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Abstract

This paper is motivated by R. H. Bruck’s paper[3], in which he proved that
the existence of cyclic projective plane of order n ≡ 1 (mod 3) implies that
of a non-planar difference set of the same order by proving that such a cyclic
projective plane admits a regular non-Abelian automorphism group using
n as a multiplier. In this paper we will discuss in detail the possibility of
using multipliers to construct more non-Abelian difference sets from known
difference sets, especially from cyclic ones. The existence of several infinite
families of non-Abelian group different sets will be established.



1 Introduction

Let G be a group of order v. A k-subset D of G is called a (v, k, λ) difference
set if the list of differences d1d

−1
2 , d1, d2 ∈ D, contains each non-identity

element of G exactly λ times. The number n = k − λ is called the order
of the difference set. A difference set D in G will be called non-Abelian,
Abelian or cyclic provided G is non-Abelian, Abelian or cyclic, respectively.
An automorphism α of G is called a multiplier of D if Dα = aDb for some
a, b in G. When Dα = Db for some b in G, α is called a right multiplier. If G
is Abelian, the mapping αt : x 7→ xt ( or x 7→ tx if G is written additively) is
an automorphism of G for every integer t with gcd(t, v) = 1. If αt happens
to be a multiplier, then it will be called numerical multiplier. In this case
t is usually called a multiplier, though technically we should say αt is a
multiplier.
Group difference sets are closely related to a type of incidence structure

called symmetric block design. By a (v, k, λ) symmetric block design Π =
(V,Θ) we mean a set V of v points and a collection Θ of v k-subsets (called
blocks) of V such that each pair of distinct points is contained in exactly λ
blocks. The number n = k − λ is called the order of the design and when
λ = 1, a (v, k, λ) symmetric block design is also called a projective plane.
An automorphism of a symmetric block design Π is a permutation on V
which sends blocks to blocks. The set of all automorphisms of Π, denoted
by Auto(Π), forms a permutation group on V . Any subgroup of Auto(Π)
is called an automorphism group of Π. An automorphism group G of Π is
said to be regular if for any two points x, y of Π there is a unique α in G
such that xα = y. The following theorem describes an equivalence between
difference sets and symmetric block designs.

Theorem 1 Let Π = (V,Θ) be a (v, k, λ) symmetric block design admitting
a group G of order v as a regular automorphism group. Let x ∈ V and
B ∈ Θ be arbitrarily chosen point (base point) and block (base block). Then

D(x,B) = {α ∈ G | xα ∈ B}

is a (v, k, λ) difference set. Conversely, if D is a (v, k, λ) difference set in
G, then the incidence structure dev(D) = (G, {D x | x ∈ G}) with G as
point set and D ·x, x ∈ G, as blocks is a (v, k, λ) symmetric block design with
the right translation group GR = {τa | a ∈ G} as a regular automorphism
group, where τa : y 7→ ya, y ∈ G. And a right multiplier of a difference
set is an automorphism of the corresponding block design.
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Remark: Though GR is isomorphic to G, we will distinguish them in this
paper. For any subgroup ∆ of G, ∆R = {τa | a ∈ ∆ } is also a subgroup
of GR and any subgroup of GR is of this form.
By this theorem we observe that from any difference set D in a group G

we can develop a symmetric block design dev(D) with the right translation
group GR as a regular automorphism group. If the induced design dev(D)
has other regular automorphism groups, then we obtain difference sets in
these groups immediately. This is often possible as indicated by the following
result due to Bruck[3].

Theorem 2 If there is a cyclic planar difference set of order n ≡ 1
(mod 3), then there is also a non-Abelian planar difference set of the same
order.

The proof of the theorem is simple, but it enables us to construct an
infinite family of non-Abelian difference sets, since Singer [7] has proved
that whenever n is a prime power there exists a cyclic planar difference set
of order n. This stimulates us to carry on further. The most important
point in Bruck’s proof of Theorem 2 is using the multiplier n to construct a
regular automorphism group of the induced plane. In this paper we apply
this idea to a more general family of difference sets.

