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Abstract

This paper is motivated by R. H. Bruck’s paper[3], in which he proved that
the existence of cyclic projective plane of order n =1 (mod 3) implies that
of a non-planar difference set of the same order by proving that such a cyclic
projective plane admits a regular non-Abelian automorphism group using
n as a multiplier. In this paper we will discuss in detail the possibility of
using multipliers to construct more non-Abelian difference sets from known
difference sets, especially from cyclic ones. The existence of several infinite
families of non-Abelian group different sets will be established.



1 Introduction

Let G be a group of order v. A k-subset D of G is called a (v, k, \) difference
set if the list of differences did; 1 di,dy € D, contains each non-identity
element of G exactly A times. The number n = k — X is called the order
of the difference set. A difference set D in G will be called non-Abelian,
Abelian or cyclic provided G is non-Abelian, Abelian or cyclic, respectively.
An automorphism « of G is called a multiplier of D if D® = aDb for some
a,bin G. When D® = Db for some b in G, « is called a right multiplier. If G
is Abelian, the mapping oy : © — 2! (or x — tz if G is written additively) is
an automorphism of G for every integer ¢ with ged(¢,v) = 1. If oy happens
to be a multiplier, then it will be called numerical multiplier. In this case
t is usually called a multiplier, though technically we should say oy is a
multiplier.

Group difference sets are closely related to a type of incidence structure
called symmetric block design. By a (v, k, ) symmetric block design IT =
(V,0) we mean a set V of v points and a collection © of v k-subsets (called
blocks) of V' such that each pair of distinct points is contained in exactly A
blocks. The number n = k — X is called the order of the design and when
A =1, a (v,k,A\) symmetric block design is also called a projective plane.
An automorphism of a symmetric block design II is a permutation on V
which sends blocks to blocks. The set of all automorphisms of II, denoted
by Auto(II), forms a permutation group on V. Any subgroup of Auto(II)
is called an automorphism group of II. An automorphism group G of II is
said to be regular if for any two points z,y of II there is a unique « in G
such that z® = y. The following theorem describes an equivalence between
difference sets and symmetric block designs.

Theorem 1 Let I = (V,0) be a (v, k, \) symmetric block design admitting
a group G of order v as a regular automorphism group. Let x € V and
B € © be arbitrarily chosen point (base point) and block (base block). Then

D(z,B) ={a € G|z* € B}

is a (v, k,\) difference set. Conversely, if D is a (v,k,\) difference set in
G, then the incidence structure dev(D) = (G, {D =z |x € G}) with G as
point set and D-x,x € G, as blocks is a (v, k, \) symmetric block design with
the right translation group Gg = {74 | a € G} as a regular automorphism
group, where 7, : y — ya, y € G. And a right multiplier of a difference
set is an automorphism of the corresponding block design.



Remark: Though Gp is isomorphic to G, we will distinguish them in this
paper. For any subgroup A of G, Agp = {7, | @ € A } is also a subgroup
of G and any subgroup of G is of this form.

By this theorem we observe that from any difference set D in a group G
we can develop a symmetric block design dev(D) with the right translation
group Gg as a regular automorphism group. If the induced design dev(D)
has other regular automorphism groups, then we obtain difference sets in
these groups immediately. This is often possible as indicated by the following
result due to Bruck][3].

Theorem 2 If there is a cyclic planar difference set of order n = 1
(mod 3), then there is also a non-Abelian planar difference set of the same
order.

The proof of the theorem is simple, but it enables us to construct an
infinite family of non-Abelian difference sets, since Singer [7] has proved
that whenever n is a prime power there exists a cyclic planar difference set
of order n. This stimulates us to carry on further. The most important
point in Bruck’s proof of Theorem 2 is using the multiplier n to construct a
regular automorphism group of the induced plane. In this paper we apply
this idea to a more general family of difference sets.

2 General Observations

In an attempt to generalize Theorem 2 we naturally think of employing
other numerical multipliers, even non-numerical ones, other than the order
n itself. We shall deal with the general case in this section.

Theorem 3 Let D be a (v,k,\) difference set in a group G of order v, 6
a right multiplier of D with order r, a € G a fized element. Let A be a
subgroup of G and o = 0 1,, 1. e.

a:z—z*=2%, zeG.

