
Tests and Constructions of

Irreducible Polynomials over Finite Fields

Shuhong Gao1 and Daniel Panario2

1 Department of Mathematical Sciences, Clemson University,

Clemson, South Carolina 29634-1907, USA

E-mail: sgao@math.clemson.edu
2 Department of Computer Science, University of Toronto,

Toronto, Canada M5S-1A4

E-mail: daniel@cs.toronto.edu

Abstract. In this paper we focus on tests and constructions of irre-

ducible polynomials over �nite �elds. We revisit Rabin's (1980) algo-

rithm providing a variant of it that improves Rabin's cost estimate by

a log n factor. We give a precise analysis of the probability that a ran-

dom polynomial of degree n contains no irreducible factors of degree less

than O(log n). This probability is naturally related to Ben-Or's (1981)

algorithm for testing irreducibility of polynomials over �nite �elds. We

also compute the probability of a polynomial being irreducible when it

has no irreducible factors of low degree. This probability is useful in the

analysis of various algorithms for factoring polynomials over �nite �elds.

We present an experimental comparison of these irreducibility methods

when testing random polynomials.

1 Motivation and results

For a prime power q and an integer n � 2, let IFq be a �nite �eld with q

elements, and IFqn be its extension of degree n. Extensions of �nite �elds are

important in implementing cryptosystems and error correcting codes. One way

of constructing extensions of �nite �elds is via an irreducible polynomial over

the ground �eld with degree equal to the degree of the extension. Therefore,

�nding irreducible polynomials and testing the irreducibility of polynomials are

fundamental problems in �nite �elds.

A probabilistic algorithm for �nding irreducible polynomials that works well

in practice is presented in [26]. The central idea is to take polynomials at random

and test them for irreducibility. Let In be the number of irreducible polynomials

of degree n over a �nite �eld IFq . It is well-known (see [21], p. 142, Ex. 3.26 &

3.27) that

qn

n
� q(qn=2 � 1)

(q � 1)n
� In �

qn � q

n
: (1)

This means that a fraction 1=n of the polynomials of degree n are irreducible, and

so we �nd on average one irreducible polynomial of degree n after n tries. In order

to transform this idea into an algorithm one has to consider irreducibility tests.

In sections 2 and 3, we focus on tests for irreducibility. Let f 2 IFq [x], deg f = n,

be a polynomial to be tested for irreducibility. Assume that p1; : : : ; pk are the

distinct prime divisors of n. In practice, there are two general approaches for

this problem:

{ Butler (1954): f is irreducible if and only if dimker(��I) = 1, where � is the

Frobenius map on IFq [x]=(f) that sends h 2 IFq [x]=(f) to hq 2 IFq[x]=(f),

and I is the identity map on IFq [x]=(f) (see [4]);

{ Rabin (1980): f is irreducible if and only if gcd(f; xq
n=pi � x) = 1 for all

1 � i � k, and xq
n � x � 0 mod f (see [26]).

Other irreducibility tests can be found in [14], [31], and [12].

In this paper, we concentrate on Rabin's test, and a variant presented in [1].

In section 2, we review Rabin's and Ben-Or's irreducibility algorithms. We state

a variant of Rabin's algorithm that allows a logn factor saving. In section 3,

we focus on Ben-Or's algorithm. This leads us to study the behavior of rough

polynomials, i.e., polynomials without irreducible factors of low degrees. The

analysis is expressed as an asymptotic form in n, the degree of the polynomial

to be tested for irreducibility. First, we �x a �nite �eld IFq , and then we study

asymptotics on q. As was noted in [7], probabilistic properties of polynomials

over �nite �elds frequently have a shape that resembles corresponding proper-

ties of the cycle decomposition of permutations to which they reduce when the

size of the �eld goes to in�nity. An instance of this is derived for the proba-

bility that a polynomial of degree n over IFq contains no factors of degree m,

1 � m � O(log n), when q ! +1. This probability relates naturally with Ben-

Or's algorithm. The probability of a polynomial being irreducible when it has no

irreducible factors of low degree provides useful information for factoring poly-

nomials over �nite �elds (see for instance [12], x6). We provide the probability

of a polynomial being irreducible when it has no irreducible factors of degree at

most O(log n).

In section 4, we give an experimental comparison on the algorithms discussed

in section 2. We provide tables of running times of the algorithms for various

�elds and polynomial degrees. These results suggest that Ben-Or's algorithm

has a much better average time behavior than others, even though its worst-case

complexity is the worst.

Very sparse irreducible polynomials are useful for several applications: pseu-

dorandom number generators using feedback shift registers ([15]), discrete loga-

rithm over IF2n ([6], [23]), and e�cient arithmetic in �nite �elds (Shoup private

communication, 1994). However, few results are known about these polynomials

beyond binomials and trinomials (see [22], Chapter 3, and the references there).