2 General Observations

In an attempt to generalize Theorem 2 we naturally think of employing
other numerical multipliers, even non-numerical ones, other than the order
n itself. We shall deal with the general case in this section.

Theorem 3 Let D be a (v, k, λ) difference set in a group G of order v, θ
a right multiplier of D with order r, a ∈ G a fixed element. Let ∆ be a
subgroup of G and α = θ τa, i. e.

α : x 7→ xα = xθa, x ∈ G.

Then
Γ =< α > ·∆R =

{
αi τb | b ∈ ∆, i = 0, 1, 2, · · ·

}

forms a subgroup of Auto(devD) and acts regularly on the point set G of
dev(D) if and only if the following conditions (a) and (b) are satisfied re-
spectively:
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(a) for each b ∈ ∆, there is an integer j such that

(1α
rj+1
)
−1
bθ a =

(
aθ
r−1
· · · aθ a

)−j
a−1bθa ∈ ∆

(b) there is a factor w of m, which is the order of 1α
r
, such that

{1, 1α, 1α
2
, . . . , 1α

wr−1
} (1)

constitutes a complete system of representatives of right cosets x∆,
x ∈ G, of ∆ in G.

Remark After the first version of this work was finished, the authors
were notified that Pott [6] also obtained this result in case w = 1 and α
normalizes ∆R(which implies that, in condition (a), a

−1bθa ∈ ∆ for each
b ∈ ∆).
Proof Obviously Γ ⊂ Auto(devD). Observe that Γ forms a group if and

only if for each b ∈ ∆
τbα = α

uτb1 (2)

for some integer u and b1 ∈ ∆. Let u = rj + i, 0 ≤ i < r. Noting that θ is
an automorphism of G, we have

xα
u

= xθ
u

aθ
u−1
· · · aθa = xθ

i

1α
u

for each x ∈ G. The equation (2) is equivalent to

xθbθa = xθ
i

1α
u

b1 (3)

for each x ∈ G. Replacing x by the identity of G, we obtain bθa = 1α
u
b1.

Hence xθ = xθ
i
for each x ∈ G. So i = 1 and (1α

u
)−1 bθ a ∈ ∆. But

1α
u
= aα

rj

= aθ
rj
aθ
rj−1
· · · aθa

= a(aθ
r−1
· · · aθa)j

so Γ forms a group if and only if the condition (a) is satisfied.
Now we prove that when Γ is a group it acts regularly on G if and only

if the condition (b) is satisfied. Suppose that (b) is satisfied. Since (1)
is a complete system of representatives of right cosets of ∆ in G, we have
wr| < ∆ > | = v and for any element x of G there must be an integer i and
b ∈ ∆ such that x = 1α

i
b. Then 1α

iτb = x, which proves the transitivity of
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the group Γ on G. To prove its regularity, we only need to prove |Γ| = v.
Note that αu ∈ ∆R, say αu = τb, b ∈ ∆, if and only if

xθ
u

aθ
u−1
· · · aθa = xθ

u

1α
u

= xb (4)

for each x ∈ G. Setting x = 1 in (4) we have

1α
u

= aθ
u−1
· · · aθa = b (5)

and thus
xθ
u

= x (6)

for each x ∈ G. Hence θu = 1 and r|u. Let u = rj. Then (5) means that

1α
u

= 1α
rj

= (aθ
r−1
· · · aθa)j ∈ ∆. (7)

Since (1) represents all the right cosets of ∆ inG, we have 1α
ri
= (aθ

r−1
· · · aθa)i 6∈

∆, for 1 ≤ i ≤ w − 1, and 1α
rw
= (aθ

r−1
· · · aθa)w ∈ ∆, thus w is the small-

est positive integer i such that 1α
ri
= (aθ

r−1
· · · aθa)i ∈ ∆. It follows from

(7) that w|j. Hence αu ∈ ∆R if and only if (rw)|u. Setting b = 1 in the
above discussion, we see that the order of α is rm, where m is the order of
1α
r
= aθ

r−1
· · · aθa. So | < α > ∩∆R| = rm/rw and

|Γ | =
| < α > | |∆R|

| < α > ∩∆R|
= wr|∆R| = v.