Then ‘
I‘:<a>-AR:{azrblbeA,i:O,l,z---}

forms a subgroup of Auto(devD) and acts regularly on the point set G of
dev(D) if and only if the following conditions (a) and (b) are satisfied re-
spectively:



(a) for each b € A, there is an integer j such that
(107 Tl g = (amfl oa? )_] aac A
(b) there is a factor w of m, which is the order of 1%, such that

{1,141, ..., 19"" ) (1)

constitutes a complete system of representatives of right cosets xA,

r € G, of AinG.

Remark After the first version of this work was finished, the authors
were notified that Pott [6] also obtained this result in case w = 1 and «
normalizes Ag(which implies that, in condition (a), a~*b%a € A for each
beA).

Proof Obviously I' C Auto(devD). Observe that I' forms a group if and
only if for each b € A

Th&X = o1 by (2)

for some integer u and b1 € A. Let u =rj 4+ 1,0 < i < r. Noting that 6 is
an automorphism of G, we have

2 =2 . afa = 2P 1"
for each x € G. The equation (2) is equivalent to

2%0%a = 271", (3)

for each z € G. Replacing x by the identity of G, we obtain »’a = 1%“b;.

Hence 2 = 2% for each z € G. Soi =1 and (1)1 a € A. But
19" = go”
= a7l

= a(aer—l oo aea)j

so I" forms a group if and only if the condition (a) is satisfied.

Now we prove that when I' is a group it acts regularly on G if and only
if the condition (b) is satisfied. Suppose that (b) is satisfied. Since (1)
is a complete system of representatives of right cosets of A in G, we have
wr| < A > | =wv and for any element x of G there must be an integer 7 and
b € A such that = 1*'b. Then 1% = z, which proves the transitivity of



the group I' on G. To prove its regularity, we only need to prove |I'| = v.
Note that o € Apg, say a* =7, b € A, if and only if

290 ala = 29" 19" = zb (4)
for each x € G. Setting x = 1 in (4) we have
19" = dfa=b (5)

and thus
2 =z (6)

for each x € G. Hence 6" = 1 and r|u. Let w = rj. Then (5) means that
1" =197 = (ami1 --adba)l € A. (7)

Since (1) represents all the right cosets of A in G, we have 1% = (a?" ' - - - aa)’ ¢
A forl1<i<w-—1,and 14" = (_aGP1 --a%a)? € A, thus w is the small-

est positive integer i such that 1% = (o ---a%a)i € A. Tt follows from

(7) that w|j. Hence a* € Ap if and only if (rw)|u. Setting b = 1 in the
above discussion, we see that the order of « is rm, where m is the order of

19" =" .afa. So | < a>NAg| = rm/rw and

‘<04>HAR’

r|=
T | < o> NARg|

= wr|Ag| =v.
Now assume that the group I' acts on G regularly. Let d be the smallest
positive integer such that o € Ap. Then

1,a,...,ad*1

form a complete system of representatives of right cosets of Ag in I' and
thus

1,191
are representatives of right cosets of A in G. And furthermore, from above
discussion, we see that d = rw where w is the smallest positive integer such
that (a? " ---a%)¥ € A. Since (a? " ---afa)™ = 1 € A, we must have
w|m. This completes the proof.

Example 1 Let G be the elementary Abelian group of order 16 generated
by a,b,c,d. It is easy to see that D = {1,a,b,c,d,abcd} is a (16,6,2)
difference set and 6, defined by

a=c, ?=0b b =abed, & =d



is an automorphism of G and fivzes D. Let « = 0 7, and A = {1,ab}. It
is routine to check that 0 is of order 4, « is of order 8 and each of the two
point orbits of G under < o >:

11— a— ac— abc+— d— ad+— acd+— abed — 1,

b— bed— c+— ab— bd+— bc— cd+— abd+— b

is a complete system of representatives of cosets of A in G. Further, note
that for each x € G

5
27 = z2%ab)la = 2%d = 2% 7,

that is, Ty 0 = o Tgp. HenceT' = < o > - Apg is a reqular automor-

phism group of dev(D) by Theorem 3. By Theorem 1 we obtain a (16,6,2)
difference set:
{17 (o8 a47 a77 O[,B, agﬁ }

in T' =< a, > with relations: o® = (2> = 1, Ba B = o, where
B = Tap-

Example 2 Let G and D be as in Example 1, 0 be defined by:
a =b 1 =a & =4d & = ¢

and a = 0 1,. Let A ={1,¢,d,cd}, 1 = 7, P2 = 714. Then it is easy
to check that o and the subgroup A satisfy the conditions in Theorem 3 and
I' = <a,p1,B2 > with relations

at=p{=p5 =1, B1-B2 = fa-fr, a-f1 = Paa
acts regularly on G. Hence we find that
{1,a,0%, 81, B2, 0”162}
is a (16,6,2) difference set in T

The above two difference sets appeared in a different form in Kibler [5].
When T is cyclic, any multiplier is numerical. In this case Theorem 3 can
be improved to the following simpler and more concrete form.