In section 5, we present a construction of irreducible polynomials over IFq of

degree n with up to O(1) nonzero terms (not necessarily the lowest coe�cients),

for in�nitely many degrees n.

We assume that arithmetic in IFq is given. The cost measure of an algorithm

will be the number of operations in IFq . The algorithms in this paper use basic

polynomial operations like products and gcds. We consider in this paper exclu-

sively FFT based arithmetic; similar results hold for classical arithmetic. Let

2

M(n) = n logn log log n. For constants �1 and �2, the cost of multiplying two

polynomials of degree at most n using \fast" arithmetic ([28], [27], [5]) can be

taken as �1M(n), and the cost of a gcd between two polynomials of degree at

most n can be taken as �2 lognM(n) operations in IFq . The number of multipli-

cations needed to compute hq mod f by means of the classical repeated squaring

method (see [20], p. 441{442), where h is a polynomial over IFq of degree less

than n, is Cq = blog2 qc + �(q), with �(q) the number of ones in the binary

representation of q. Therefore, the cost of computing hq mod f by this method

is �1CqM(n) operations in IFq using FFT based methods.

2 Irreducibility tests

In this section, we review Rabin's and Ben-Or's tests, and we present a variant

of Rabin's method.

2.1 Rabin irreducibility test and an improvement

Algorithm: Rabin Irreducibility Test

Input: A monic polynomial f 2 IFq[x] of degree n,

and p1; : : : ; pk all the distinct prime divisors of n .

Output: Either \f is irreducible" or \f is reducible".

for j := 1 to k do

nj := n=pj;

for i := 1 to k do

g := gcd(f, xq
ni � x mod f);

if g 6= 1, then `f is reducible' and STOP;

endfor;

g := xq
n � x mod f;

if g = 0, then `f is irreducible'

else `f is reducible';

The correctness of Rabin's algorithm is based on the following fact (see [26],

p. 275, Lemma 1).

Fact 2.1 Let p1; : : : ; pk be all the prime divisors of n, and denote n=pi = ni,

for 1 � i � k. A polynomial f 2 IFq [x] of degree n is irreducible in IFq[x] if and

only if gcd (f; xq
ni � x mod f) = 1, for 1 � i � k, and f divides xq

n � x.

The basic idea of this algorithm is to compute xq
ni

mod f independently for each

value n1; : : : ; nk by repeated squaring, and then to take the correspondent gcd.

The worst-case analysis given in [26] is O (nM(n) logn log q) operations in IFq .

However, it can be shown that O (nM(n) log logn log q) is an upper bound of the

3

number of operations in IFq for this algorithm. Indeed, �rst note that the number

of distinct prime factors of n is at most logn. The cost of k exponentiations is

kX
i=1

n

pi
log qM(n) � nM(n) log q

lognX
i=1

1

pi
� nM(n) log q Hlog n;

where Hm =
Pm

k=1 1=k is the harmonic sum. Using the well-known approxima-

tion of the harmonic sum ([16], p. 452),Hlogn = log logn++O(1
logn

), we obtain

O(nM(n) log log n log q), which dominates the cost O(M(n) log2 n) of computing

k gcd's. Therefore, the total cost of Rabin's algorithm is O(nM(n) log logn log q).

As an improvement, we propose the following variant for the computation of

xq
ni � x mod f , for 1 � i � k.

Algorithm: Variant of Rabin Irreducibility Test

Input: A monic polynomial f 2 IFq [x] of degree n,

and p1; : : : ; pk all the distinct prime divisors of n .

Output: Either \f is irreducible" or \f is reducible".

n0 := 0; h0 := x;

for j := 1 to k do

nj := n=pj;

sort(n1; : : : ; nk); (* Assume n1 < n2 < : : : < nk. *)

for i := 1 to k do

hi := h
qni�ni�1

i�1 mod f;

g := gcd(f, hi � x);

if g 6= 1, then `f is reducible' and STOP;

endfor;

g := h
qn�nk

k � x mod f;

if g = 0, then `f is irreducible'

else `f is reducible';

Theorem 2.2 The above variant of Rabin's algorithm correctly tests for poly-

nomial irreducibility, and uses O(nM(n) log q) operations in IFq.

Proof. The correctness of the algorithm follows from the correctness of the power

computations. We prove that hi = xq
ni

mod f , 1 � i � k, by induction on k.

Basis: when k = 1,

h1 � h
qn1�n0

0 �
�
xq

n0
�qn1�n0

� xq
n0 �qn1 � xq

n1
mod f:

Inductive step: for some k, hi = xq
ni

mod f , 1 � i � k. Then,

hk+1 � h
q
nk+1�nk

k �
�
xq

nk
�qnk+1�nk

� xq
nk �qnk+1�nk � xq

nk+1
mod f:

4

With this variant, in the worst-case, the number of polynomial multiplications

in Rabin's algorithm to compute all powers using repeated squaring is

n1 log q + (n2 � n1) log q + � � �+ (n� nk) log q = n log q:

Hence the cost of k exponentiations is O(nM(n) log q). Since the number of

distinct prime factors of n is at most logn, the cost of taking all the gcd's

in the algorithm is O(M(n) log2 n). Therefore the total cost of this variant is

O(nM(n) log q). 2

2.2 Ben-Or irreducibility test

Algorithm: Ben-Or Irreducibility Test

Input: A monic polynomial f 2 IFq[x] of degree n.

