty, (10) allow us to exploit the possible sparsity of f to reduce the number of
variables of the linear system on the coefficients of polynomials g, h satisfying (4)
and (5).

Theorem 6. Let f =
∑
i,j aijx

iyj ∈ Z[x, y], absolutely irreducible over Q with
bidegree (m,n), where m,n ≥ 1. Then f is absolutely irreducible over Zp for every
prime p such that gcd(f, fx) = 1 in Zp[x, y] and

p >
(√
m2 + n2 · ‖f‖2

)2t−(tx+ty)−1
, (11)

where t, tx and ty are as in Lemma 4.

Proof: Since m,n ≥ 1, we have t− tx ≥ 1 and t− ty ≥ 1 and so 2t−(tx+ ty) ≥ 2.
The case 2t − (tx + ty) = 2 is quite simple. It happens only if f is of the form
ax+by+c, axm+byn or axmyn+b, where a, b and c are nonzero and gcd(m,n) = 1.
The first form is trivial. For the other two forms, f remains irreducible over Zp if a
and b are nonzero modulo p. But this is guaranteed, since t− tx = 1 and t− ty = 1
in this case, and so for p satisfying (11) we have

p >
√
m2 + n2 · ‖f‖2 > H(f) = max{|a|, |b|}.

We may henceforth assume that 2t− (tx+ ty) ≥ 3. Then estimate (11) is at least

(m2 + n2) · ‖f‖22 ≥ m
2 + n2 > (2m− 1)n.

This means that Theorem 2 is applicable over Zp if p satisfies (11) and if gcd(f, fx) =
1 in Zp[x, y]. Hence for every such prime p all the solutions of (4) and (5) over Zp
are of the forms (6) and (8). Thus, when considering the linear system for the
coefficients of polynomials g, h ∈ Zp[x, y] satisfying (4) and (5), we only need to
consider polynomials of the form (9). Certainly the same is also true over Q.

Let I = I(Pf ) denote the set of integral points in the Newton polytope of f and
let g, h ∈ Z[x, y] be of the form (9), i.e.

g =
∑
(i,j)∈I

bijx
i−1yj and h =

∑
(i,j)∈I

cijx
iyj−1,

where bij , cij ∈ Z and b0j = ci0 = 0 for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Note that I has
t points, g has t− ty coefficients and h has t− tx coefficients. Let M be the matrix
of the linear system obtained from PDE (4). By Corollary 3, since f is absolutely
irreducible over Q, M has rank ρ− 1, where ρ = 2t− (tx + ty) is the total number
of coefficients of g and h. Therefore, M has a nonsingular submatrixMρ−1 of order
ρ − 1. We wish to bound the size of primes p so that Mρ−1 remains nonsingular
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modulo p. Certainly it is sufficient to have p larger than the determinant of Mρ−1.
To estimate the latter, we write down the entries of M explicitly.

Writing f as f =
∑
(k,l)∈I

ak,lx
kyl, we have

f
∂g

∂y
=

( ∑
(k,l)∈I

aklx
kyl
)( ∑
(i,j)∈I

jbijx
i−1yj−1

)

=
∑
(i,j)∈I
(k,l)∈I

jaklbijx
i+kyj+lx−1y−1

=
∑

(r,s)∈2I

( ∑
i+k=r
j+l=s

(i,j),(k,l)∈I

jaklbij

)
xrysx−1y−1,

where 2I = I + I is the Minkowski sum of I with itself. Also

g
∂f

∂y
=

( ∑
(i,j)∈I

bijx
i−1yj

)( ∑
(k,l)∈I

laklx
kyl−1

)

=
∑

(r,s)∈2I

( ∑
i+k=r
j+l=s

(i,j),(k,l)∈I

laklbij

)
xrysx−1y−1.

Hence

f
∂g

∂y
− g
∂f

∂y
=

∑
(r,s)∈2I

( ∑
i+k=r
j+l=s

(i,j),(k,l)∈I

(j − l)aklbij

)
xrysx−1y−1. (12)

Similarly,

f
∂h

∂x
− h
∂f

∂x
=

∑
(r,s)∈2I

( ∑
i+k=r
j+l=s

(i,j),(k,l)∈I

(i− k)aklcij

)
xrysx−1y−1. (13)

Let Ars and Brs denote the inner sums in (12) and (13), respectively. Then
PDE (7) becomes ∑

(r,s)∈2I

(Ars −Brs)x
rysx−1y−1 = 0,

or equivalently,

Ars −Brs = 0, for all (r, s) ∈ 2I.