Now assume that the group Γ acts on G regularly. Let d be the smallest
positive integer such that αd ∈ ∆R. Then

1, α, . . . , αd−1

form a complete system of representatives of right cosets of ∆R in Γ and
thus

1, 1α, . . . , 1α
d−1

are representatives of right cosets of ∆ in G. And furthermore, from above
discussion, we see that d = rw where w is the smallest positive integer such
that (aθ

r−1
· · · aθa)w ∈ ∆. Since (aθ

r−1
· · · aθa)m = 1 ∈ ∆, we must have

w|m. This completes the proof.

Example 1 Let G be the elementary Abelian group of order 16 generated
by a, b, c, d. It is easy to see that D = {1, a, b, c, d, abcd} is a (16, 6, 2)
difference set and θ, defined by

aθ = c, cθ = b, bθ = abcd, dθ = d
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is an automorphism of G and fixes D. Let α = θ τa and ∆ = {1, ab}. It
is routine to check that θ is of order 4, α is of order 8 and each of the two
point orbits of G under < α >:

1 7→ a 7→ ac 7→ abc 7→ d 7→ ad 7→ acd 7→ abcd 7→ 1,

b 7→ bcd 7→ c 7→ ab 7→ bd 7→ bc 7→ cd 7→ abd 7→ b

is a complete system of representatives of cosets of ∆ in G. Further, note
that for each x ∈ G

xτabα = xθ(ab)θa = xθbd = xα
5 τab ,

that is, τab α = α5 τab. Hence Γ = < α > · ∆R is a regular automor-
phism group of dev(D) by Theorem 3. By Theorem 1 we obtain a (16, 6, 2)
difference set:

{1, α, α4, α7, αβ, α3β }

in Γ =< α, β > with relations: α8 = β2 = 1, β α β = α5, where
β = τab.

Example 2 Let G and D be as in Example 1, θ be defined by:

aθ = b, bθ = a, cθ = d, dθ = c,

and α = θ τa. Let ∆ = {1, c, d, cd}, β1 = τc, β2 = τd. Then it is easy
to check that α and the subgroup ∆ satisfy the conditions in Theorem 3 and
Γ = < α, β1, β2 > with relations

α4=β21=β
2
2 = 1, β1 ·β2 = β2 ·β1, α·β1 = β2 ·α

acts regularly on G. Hence we find that

{1, α, α3, β1, β2, α
2β1β2}

is a (16, 6, 2) difference set in Γ.

The above two difference sets appeared in a different form in Kibler [5].
When Γ is cyclic, any multiplier is numerical. In this case Theorem 3 can
be improved to the following simpler and more concrete form.

Theorem 4 Let D be a (v, k, λ) difference set in the addition group of Zv
(the residue ring modulo v). If there is a multiplier t of D such that
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(a) the order, say r, of t modulo v divides gcd(v, 1 + t+ · · · + tr−1), and

(b) there is a factor w of m with the property that the smallest positive
integer u with 1+ t+ · · · + tu−1 ≡ 0 (mod wr) is equal to wr where
m = v/ gcd(v, 1 + t+ · · · + tr−1),

then there is a (v, k, λ) difference set in the group < α, β > generated by α
and β with orders mr and v/(wr), respectively, and satisfy

α−1 β α = βt, αwr = βs

where s ≡ (1 + t+ · · ·+ twr−1)/wr (mod v).

Proof Apply Theorem 3. For any fixed a ∈ Zv with gcd(a, v) = 1, define
α and β by

α : x 7→ tx+ a,
β : x 7→ x+ wr.