Output: Either \f is irreducible" or \f is reducible".

for i := 1 to n=2 do

begin

g := gcd(f, xq
i � x mod f);

if g 6= 1, then `f is reducible' and STOP;

end;

`f is irreducible';

The correctness of Ben-Or's procedure is based on the following fact (see [21],

p. 91, Theorem 3.20).

Fact 2.3 For i � 1, the polynomial xq
i � x 2 IFq [x] is the product of all monic

irreducible polynomials in IFq[x] whose degree divides i.

Indeed, Ben-Or's algorithm computes xq
i

mod f , and gcd(f; xq
i � x) for i =

1; : : : ; n
2
. The polynomial is reducible if and only if one of the gcd's is di�erent

from 1.

In the worst case, this algorithm computes n
2
times a qth power and a gcd

of polynomials of degree at most n. Recalling the cost of these operations from

section 1, the worst-case behavior of Ben-Or's algorithm is O(nM(n) log(qn))

using FFT based multiplication algorithms, and therefore, it is worse than our

Rabin's variant. However, as can be seen from our theoretical and experimental

results in Sections 3 and 4, Ben-Or's algorithm is very e�cient. The main reason

for the e�ciency of this algorithm is that random polynomials of large degree are

very likely to have an irreducible factor of small degree, and Ben-Or's algorithm

quickly discards these polynomials (see also [19]).

We should point out that the average cases of Rabin and our variant are

not known. Ben-Or's average-case analysis is only known when q goes to in�nity

in the following sense. Let s(f) be the expected value of the smallest degree

5

among the irreducible factors of f ; then the expected cost of Ben-Or's algorithm

is O(s(f)M(n) log(qn)). Ben-Or ([1], Theorem 2) derives an O(logn) estimate

for s(f). In fact, he relates the factorial decomposition of polynomials with the

cyclic decomposition of permutations. The result follows from the study of the

expected length of the shortest cycle in a random permutation ([30]). However,

this relation between irreducible factors of polynomials and cycles of permuta-

tions just holds when the size of the �eld is large, as it was observed in [7].

3 Distribution of rough polynomials

Polynomials without irreducible factors of low degree make Ben-Or's irreducibil-

ity test to execute a large number of iterations. The probability that a random

polynomial of degree n contains no factors of low degree gives meaningful infor-

mation on the behavior of Ben-Or's algorithm. We call a polynomial m-rough if

it has no irreducible factors of degrees � m. In this section we are interested in

the distribution of rough polynomials.

The following theorem is proved in [2] when m is �xed.

Theorem 3.1 Denote by Pq(n;m) the probability of a random monic polynomial

of degree n over IFq being m-rough. Then when n!1,

Pq(n;m) =

mY
k=1

�
1� 1

qk

�Ik

(1 + o(1));

uniformly for q and 1 � m � O(logn).

Proof. Let I be the collection of all monic irreducible polynomials in IFq . For-

mally, the summation of all monic polynomials with all irreducible factors with

degree > m is

P =
Y

!2I; j!j>m

(1 + ! + !2 + � � �) =
Y

!2I; j!j>m

(1� !)�1:

Let z be a formal variable, and j!j the degree of ! 2 I. The substitution ! 7!
zj!j produces the generating function Pm(z) of polynomials with all irreducible

factors having degrees > m

Pm(z) =
Y

!2I; j!j>m

�
1� zj!j

��1
=
Y
k>m

�
1� zk

��Ik
=

1

1� qz

mY
k=1

(1� zk)Ik :

Note that m may vary when n ! +1, and thus we can not apply the transfer

lemmas in [8, 24].

As usual, [zn]Pm(z) represents the coe�cient of zn in Pm(z), and observe that

Pq(n;m) = [zn]Pm(z)=q
n. In order to estimate Pq(n;m), we apply Theorem 10.8

in [24]. Pm(z) presents a pole of order 1 at z = 1
q
with residue

�1

q

mY
k=1

(1� q�k)Ik :

6

Denote by gq(m) the product
Qm

k=1(1 � q�k)Ik . Suppose that m � c logn for

some constant c > 0. Let b be a constant such that 1 < b < e1=c, and take

r = b
q
> 1

q
. By Odlyzko ([24], Theorem 10.8),�����[zn]Pm(z) +

�1

q
gq(m)