For each (r, s) ∈ 2I we obtain a row of M in which there are at most t − ty
entries of the form (j − l)akl corresponding to the coefficients bij of g and at most
t− tx entries of the form (k− i)akl from the coefficients cij of h. Thus the L2-norm
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of any row of the submatrix Mρ−1 of M is at most√∑
(j − l)2a2kl +

∑
(k − i)2a2kl ≤

√
(n2 +m2)

∑
a2kl

≤
√
n2 +m2 · ‖f‖2.

as 0 ≤ j, l ≤ n, 0 ≤ i, k ≤ m, and
∑
a2kl ≤ ‖f‖2. Applying Hadamard’s inequality,

we obtain

|det(Mρ−1)| ≤
(√
n2 +m2 · ‖f‖2

)ρ−1
=
(√
n2 +m2 · ‖f‖2

)2t−(tx+ty)−1
.

Therefore, for any prime p such that

p >
(√
m2 + n2 · ‖f‖2

)2t−(tx+ty)−1
,

Mρ−1 has nonzero determinant modulo p, which implies thatM has rank ρ−1 over
Zp. By Corollary 3 we then conclude that f is absolutely irreducible over Zp. �

Theorem 1 follows from Theorem 6 and Lemma 7 below.

Lemma 7. Let f ∈ Z[x, y] with bidegree (m,n), where m,n ≥ 1, and let t be the
number of integral points in P (f). If gcd(f, fx) = 1 in Q[x, y] and p is a prime
such that

p >
(√
m2 + n2 · ‖f‖2)

)2t−3
, (14)

then gcd(f, fx) = 1 over Zp.

The proof of this Lemma is similar to that of Theorem 6, although we consider a
different linear system. We first introduce some notation. For a nonzero polynomial
f =

∑
i,j aijx

iyj ∈ F[x, y], where F is any field, we define the weighted degree of
f to be the maximum of the weighted degrees of its terms, where the weighted
degree of a term aijx

iyj is i + πj (here π = 3.1415 . . . ). Since different terms
have different exponent vectors, it follows that all the terms of a polynomial have
different weighted degrees. Also, wdeg(f · g) = wdeg(f)+wdeg(g), for any nonzero
f, g ∈ F[x, y].

Proof of Lemma 7. Consider the linear system

fg1 − fxf1 = 0, (15)

where f1, g1 ∈ Z[x, y] satisfy

P (f1) ⊆ P (f), wdeg(f1) < wdeg(f), (16)

and

P (g1) ⊆ P (fx), wdeg(g1) < wdeg(fx). (17)

Note that if gcd(f, fx) = 1 then (15) implies that f | f1 and fx | g1, thus (16)
and (17) can not be satisfied for nonzero f1 and g1. Also note that if h = gcd(f, fx)
has at least two terms, then the linear system of (15), (16) and (17) has a nonzero
solution, e.g. f1 = x

αyβf/h and g1 = x
αyβfx/h, where x

αyβ is any monomial in h
different from its leading monomial. To verify that f1, g1 is in fact a solution note
that (xαyβ)f = f1h and so

(α, β) + P (f) = P (f1) + P (h) ⊇ P (f1) + (α, β),
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by Lemma 5. Hence P (f) ⊇ P (f1). Besides,

(α+ πβ) + wdeg(f) = wdeg(f1) + wdeg(h) > wdeg(f1) + (α+ πβ),

as α + πβ = wdeg(xαyβ) < wdeg(h). Thus wdeg(f) > wdeg(f1). Similarly for g1.
Therefore, if the linear system of (15), (16) and (17) has no nonzero solution then
gcd(f, fx) must be a monomial x

syt, where s, t ≥ 0.

We write f =
∑
(k,l)∈I aklx

kyl, where akl ∈ Z and I = I(f) is the set of integral

points in the Newton polytope of f . Then fx =
∑
(k,l)∈I kaklx

k−1yl. Let f1 and

g1 ∈ Z[x, y] of the forms (16) and (17), respectively, f1 =
∑
(i,j)∈I bijx

iyj and g1 =∑
(i,j)∈I cijx

i−1yj , where c0j = 0, wdeg(f1) < wdeg(f) and wdeg(g1) < wdeg(fx).