Theorem 4 Let D be a (v, k,\) difference set in the addition group of Z,
(the residue ring modulo v). If there is a multiplier t of D such that



(a) the order, say r, of t modulo v divides ged(v,1+t+--- +t"1), and

(b) there is a factor w of m with the property that the smallest positive
integer u with 1+t+--- +t*"1 = 0 (mod wr) is equal to wr where
m=uv/ged(v,l+t+--- +1"1),

then there is a (v, k,\) difference set in the group < a, 3 > generated by o
and (B with orders mr and v/(wr), respectively, and satisfy

a*l ﬂ a = ﬂt’ ar :/68
where s = (1 4+t +---+t*"" 1) /wr (mod v).

Proof Apply Theorem 3. For any fixed a € Z, with ged(a,v) = 1, define
« and 8 by
a: r — tr+a,
6: x — x+wr

Then «, 3 € Auto(dev(D)). Let A be the subgroup {wrz |z € Z,} of Z,.
Then Ag =< > and I' =< a, Agp >=< «a, 3 >. Note that

2P =ty +twr +a = el

for each z in Z,. So Ba = afB' and I' =< a > -Ag. So we only need
to prove that the condition (b) in Theorem 3 is satisfied. Note that m =
v/ged(v, 1+t 4 --- +t"71) is the order of 0% = 1+t +--- + "1 in the
addition group Z,. Since r|ged(v, 1+t +---+¢"1) and w|m, we have wr|v
and thus |A| = v/wr. As rw is the smallest positive integer u such that

1+t+--+t*“ =0 (mod rw),

we see that 0,1,1+¢,...,1+t+--- 4+ t"™2 are different modulo rw, that
is, they form a complete system of representatives of cosets of A in Z,. As
ged(a,v) =1,

{0,1,1+¢,..., 1+t 4 -+ tw2}
=a{0,1,1+¢t,...,1+t+---+t""2} (mod rw)
=a{0,0%,0°°,...,04™" "}
={0,0%,0°*,...,0°™" '} (mod rw)

represents the cosets of A in Z,,. This completes the proof.



Example 3 We know that there is a cyclic difference set of parameters
(40,13,4) in Zyy and 3 and 9 are multipliers of it ( refer to [1] or [2]). For
t =3, r =4 and m = 1. The condition (b) in Theorem 4 is violated. But
fort =9, we may get three non-Abelian (40,13,4) difference sets (The first
of which appeared in Kibler [5], the last two seem to be new):

(a) t=9r=2, m=4, w=4:
in T =< a, 8 > with the relations o® = 3° =1, a1 fa = 5.
(b) t=9r=2, m=4, w=2:
in T =< a, B > with the relations o* = 10 =1, a7 fa = pand
ot = 3.
(c)t=9r=2, m=4,w=1:
D = {a a4 (,Yﬂ4 Oé2ﬂ4 a368 046ﬂ8 0612 a3,812 065,312
a%812, o312, 02316, 03316}
in I' =< a, 8 > with the relations o = %0 = 1, o 'pa = 3° and

o? = 35,

Example 4 We know that there is a cyclic difference set of parameters
(156,31,6) in Zis¢ and 5 and 25 are multipliers of it ( refer to [1] or [2]).
Chosing a = 1 in the definition of o, We may get, by Theorem 4, five new
non-Abelian (156,31,6) difference sets:

(a) t=5,r=4, m=1, w=1(Note that 1 + 5+ 5% + 53 = 156 = v):
D = {1,ﬂ7,ﬂ17,519,ﬂ35,a,aﬁ,aﬁg,Ozﬁ6,aﬂ167aﬁ29,aﬁ31,a2ﬂw,
042/813, Oé2ﬂ17, a2[320, a2ﬁ28, a2ﬂ29, a2,332, a2,334, a3/32, 05356,
043514, 0(3515, 063/820, a3ﬁ22, a3ﬁ23, ()é3,824, Oé3,828, 063,829, 062,8}

in T =< a, B > with the relations o* = 33 =1, a7 fa = °.