�
1

q

��n�1!����� � w r�n +

�
r � 1

q

��1
r�n

1

q
gq(m);

where w = maxjzj=r jPm(z)j. Therefore,

jPq(n;m)� gq(m)j �

w +

�
r � 1

q

��1
1

q
gq(m)

!
(rq)�n

=

�
w +

1

b� 1
gq(m)

�
=bn �

�
w +

1

b� 1

�
=bn;

as 0 � gq(m) � 1. Since b > 1 is a constant independent of m; q and n, we

only need to estimate w in term of n. When jzj = r = b
q
, j1 � qzj � b � 1, and

j1� zkj � 1 + rk . Considering that Ik r
k � qk rk = bk, we obtain

jPm(z)j =
1

j1� qzj
mY
k=1

j1� zkjIk � 1

b� 1

mY
k=1

(1 + rk)Ik

=
1

b� 1

mY
k=1

exp
�
Ik log(1 + rk)

� � 1

b� 1

mY
k=1

exp(Ik r
k)

� 1

b� 1

mY
k=1

exp(bk) =
1

b� 1
exp

mX
k=1

bk

!
� 1

b� 1
exp

�
bm+1

b� 1

�

� 1

b� 1
exp

�
b

b� 1
bc logn

�
=

1

b� 1
exp

�
b

b� 1
nc log b

�
:

Hence, w � 1
b�1 exp

�
b

b�1n
c log b

�
, and

�
w +

1

b� 1

�
=bn � 2

b� 1
exp

�
b

b� 1
nc log b � (log b)n

�
:

By Theorem 3.2 below,

gq(m) � 1

em
� 1

ec logn
:

Therefore,����Pq(n;m)

gq(m)
� 1

���� � 2

b� 1
ec logn exp

�
b

b� 1
nc log b � (log b)n

�
: (2)

As log b > 0 and c log b < 1, the right-hand of (2) approaches to 0 as n ! 1.

Since the quantity on the right-hand of (2) is independent of q andm, we see that

Pq(n;m)=gq(m) approaches to 1 uniformly for q and m � c logn when n ! 1.

This completes the proof. 2

7

In the next theorem we estimate the function gq(m) =
Qm

k=1

�
1� 1

qk

�Ik
.

Theorem 3.2 For any prime power q and positive integer m, we have

1

em
� exp

�

mX
k=1

1

k

!
�

mY
k=1

(1� q�k)Ik �
�
1� 1p

q

�� q
q�1

� exp

�

mX
k=1

1

k

!
:

When q !1, we have

gq(m) =

mY
k=1

�
1� 1

qk

�Ik

! e�Hm � e�

m
;

where is the Euler's constant, and e� = 0:56416 : : :

Proof. Note that log(1 + x) � x for x > �1, and P1
k=1

1

kqk=2
= � log

�
1� 1p

q

�
.

By (1), we have

gq(m) =

mY
k=1

exp

�
Ik log

�
1� 1

qk

��

�
mY
k=1

exp

�
� Ik

qk

�
= exp

�

mX
k=1

Ik

qk

!
� exp

0
@� mX

k=1

qk

k
� q(qk=2�1)

(q�1)k

qk

1
A

� exp

�

mX
k=1

1

k

!
� exp

q

q � 1

mX
k=1

qk=2 � 1

kqk

!

� exp

�

mX
k=1

1

k

!
�

exp

 1X
k=1

1

kqk=2

!! q
q�1

=

�
1� 1p

q

�� q
q�1

� exp

�

mX
k=1

1

k

!
:

We have derived the upper bound for gq(m). The lower bound was derived

by the authors when studying lower bounds for the Euler totient function for

polynomials and for the density of normal elements (see [11]). Since it is simple,

we reproduce it here. As Ik � (qk � 1)=k and 0 < 1� 1=qk < 1, we have

gq(m) =

mY
k=1

�
1� 1

qk

�Ik

�
mY
k=1

�
1� 1

qk

� qk�1
k

=

mY
k=1

 �
1 +

1

qk � 1

�qk�1
!� 1

k

�
mY
k=1

exp

�
�1

k

�
= exp

�

mX
k=1

1

k

!
:

8

LetHm be the harmonic sum, i.e.,Hm =
Pm

k=1 1=k. ThenHm � 1+
Rm
1

1=x dx =

1 + logm, and thus e�Hm � 1=(em). When q !1

gq(m) =

mY
k=1

�
1� 1

qk

�Ik

� e�Hm :

Using the well-known approximation of the harmonic sum Hm = logm + +

O(1
m
), we have

e�Hm � e�

m
; m!1: (3)

Finally, this result is in accordance with the correspondent one of permutations

with no cycles of length m or less (see [29]). 2

We provide in Table 1 below the values of gq(m), Pq(n;m) and their ratio,

when m = logn and q = 2 for several n < 1000. This shows that the conver-

gence of Pq(n;m) to gq(m) is very fast. Moreover, as n grows, Pq(n;m) quickly

decreases. For instance, for a random polynomial of degree 900, there is a prob-

ability of more than 0.9 of having a factor of degree at most 9. This is another

explanation for the e�ciency of Ben-Or's algorithm. Indeed, it is enough to

search for irreducible polynomials of degree at most O(logn) in order to have a

high probability of �nding a factor.