Then α, β ∈ Auto(dev(D)). Let ∆ be the subgroup {wr x |x ∈ Zv} of Zv.
Then ∆R =< β > and Γ =< α,∆R >=< α, β >. Note that

xβα = tx+ twr + a = xαβ
t

for each x in Zv. So β α = αβ
t and Γ =< α > ·∆R. So we only need

to prove that the condition (b) in Theorem 3 is satisfied. Note that m =
v/ gcd(v, 1 + t + · · · + tr−1) is the order of 0α

r
= 1 + t + · · · + tr−1 in the

addition group Zv. Since r| gcd(v, 1+ t+ · · ·+ tr−1) and w|m, we have wr|v
and thus |∆| = v/wr. As rw is the smallest positive integer u such that

1 + t+ · · ·+ tu−1 ≡ 0 (mod rw),

we see that 0, 1, 1 + t, . . . , 1 + t+ · · ·+ trw−2 are different modulo rw, that
is, they form a complete system of representatives of cosets of ∆ in Zv. As
gcd(a, v) = 1,

{0, 1, 1 + t, . . . , 1 + t+ · · ·+ trw−2}
≡ a{0, 1, 1 + t, . . . , 1 + t+ · · ·+ trw−2} (mod rw)

= a{0, 0α, 0α
2
, . . . , 0α

rw−1
}

≡ {0, 0α, 0α
2
, . . . , 0α

rw−1
} (mod rw)

represents the cosets of ∆ in Zv. This completes the proof.
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Example 3 We know that there is a cyclic difference set of parameters
(40, 13, 4) in Z40 and 3 and 9 are multipliers of it ( refer to [1] or [2]). For
t = 3, r = 4 and m = 1. The condition (b) in Theorem 4 is violated. But
for t = 9, we may get three non-Abelian (40, 13, 4) difference sets (The first
of which appeared in Kibler [5], the last two seem to be new):

(a) t = 9,r = 2, m = 4, w = 4:

D = {α, α4, αβ, α2β, α3β2, α6β2, αβ3, α3β3, α5β3, α6β3, α7β3, α2β4, α3β4}

in Γ =< α, β > with the relations α8 = β5 = 1, α−1βα = β4.

(b) t = 9,r = 2, m = 4, w = 2:

D = {α, α4, αβ2, α2β2, α3β4, α6β4, αβ6, α3β6, α5β6, α6β6, α7β6, α2β8, α3β8}

in Γ =< α, β > with the relations α4 = β10 = 1, α−1βα = β9and
α4 = β5.

(c) t = 9,r = 2, m = 4, w = 1:

D = {α, α4, αβ4, α2β4, α3β8, α6β8, αβ12, α3β12, α5β12,
α6β12, α7β12, α2β16, α3β16}

in Γ =< α, β > with the relations α8 = β20 = 1, α−1βα = β9 and
α2 = β5.

Example 4 We know that there is a cyclic difference set of parameters
(156, 31, 6) in Z156 and 5 and 25 are multipliers of it ( refer to [1] or [2]).
Chosing a = 1 in the definition of α, We may get, by Theorem 4, five new
non-Abelian (156, 31, 6) difference sets:

(a) t = 5,r = 4, m = 1, w = 1(Note that 1 + 5 + 52 + 53 = 156 = v):

D = {1, β7, β17, β19, β35, α, αβ, αβ3, αβ6, αβ16, αβ29, αβ31, α2β10,

α2β13, α2β17, α2β20, α2β28, α2β29, α2β32, α2β34, α3β2, α3β6,

α3β14, α3β15, α3β20, α3β22, α3β23, α3β24, α3β28, α3β29, α2β}

in Γ =< α, β > with the relations α4 = β39 = 1, α−1βα = β5.
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(b) t = 25, r = 2, m = 6, w = 6:

D = {1, α, αβ, αβ2, α2β4, α2β5, α2β8, α2β9, α3β, α3β5, α3β7, α3β8,

α3β10, α4β2, α4β11, α5β, α5β6, α5β9, α7β, α7β4, α7β11, α8β3,

α8β10, α9β, α10β, α10β6, α10β7, α10β12, α11β, α11β3, α11β12}

in Γ =< α, β > with the relations α12 = β13 = 1, α−1βα = β12.