(b) t=25,r=2, m=6, w=6:

2 224 225 2,8 259 35 355 3,7 38
{]"a?aﬁ?aﬁ?a/67a/8’aﬁ’aﬂ7aﬁ7a/8’aﬁ7a/87
3210 452 _4all 5o 5a6 529 7o Tad _Toll 8433
aB, B, aB,a’B,a3”, a8, a8, a8, a8, a3,
8210 92 105 1036 1027 10412 _1lp 1133 11712
aBr B o Ba B B B a Ba B a B

D =

in T =< a, B > with the relations a'? = 13 =1, a 1o = 2.

(c)t=25,r=2, m=6, w=3:

2 4 208 2010 2916 2218 322 3010 3214 3716
{17a7aﬁ7q87aﬂ7a18 7a18 ,O{B 7aﬁ7aﬂ 7a6 7a/3 9
3020 4904 4922 592 5212 5918 Tp2 Ta8 7222 876
BT, a3, 3%, 037, 377, a0, a7, a7, o3, 757,
8420 902 1092 10512 10914 10924 1152 1196 11524
a BT, a3 a B, a3, 0B, a B B a B, a0 BT

D:

in T =< a, > with the relations a'? = 8% = 1,a 60 = % and

6 _ 113

a’ = (2.
(d) t=25,r=2, m=6, w=2:
{1’ a, 0(63, aﬁG,a2ﬁ12,a2ﬁl5,a2ﬂ24, a2ﬂ27, a3ﬁ3’ Oé3ﬁ15, a3ﬁ2170{3ﬁ247
3230 406 4233 523 5918 5227 _Ta3 _Tnl2 7233 8729
a’B, B, B, 0B, a’B, 7B, 57, a7, 87, a5
8230 903 1003 10218 10521 10236 1103 1129 11236
aB B a B a3 BT, a B, o B o B ar B}

D =

in T =< a,3 > with the relations a2 = 3% = 1,a 160 = 5% and

4 _ ;13

a* = (67,
() t=25,r=2, m=06, w=1:
{1’ a, 0/667 O/ﬂ12, Oé2ﬂ24, 0525307 052548,Oé2554,0é356, 043,330, 043,642; 063,648,
3960 4912 4266 536 5036 5354 76 7224 7366 8418
B, a B, B, a8, 787, a3, a5, a7, a7, a5,
8260 936 1026 10336 10942 10972 1156 11518 11,72
B, o’ o B a BT a B, a B o B B0 e B

D =

in T =< «a, B > with the relations a'> = 8 = 1,a 6o = % and

a2 — /813'

3 Special Cases
Now we state a direct generalization of Bruck’s theorem to a family of cyclic

difference sets with parameters:

v=(""-1)/(g-1),k=(" -1)/(g-1), A= """ -1)/(g-1) (8



for N > 2 and ¢ a prime power, their existence was established by Singer [7]
in 1938.

Theorem 5 Let q be a prime power and N > 2 an integer. If ¢ = 1
(mod N +1), then there is a non-Abelian difference set with parameters (8)
in the group I' =< «a, 8 > generated by o« and B with orders N + 1 and
v/(N + 1), respectively, and satisfy a1 Ba = 9.

Remark This result is also obtained by Pott [6]. When N = 2, this is
Theorem 2.

Proof Let D be a difference set in Z, with parameters (8). We know
by the multiplier theorems (refer to [2] or [4]) that ¢ is a multiplier of D.
Setting, in Theorem 4, ¢t = ¢ and v, k, A as in (8), it is easy to see that the
order of t modulovis N+ 1. Asgq=1 (mod N + 1), we have

v=0 (mod N +1),

and
14q¢+---4+¢ =0 (mod N +1).