Note that f1 has at most t− 1 coefficients, as it has weighted degree smaller than
f . Also, since gcd(f, fx) = 1, P (f) contains at least one point on the y-axis and
so P (fx) has at most t− 1 points. Hence g1 has at most t− 2 coefficients. So the
total number of coefficients of f1 and g1, which we denote by ρ, is at most 2t− 3.

The linear system of (15), (16) and (17) can be written as∑
(r,s)∈2I

(Ars −Brs)x
rysx−1y−1 = 0,

where

Ars =
∑
i+k=r
j+l=s

(i,j),(k,l)∈I

aklcij and Brs =
∑
i+k=r
j+l=s

(i,j),(k,l)∈I

kaklbij .

Therefore,

Ars −Brs = 0, ∀(r, s) ∈ 2I.

Let M be the coefficient matrix of the system above. For each (s, t) ∈ 2I
we obtain a row of M in which there are at most t − 2 entries of the form akl
corresponding to the coefficients cij of g1 and at most t − 1 entries of the form
−kakl corresponding to the coefficients bij of f1. So the L2-norm of any row of M
is at most √∑

a2kl +
∑
k2a2kl =

√∑
(1 + k2)a2kl ≤

√
1 +m2 · ‖f‖2, (18)

as k ≤ m and
∑
a2kl ≤ ‖f‖2.

Since gcd(f, fx) = 1 in Q[x, y], the linear system has no nonzero solution. So M
has a nonsingular submatrixMρ of order ρ. By Hadamard’s inequality, the absolute
value of the determinant of Mρ is at most(√

1 +m2 · ‖f‖2
)ρ
≤
(√
n2 +m2 · ‖f‖2

)2t−3
.

Therefore, for any prime p satisfying (14), Mρ has nonzero determinant modulo
p, so the linear system has no nonzero solution modulo p and thus gcd(f, fx) over
Zp is a monomial x

syt for some s, t ≥ 0.

Since gcd(f, fx) = 1 in Q[x, y], f and fx have no nonconstant common factor
over Q, particularly no nonconstant monomial factor. Note that any p satisfying
(14) is greater than H(f) and H(fx), and so the Newton polytopes of f and fx
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modulo p remain the same. Hence f and fx cannot have a common nonconstant
monomial factor in Zp[x, y]. Therefore, gcd(f, fx) = 1 in Zp[x, y]. �

Remarks. (i) In the proof above, the L2-norm in (18) of a row of the matrix
M can be alternatively estimated as√∑

a2kl +
∑
k2a2kl ≤

√
(t− 2)H(f)2 +m2(t− 1)H(f)2

<
√
(1 +m2)(t− 1) ·H(f),

since |akl| ≤ H(f), and there are at most t− 2 elements in the first sum and t− 1
in the second. Hence Lemma 7 holds with

p >
(√
(m2 + n2)(t− 1) ·H(f)

)2t−3
(19)

replacing (14). Together with a similar change in the proof of Theorem 6, we
obtain that (19) is also a lower bound for good primes. Note that (19) is a slight
improvement of estimate (3). It also improves (2) in the special case when f has t
nonzero coefficients with the same absolute value.

(ii) We should also mention that Lemma 7 can be generalized to the following
result for any two polynomials, with a slight modification on its proof.

Proposition 8. Let f, g ∈ Z[x, y] be any nonzero polynomials with gcd(f, g) = 1.
Then gcd(f, g) = 1 in Zp[x, y] for all primes p satisfying

p >
(
‖f‖22 + ‖g‖

2
2

)(t1+t2−2)/2
,

where t1 and t2 denote the numbers of integral points in the Newton polytopes of f
and g, respectively.

3. Examples

In the derivation of bound (2) in the previous section, we see that it guarantees
that the rank ρ − 1 of the matrix M of the system obtained from PDE (4) is
preserved modulo p, where ρ is the number of variables in the system. Indeed,
bound (2) assures that every (ρ− 1)× (ρ− 1) nonsingular submatrix of M remains
nonsingular when reduced modulo p. However, for a polynomial f to have a good
reduction at p it is sufficient that one of these submatrices remains nonsingular.
For a given polynomial f , since M is integral we may compute its Smith normal
form, and its invariant factors tell us precisely how the rank of M changes when
reduced modulo p. In particular, primes of bad reduction must divide the largest
invariant factor of M , so if a prime p that does not divide it then p is good for f .