(c) t = 25, r = 2, m = 6, w = 3:

D = {1, α, αβ2, αβ4, α2β8, α2β10, α2β16, α2β18, α3β2, α3β10, α3β14, α3β16,

α3β20, α4β4, α4β22, α5β2, α5β12, α5β18, α7β2, α7β8, α7β22, α8β6,

α8β20, α9β2, α10β2, α10β12, α10β14, α10β24, α11β2, α11β6, α11β24}

in Γ =< α, β > with the relations α12 = β26 = 1, α−1βα = β25 and
α6 = β13.

(d) t = 25, r = 2, m = 6, w = 2:

D = {1, α, αβ3, αβ6, α2β12, α2β15, α2β24, α2β27, α3β3, α3β15, α3β21, α3β24,

α3β30, α4β6, α4β33, α5β3, α5β18, α5β27, α7β3, α7β12, α7β33, α8β9,

α8β30, α9β3, α10β3, α10β18, α10β21, α10β36, α11β3, α11β9, α11β36}

in Γ =< α, β > with the relations α12 = β39 = 1, α−1βα = β25 and
α4 = β13.

(e) t = 25, r = 2, m = 6, w = 1:

D = {1, α, αβ6, αβ12, α2β24, α2β30, α2β48, α2β54, α3β6, α3β30, α3β42, α3β48,

α3β60, α4β12, α4β66, α5β6, α5β36, α5β54, α7β6, α7β24, α7β66, α8β18,

α8β60, α9β6, α10β6, α10β36, α10β42, α10β72, α11β6, α11β18, α11β72}

in Γ =< α, β > with the relations α12 = β78 = 1, α−1βα = β25 and
α2 = β13.

3 Special Cases

Now we state a direct generalization of Bruck’s theorem to a family of cyclic
difference sets with parameters:

v = (qN+1 − 1)/(q − 1), k = (qN − 1)/(q − 1), λ = (qN−1 − 1)/(q − 1) (8)
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for N ≥ 2 and q a prime power, their existence was established by Singer [7]
in 1938.

Theorem 5 Let q be a prime power and N ≥ 2 an integer. If q ≡ 1
(mod N +1), then there is a non-Abelian difference set with parameters (8)
in the group Γ =< α, β > generated by α and β with orders N + 1 and
v/(N + 1), respectively, and satisfy α−1βα = βq.

Remark This result is also obtained by Pott [6]. When N = 2, this is
Theorem 2.
Proof Let D be a difference set in Zv with parameters (8). We know

by the multiplier theorems (refer to [2] or [4]) that q is a multiplier of D.
Setting, in Theorem 4, t = q and v, k, λ as in (8), it is easy to see that the
order of t modulo v is N + 1. As q ≡ 1 (mod N + 1), we have

v ≡ 0 (mod N + 1),

and
1 + q + · · ·+ qN ≡ 0 (mod N + 1).

Note that m = v/ gcd(v, 1 + t + · · · + tN ) = 1 and N + 1 is the smallest
positive integer u such that

1 + q + · · ·+ qu−1 ≡ 0 (mod N + 1).

The Theorem follows immediately.

Theorem 6 Let q be an odd prime power and

v = q3 + q2 + q + 1, k = q2 + q + 1, λ = q + 1. (9)

Then, for any positive integer w|(q + 1), there is a non-Abelian (v, k, λ)
difference set in the group Γ =< α, β > generated by α and β of orders
2(q + 1) and v/2w, respectively, which satisfy

α−1βα = βq
2
and α2w = β

q2+1
2 .

Proof Apply Theorem 4. We know that there is a cyclic difference set of
parameter (9) and q2 is a multiplier of it. Let t = q2. Then the order r of t
modulo v is 2. As q is odd, the condition (a) is obviously satisfied. Observing
that v = (q+1)(q2+1), we see that m = v/ gcd(v, 1+ t+ · · ·+ tr−1) = q+1.
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Note that q2 − 1 = q−1
2 2(q + 1), we have q

2 ≡ 1 (mod 2m) and thus
t = q2 ≡ 1 (mod 2w). So

1 + t+ · · ·+ tu−1 ≡ u (mod 2w).