For the remaining of this section we concentrate on the probability that a

polynomial be irreducible if it has no irreducible factors of low degree. Many al-

gorithms for factoring polynomials over �nite �elds comprise the following three

stages: squarefree factorization (replace a polynomial by a squarefree one which

contains all the irreducible factors of the original polynomial with exponents

reduced to 1); distinct-degree factorization (split a squarefree polynomial into a

product of polynomials whose irreducible factors have all the same degree); and

equal-degree factorization (factor a polynomial whose irreducible factors have the

same degree).

As things now stand, distinct-degree factorization is the bottleneck of the

polynomial factorization problem (see [14], [18], [13]). This step of the factoriza-

tion process works as follows: at any point k, all the irreducible factors of degree

up to k have been found, and all the irreducible factors of degree greater than k

remain to be determined from a factor g.

A natural way of improving the distinct-degree factorization step is by testing

the irreducibility of the remaining factor g. Unfortunately, in the worst-case

asymptotic scenario, the cost of the irreducibility test is about the same as the

distinct-degree factorization algorithm. An alternative to overcome this problem

is given in [12] (x6). The central idea is to run the irreducibility test and the

distinct-degree factorization algorithm in parallel, feeding the former with partial

information obtained by the latter (see the details in [12]).

It is clear that the probability of a monic polynomial being irreducible when it

has no irreducible factors of low degree provides useful information in the above

process. In the following, we derive an asymptotic formula for this probability.

9

n m Pq(n;m) gq(m) P/g

2 1 .25000000000000000000000000 .25000000000000000000000000 1.0000

3 1 .25000000000000000000000000 .25000000000000000000000000 1.0000

4 2 .18750000000000000000000000 .18750000000000000000000000 1.0000

5 2 .18750000000000000000000000 .18750000000000000000000000 1.0000

6 2 .18750000000000000000000000 .18750000000000000000000000 1.0000

7 2 .18750000000000000000000000 .18750000000000000000000000 1.0000

8 3 .14062500000000000000000000 .14355468750000000000000000 .97963

9 3 .14453125000000000000000000 .14355468750000000000000000 1.0068

10 3 .14355468750000000000000000 .14355468750000000000000000 .99997

20 4 .11828613281250000000000000 .11828541755676269531250000 1.0000

30 4 .11828541755676269531250000 .11828541755676269531250000 1.0000

40 5 .09776907367631793022155762 .09776907366723652792472876 1.0000

50 5 .09776907366723719405854354 .09776907366723652792472876 1.0000

60 5 .09776907366723652792472876 .09776907366723652792472876 1.0000

70 6 .08484899050039278356888779 .08484899050039278175814854 1.0000

80 6 .08484899050039278175860054 .08484899050039278175814854 1.0000

90 6 .08484899050039278175814857 .08484899050039278175814854 1.0000

100 6 .08484899050039278175814854 .08484899050039278175814854 1.0000

200 7 .07367738498865927351164168 .07367738498865927351164168 .99999

300 8 .06551498664534958936373162 .06551498664534958936373162 1.0000

400 8 .06551498664534958936373162 .06551498664534958936373162 1.0000

500 8 .06551498664534958936373162 .06551498664534958936373162 1.0000

600 9 .05872097388539275926570230 .05872097388539275926570230 1.0000

700 9 .05872097388539275926570230 .05872097388539275926570230 1.0000

800 9 .05872097388539275926570230 .05872097388539275926570230 1.0000

900 9 .05872097388539275926570230 .05872097388539275926570230 1.0000

Table 1. Values of Pq(n;m) and gq(m), with m = log n and q = 2.

Theorem 3.3 Let P I
q (n;m) be the probability that a polynomial of degree n

over IFq be irreducible if it has no factors of degree less than or equal to m,

1 � m � O(log n). Then, as n, m and q approach to in�nity,

P I
q (n;m) � e

m

n
;

where is the Euler's constant.

Proof. This probability can be estimated considering the subset of irreducible

polynomials of degree n over IFq inside the set of polynomials of degree n over IFq

without irreducible factors of degree less than or equal to m, 1 � m � O(logn).

Using (1), Theorems 3.1 and 3.2, when n,m and q approach to in�nity, we obtain

P I
q (n;m) =

In

qn Pq(n;m)
�

1
n

e�

m

= e
m

n
:

10

4 Experimental results

In this section, we describe an implementation of the algorithms discussed in

Section 2. We provide a running time comparison of the algorithms for random

polynomials on a Sun Sparc 20 computer. The algorithms were implemented on

a C++ software due to Shoup. This package contains classes for �nite �elds and

polynomials over �nite �elds with implementations for basic operations such as

multiplication, taking gcd, and so on (for a description of the software see [32]).