As examples, we consider polynomials of the form f = a x+ b x3 + c y + d xy2 ∈
Z[x, y], where a, b, c and d are nonzero. The Newton polytope of f is shown in
Figure 2 and we see that it has t = 7 integral points. When f is absolutely
irreducible over Q, Theorem 1 guarantees that for any p > (

√
13·‖f‖2)11, it remains

absolutely irreducible over Zp.

For this f , polynomials g, h ∈ Zp[x, y] of the form (9) can be written as

g = b10 + b20 x+ b30 x
2 + b11 y + b21 xy + b12 y

2,
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Fig. 2: The Newton polytope of f .

and

h = c01 + c11 x+ c21 x
2 + c12 xy.

So g and h together have 10 coefficients (unknowns):

b10, b20, b30, b11, b21, b12, c01, c11, c21, c12.

With the unknowns in this order, the coefficient matrix of the linear system is given
by

M =




c 0 0 0 0 0 −a 0 0 0

0 0 0 d 0 0 0 0 0 0

0 0 0 0 0 −c −d 0 0 c

0 0 0 −b 0 0 0 −2 b 0 0

0 0 0 0 d 0 0 0 d 0

0 2 d 0 0 0 0 0 0 0 0

0 0 0 0 −b 0 0 0 −b 0

0 0 2 d 0 0 −2 b 0 0 0 −2 b

0 0 0 0 0 0 0 c 0 0

0 0 c 0 −a 0 −3 b 0 a 0

0 c 0 −a 0 0 0 0 0 0

2 d 0 0 0 0 −2 a 0 0 2 c 0




In particular, let us consider the following instances of f :

f1 = x+ x
3 − 2001 y + xy2,

f2 = x+ x
3 + 2001 y − xy2,

and

f3 = x+ 2001x
3 − y − xy2.

These polynomials are absolutely irreducible over the rationals, since for each of
them M has rank 9. They have the same Euclidean norm:

√
4004004.
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For polynomial f1, M has invariant factors

1, 1, 1, 1, 1, 1, 1, 2, and 32048032008,

where the largest has factorization

32, 048, 032, 008 = 23 · 3 · 23 · 29 · 2002001.

Hence f1 has a good reduction at all primes p different from 2, 3, 23, 29 and
2002001. Note that

f1 ≡ (x− 2001y)(x
2 + 2001xy + 1) mod 2002001,

f1 ≡ x (x
2 + y2 + 1) mod 29, 23, 3,

f1 ≡ (x+ y)(x
2 + xy + 1) mod 2.

So the prime divisors of the largest invariant factor of M are all bad for f1.

For f2, the invariant factors of M are:

1, 1, 1, 1, 1, 1, 1, 2, and 32048016000,

and the largest is quite smooth:

32, 048, 016, 000 = 27 · 3 · 53 · 7 · 11 · 13 · 23 · 29.

We have

f2 ≡ x (x
2 − y2 + 1) mod 29, 23, 3,

f2 ≡ (x− y)(x
2 + xy + 1) mod 13, 11, 7,

f2 ≡ (x+ y)(x
2 − xy + 1) mod 5,

f2 ≡ (x+ y)(x
2 + xy + 1) mod 2.

Hence all the prime divisors of the largest invariant factor of M are bad for f2,
and any other prime is good. In particular, f2 has a good reduction at all primes
p > 29.

For polynomial f3, the corresponding matrix M has a much smaller invariant
factor:

8, 000 = 26 · 53.

So f3 has a good reduction at all primes p > 5, and the only bad primes are 2 and
5:

f3 ≡ (x− y)(x
2 + xy + 1) mod 5,

f3 ≡ (x+ y)(x
2 + xy + 1) mod 2.

Finally, for the polynomial f = x2 + y3 + 3x4y5 mentioned in the introduction,
the invariant factors of M are:

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 12, 24, and 48 = 24 · 3.

So 2 and 3 are the only possible bad primes for f . However, the Newton polytope of
f mod p is always indecomposable (when p = 3, it becomes a line segment), hence
f remains absolutely irreducible modulo p for every prime p. So this polynomial
has a good reduction at all primes!
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These examples indicate how the size of good primes (or equivalently the size of
bad primes) may vary, even for polynomials of the same shape and Euclidean norm.
Some polynomials may have really large bad primes, some may have many small
bad primes, while others none at all. Our bound (2) gives an upper bound for all
possible bad primes of polynomials with the same shape and the same Euclidean
norm.

Acknowledgement. The authors would like to thank a referee for his or her useful
comments on the previous version of the paper. In particular, the current version
of the bound in Theorem 1, which follows from the proof of our original bound (19),
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