This means that the condition (b) is also satisfied. The application is com-
pleted by noting that 1 + t+ · · ·+ t2w−1 ≡ w(1 + t) ≡ w(1 + q2) (mod v).
This proves the theorem.
Example 4(a) is an example for Theorem 5. The remaining part of

Example 4 and Example 3 are examples for Theorem 6. For the sake of
Theorem 7, we first prove two lemmas.

Lemma 1 Let p(6= 3) be an odd prime, q a prime, u a positive integer
and p | (q2u + qu + 1). Let t = q3u and v = q2pu + qpu + 1. Then
p ‖ (1 + t+ · · ·+ tp−1), pc ‖ (t− 1) and pc+1 ‖ v for some integer c ≥ 1.

Proof p |(q2u + qu + 1) implies that

t− 1 = q3u − 1 ≡ 0 (mod p). (10)

Let t = pcw + 1, p†w, c ≥ 1. Note that

(qpu − 1)v = tp − 1 = (pcw + 1)p − 1
≡ 1

2p(p− 1)p
2cw2 + p pcw + 1− 1 (mod pc+2)

≡ pc+1w (mod pc+2),

we have pc+1 ‖ (v(qpu − 1)) and pc+1 ‖ (tp − 1), hence

p ‖ (1 + t+ · · ·+ tp−1).

Now if p | (qpu − 1), then

q2u + qu + 1 ≡ (q2u)p + (qu)p + 1 ≡ 3 (mod p),

contradicting the conditions that p | (q2u + qu + 1) and p 6= 3. Hence
pc+1 ‖ v. This completes the proof.

Lemma 2 Let p, q, t, v be as in Lemma 1. Let m = v/ gcd(v, 1 + t + · · · +
tp−1). Then pm is the smallest positive integer w such that

1 + t+ · · ·+ tw−1 ≡ 0 (mod pm). (11)
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Proof Since the order of t modulo v is p, it follows that

(t− 1)(tp−1 + · · ·+ t+ 1) ≡ 0 (mod v).

Hence m | (t− 1) and 1 + t+ · · ·+ tw−1 ≡ w (mod m). Thus (11) implies
that m | w. By Lemma 1 we see that p | m, so (pm) | m2 and (pm) | (mw).
Let t− 1 = mt1. Then

1 + t+ · · ·+ tw−1 = (tw − 1)/(t− 1)
= ((mt1 + 1)

w − 1)/(mt1)
≡ 1

2w(w − 1)mt1 + w (mod pm)
≡ w (mod pm).

Therefore pm is the smallest positive integer w satisfying (11). This com-
pletes the proof.

Theorem 7 Let p(6= 3) be an odd prime, q a prime, u a positive integer,
and p | (q2u + qu + 1). Let v = q2pu + qpu + 1 and m = v/ gcd(v, 1 + q3u +
· · · + (q3u)p−1). Then there is a non-Abelian planar difference set of order
n = qpu in the group Γ =< α, β > generated by α and β with order pm and
v/(pm), respectively, and satisfy α−1βα = βq

3u
.

Proof We have known that there exists a cyclic difference set with pa-
rameters:

v = q2pu + qpu + 1, k = qpu + 1, λ = 1,

and q is a multiplier as well as q3u. Let t = q3u. Then the order of tmodulo v
is p and, by Lemma 1 and 2, t satisfies the three conditions in Theorem 4
with w = m. Our theorem follows from it immediately.
For p = 7 and 13 in Theorem 7 we have

Corollary 1 Let q be a prime. There exists a non-Abelian planar difference
set of order n = q7u if q and u satisfy one of the following:

(i) q ≡ 2 or 4 (mod 7), u ≡ 1 or 2 (mod 3);

(ii) q ≡ 3 or 5 (mod 7), u ≡ 2 or 4 (mod 6).

Corollary 2 Let q be a prime. There is a non-Abelian planar difference set
of order n = q13u if q and u satisfy one of the following:

(i) q ≡ 2, 6, 7 or 11 (mod 13), u ≡ 4 or 8 (mod 12);
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(ii) q ≡ 4 or 10 (mod 13), u ≡ 2 or 4 (mod 6);

(iii) q ≡ 3 or 9 (mod 13), u ≡ 1 or 2 (mod 3).
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