We tested all algorithms with the same random polynomials. A summary

table for the average time in seconds of CPU in the case IF2 is presented in

Table 2 and Table 3. The degrees n in Table 2 and in Table 3 were chosen such

that n has many prime divisors and few prime divisors, respectively. The number

of polynomials tested was 10 � n for Table 2 and 5 � n for Table 3, where n is

the degree of the polynomials being tested for irreducibility. It can be seen from

the Tables that even in the case of n with few prime divisors Ben-Or has the

best behavior among the three algorithms. The worst-case scenario for these

algorithms happens when testing irreducible polynomials. We include a column

with the number of irreducible polynomials that were tested for each degree.

n Rabin Rabin's Ben-Or Number of

Variant Irreducible

105 0.7990 0.6133 0.2000 9

210 2.7652 2.6942 0.9938 14

330 10.5672 17.4147 2.3443 8

420 10.5702 4.3971 1.5189 7

Table 2. Average time in seconds for testing 10 � n polynomials over IF2 of degree n

with many prime divisors.

n Rabin Rabin's Ben-Or Number of

Variant Irreducible

101 4.1564 8.9188 0.5901 4

256 20.8451 46.9867 2.7950 5

331 32.7156 71.8685 2.7719 9

Table 3. Average time in seconds for testing 5 � n polynomials over IF2 of degree n

with few prime divisors.

11

Similar results for testing irreducibility of polynomials over the �nite �eld

IF1021 are presented in Table 4 below.

n Rabin Rabin's Ben-Or Number of

Variant Irreducible

101 186.1383 280.2633 13.0198 4

105 78.2952 61.8381 11.2629 5

210 227.5800 174.7400 23.0000 3

Table 4. Average time in seconds for testing 5 �n polynomials of degree n over IF1021.

We also tested the case of very large �elds. For instance, the average time

in seconds of CPU for testing 315 polynomials of degree 105 over IFp, p a prime

with 100 bits, was:

Rabin 774.054

Rabin's variant 613.267

Ben-Or 137.565

In this case, 5 irreducible polynomials were found.

These timings suggest that Ben-Or's algorithm has a much better average

time behavior than others, even though its worst-case complexity is the worst

among them. A variant of the above algorithms that economizes gcd's computa-

tions can be given using Ben-Or's ideas up to O(logn) iterations and our Rabin's

variant after that point. For this algorithm together with more experimental re-

sults, see [25].

5 Construction of sparse irreducible polynomials

When implementing the irreducibility tests in Section 2, we wanted to experi-

ment our programs on various polynomials of large degrees. For reducible poly-

nomials, they are likely to have small factors, as shown in Section 3, and the

programs terminate almost immediately. However, when testing an irreducible

polynomial, we do not have a priori any idea of how long it will take to com-

plete the task. It is desirable to have some simple polynomials which we know in

advance are irreducible so that we can test the correctness of our programs and

know the approximate time our computer needs on various degrees. This would

also help us in deciding the range of degrees to compare the tests. By \simple",

we mean polynomials that can either be constructed easily (without testing for

irreducibility) or have only a few nonzero terms. The problem of constructing

sparse irreducible polynomials is also of independent interest.

A well-known open problem is to construct irreducible polynomials over IF2

of degree n with at most O(logn) nonzero terms in its lowest coe�cients. These

12

polynomials are useful in the discrete logarithm problem ([6], [23]). Shoup (pri-

vate communication, 1994) points out that if IF2n = IF2[x]=(f) with f = xn + g

irreducible and g 2 IF2[x] of small degree, say deg g � 2 logn, then exponenti-

ation in IF2n can be achieved with O(n2 loglogn) operations in IF2 and using

storage for O(n=logn) elements from IF2n (see also [9]). Experimental results

show that such polynomial f exists for n � 1000 taking deg g � 2 + log2 n.

Shparlinski ([33]) gives a construction of irreducible polynomials with degrees

of the form 4 � 3k � 5` over IF2, 4 � 2k � 5` over IF3, and 2 � 2k � 3` over IFp, for any

prime p > 3, and k; l nonnegative integers. In the following, we �rst generalize his

construction and then construct explicitly several in�nite families of irreducible

polynomials.

Theorem 5.1 Let p1; : : : ; pk be any �xed primes and n = mpe11 : : : p
ek
k where

m is the multiplicative order of q modulo p1 � � � pk and e1; : : : ; ek are arbitrary

nonnegative integers. Then, over any �nite �eld IFq whose characteristic is dis-

tinct from p1; : : : ; pk, there is an irreducible polynomial of degree n with at most

2m+ 1 � 2(p1 � 1) � � � (pk � 1) + 1 nonzero terms.

Proof. Let ` = m if all pi are odd. If one of pi, say p1, is 2 and q � 3 mod 4, let

` = lcm(2;m). Then, pij(q` � 1) for 1 � i � `, and 4j(q` � 1) if p1 is even.

Let � be an element in IFq` that is not a pith power in IFq` for 1 � i � k. The

minimal polynomial �(x) of � over IFq has degree `. By Lidl and Niederreiter

([21], p. 124, Theorem 3.75),

xp
e1
1
p
e2
2
:::p

ek
k � �

is irreducible over IFq` for all nonnegative integers e1; : : : ; ek. Then

�
�
xp

e1
1
p
e2
2
:::p

ek
k

�
(4)

is irreducible over IFq of degree `pe11 pe22 � � � pekk . The polynomial (4) has at most

`+ 1 � 2m+ 1 nonzero terms.

Irreducible polynomials from the construction of Theorem 5.1 are usually

very sparse. In fact, the number of nonzero terms depends only on the prime

factors of n, and if we �x them and let the exponents grow arbitrarily then

these polynomials have only O(1) nonzero terms (even though not necessarily

the lowest coe�cients). This can be seen from the following examples.

Example 5.2 q � 1 mod 4 and n = 2k. Take a 2 IFq to be any quadratic

nonresidue. Then x2
k � a is irreducible over IFq for all k � 0. For instance,

i. if q = p � �3 mod 8 is a prime, then take a = 2;

ii. if q = p � �5 mod 12 is a prime, then take a = 3;

iii. if q = p � �2 mod 5 is a prime, then take a = 5.

These results are from [17] (Proposition 5.1.3 for the �rst two, and Theorem 2,

p. 54, for the third).

13

Example 5.3 q � 3 mod 4 and n = 2k. In this case, ` = 2 in the proof of

Theorem 5.1. We need to �nd a quadratic nonresidue in IFq2 and compute its

minimal polynomial. The following elegant solution is from [3]. Suppose that

q = pm where m is odd and p � 3 mod 4 is a prime. Let 2vj(p+1), 2v+1 6 j (p+1).

Then v � 2. Construct u 2 IFp iteratively as follows:

u1 = 0;

ui = �
�
ui�1 + 1

2

� p+1
4

(mod p); for 1 < i < v;

uv = �
�
uv�1 � 1

2

� p+1
4

(mod p);

where, at each step, one can take any of the signs arbitrarily. Let u = uv. Then

x2 � 2ux � 1 is the minimal polynomial of some quadratic nonresidue in IFp2 .

Therefore

x2
k � 2ux2

k�1 � 1

is irreducible over IFp, and over IFq as well, for all k � 1.

Example 5.4 q = 2. Theorem 5.1 yields the following families of irreducible

polynomials over IF2 for all k; `;m; n � 0:

x2�3
k

+ x3
k

+ 1

x3�7
k

+ x7
k

+ 1

x4�3
k�5` + x3

k�5` + 1

x6�3
k�7` + x3

k�7` + 1

x10�3
k�11`�31m + x3�3

k�11`�31m + 1

x12�3
k�5`�7m�13n + x8�3

k�5`�7m�13n + x2�3
k�5`�7m�13n + x3

k�5`�7m�13n + 1:

For other explicit constructions of irreducible polynomials, see [22] (Chap-

ter 3), and [10].

Acknowledgment.We thank Bruce Richmond for helpful discussions and Vic-

tor Shoup for the use of his package. Part of this work was done by the �rst

author while visiting the University of Waterloo whose hospitality and support

are gratefully acknowledged.

References

1. Ben-Or, M. Probabilistic algorithms in �nite �elds. In Proc. 22nd IEEE Symp.

Foundations Computer Science (1981), pp. 394{398.

2. Blake, I., Gao, S., and Lambert, R. Constructive problems for irreducible

polynomials over �nite �elds. In Information Theory and Applications, A. Gulliver

and N. Secord, Eds., vol. 793 of Lecture Notes in Computer Science. Springer-

Verlag, 1994, pp. 1{23.

14

3. Blake, I., Gao, S., and Mullin, R. Explicit factorization of x2
k

+ 1 over IFp

with prime p � 3 (mod 4). Appl. Alg. Eng. Comm. Comp. 4 (1993), 89{94.

4. Butler, M. On the reducibility of polynomials over a �nite �eld. Quart. J. Math.

Oxford 5 (1954), 102{107.

5. Cantor, D., and Kaltofen, E. On fast multiplication of polynomials over

arbitrary algebras. Acta. Inform. 28 (1991), 693{701.

6. Coppersmith, D. Fast evaluation of logarithms in �elds of characteristic two.

IEEE Trans. Info. Theory 30 (1984), 587{594.

7. Flajolet, P., Gourdon, X., and Panario, D. Random polynomials and poly-

nomial factorization. In Proc. 23rd ICALP Symp. (1996), vol. 1099 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 232{243.

8. Flajolet, P., and Odlyzko, A. Singularity analysis of generating functions.

SIAM Journal on Discrete Mathematics 3 2 (1990), 216{240.

9. Gao, S., von zur Gathen, J., and Panario, D. Gauss periods and e�cient

arithmetic in �nite �elds. Submitted to Journal of Symbolic Computation (ex-

tended abstract in Proc. LATIN'95, vol. 911 of Lecture Notes in Computer Science,

311{322), 1995.

10. Gao, S., and Mullen, G. Dickson polynomials and irreducible polynomials over

�nite �elds. J. Number Theory 49 (1994), 118{132.

11. Gao, S., and Panario, D. Density of normal elements. Submitted to Finite

Fields and their Applications (abstract in AMS Abstracts 102 Fall 1995, # 904-

68-227, p. 798), 1995.

12. von zur Gathen, J., and Gerhard, J. Arithmetic and factorization of polyno-

mials over IF2. In Proc. ISSAC'96, Z�urich, Switzerland (1996), L. Y.N., Ed., ACM

press, pp. 1{9.

13. von zur Gathen, J., and Panario, D. A survey on factoring polynomials over

�nite �elds. Submitted to the special issue of the MAGMA conference in J. Symb.

Comp., 1996.

14. von zur Gathen, J., and Shoup, V. Computing Frobenius maps and factoring

polynomials. Comput complexity 2 (1992), 187{224.

15. Golomb, S. W. Shift register sequences. Aegean Park Press, Laguna Hills, Cali-

fornia, 1982.

16. Graham, R., Knuth, D., and Patashnik, O. Concrete Mathematics, 2nd ed.

Addison-Wesley, Reading, MA, 1994.

17. Ireland, K., and Rosen, M. A Classical Introduction to Modern Number Theory,

2nd ed. Springer-Verlag, Berlin, 1990.

18. Kaltofen, E., and Shoup, V. Subquadratic-time factoring of polynomials over

�nite �elds. In Proc. 27th ACM Symp. Theory of Computing (1995), pp. 398{406.

19. Knopfmacher, J., and Knopfmacher, A. Counting irreducible factors of poly-

nomials over a �nite �eld. SIAM Journal on Discrete Mathematics 112 (1993),

103{118.

20. Knuth, D. The art of computer programming, vol.2: seminumerical algorithms,

2nd ed. Addison-Wesley, Reading MA, 1981.

21. Lidl, R., and Niederreiter, H. Finite �elds, vol. 20 of Encyclopedia of Mathe-

matics and its Applications. Addison-Wesley, Reading MA, 1983.

22. Menezes, A., Blake, I., Gao, X., Mullin, R., Vanstone, S., and Yaghoo-

bian, T. Applications of Finite Fields. Kluwer Academic Publishers, Boston,

Dordrecht, Lancaster, 1993.

15

23. Odlyzko, A. Discrete logarithms and their cryptographic signi�cance. In Ad-

vances in Cryptology, Proceedings of Eurocrypt 1984 (1985), vol. 209 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 224{314.

24. Odlyzko, A. Asymptotic enumeration methods. In Handbook of Combinatorics,

R. Graham, M. Gr�otschel, and L. Lov�asz, Eds. Elsevier, 1996.

25. Panario, D. Combinatorial and algebraic aspects of polynomials over �nite �elds.

PhD Thesis, in preparation, 1996.

26. Rabin, M. O. Probabilistic algorithms in �nite �elds. SIAM J. Comp. 9 (1980),

273{280.

27. Sch�onhage, A. Schnelle Multiplikation von Polynomen �uber K�orpern der Charak-

teristik 2. Acta Inf. 7 (1977), 395{398.

28. Sch�onhage, A., and Strassen, V. Schnelle Multiplikation gro�er Zahlen. Com-

puting 7 (1971), 281{292.

29. Sedgewick, R., and Flajolet, P. An Introduction to the Analysis of Algorithms.

Addison-Wesley, Reading MA, 1996.

30. Shepp, L., and Lloyd, S. Ordered cycle lengths in a random permutation. Trans.

Amer. Math. Soc. 121 (1966), 340{357.

31. Shoup, V. Fast construction of irreducible polynomials over �nite �elds. J. Symb.

Comp. 17 (1995), 371{391.

32. Shoup, V. A new polynomial factorization algorithm and its implementation. J.

Symb. Comp. 20 (1996), 363{397.

33. Shparlinski, I. Finding irreducible and primitive polynomials. Appl. Alg. Eng.

Comm. Comp. 4 (1993), 263{268.

Note. This paper has appeared in Foundations of Computational Mathematics,

F. Cucker and M. Shub (Eds.), Springer 1997, 346{361.

This article was processed using the LATEX macro package with LLNCS style

16