Note that m = v/ged(v,1 +¢t+---+tV) = 1 and N + 1 is the smallest
positive integer u such that

l+qg+--+¢“"1'=0 (mod N +1).
The Theorem follows immediately.
Theorem 6 Let g be an odd prime power and
v=¢"+¢@+q+1, k=¢+qg+1, A=q+1. (9)

Then, for any positive integer w|(q + 1), there is a non-Abelian (v,k, \)
difference set in the group I' =< a, 3 > generated by a and (B of orders
2(q +1) and v/2w, respectively, which satisfy

2 241
a 1Ba = B and o** = ﬁq 2

Proof Apply Theorem 4. We know that there is a cyclic difference set of
parameter (9) and ¢? is a multiplier of it. Let ¢ = ¢®. Then the order r of ¢
modulo v is 2. As ¢ is odd, the condition (a) is obviously satisfied. Observing
that v = (g+1)(¢? +1), we see that m = v/ ged(v, 1 +t4---+t""1) = ¢+ 1.



Note that ¢ — 1 = %2@ + 1), we have ¢> = 1 (mod 2m) and thus
t=¢>=1 (mod 2w). So

1+t+--+t“P=u (mod 2w).

This means that the condition (b) is also satisfied. The application is com-
pleted by noting that 1+t +--- +t**" ! =w(1+t) = w(l+¢*) (mod v).
This proves the theorem.

Example 4(a) is an example for Theorem 5. The remaining part of
Example 4 and Example 3 are examples for Theorem 6. For the sake of
Theorem 7, we first prove two lemmas.

Lemma 1 Let p(# 3) be an odd prime, q a prime, u a positive integer
and p | (@*+q“+1). Lett = ¢ and v = ¢*°P* + ¢?* + 1. Then
pll (M+t+-+t271), p° || (t—1) and p°*L || v for some integer ¢ > 1.

Proof p|(¢** + ¢* + 1) implies that
t—1=¢* -1 =0 (modp). (10)

Let t = p°w + 1, ptw, ¢ > 1. Note that

(g™ —1)v tP—1=(pw+1P -1
5p(p — Dp*w? + ppw+1-1  (mod p°*?)

pc+1w (mod pc+2)7

we have p°t! || (v(¢P* — 1)) and pT! || (#? — 1), hence
pll A+t+- P71,
Now if p | (¢P* — 1), then
g 1= () + (¢ +1 =3 (modp),

contradicting the conditions that p | (¢*“+¢*+1) and p # 3. Hence
p“t1 || v. This completes the proof.

Lemma 2 Let p,q,t,v be as in Lemma 1. Let m = v/ged(v,1 +t+ -+
tP~1). Then pm is the smallest positive integer w such that

1+t+---+t*1=0 (modpm). (11)

10



Proof Since the order of ¢ modulo v is p, it follows that
t—1)P ' +---4t+1)=0 (mod v).

Hence m | (t —1) and 1+t +---+t¥"1 =w (mod m). Thus (11) implies
that m | w. By Lemma 1 we see that p | m, so (pm) | m? and (pm) | (mw).
Let t — 1 = mt;. Then

L+t+-- vt (tv — )/(t—l)
((mty +1)* —1)/(mt1)
Tw(w — 1)mt1 +w (mod pm)

(mod pm).

g

Therefore pm is the smallest positive integer w satisfying (11). This com-
pletes the proof.

Theorem 7 Let p(# 3) be an odd prime, q a prime, u a positive integer,
andp | (¢**+q*+1). Letv=¢q** +¢"*+1 and m = v/ ged(v, 1 + ¢ +

+ (¢®)P~Y). Then there is a non-Abelian planar difference set of order
n = ¢ in the group I' =< «, B > generated by o and B with order pm and
v/(pm), respectively, and satisfy o' Ba = ﬁqSU

Proof We have known that there exists a cyclic difference set with pa-
rameters:
V=g + "+ LEk=¢"+1,A=1,

and ¢ is a multiplier as well as ¢3*. Let t = ¢3*. Then the order of ¢t modulo v
is p and, by Lemma 1 and 2, ¢ satisfies the three conditions in Theorem 4
with w = m. Our theorem follows from it immediately.

For p =7 and 13 in Theorem 7 we have

Corollary 1 Let q be a prime. There exists a non-Abelian planar difference
set of order n = q™ if ¢ and u satisfy one of the following:

(i) ¢g= 20r4 (mod7),u=1o0r2 (mod3);

(ii) ¢g= 3 0or5 (mod7),u=2o0r4 (mod6).

Corollary 2 Let g be a prime. There is a non-Abelian planar difference set
of order n = ¢*" if ¢ and u satisfy one of the following:

(i) ¢q= 2,6,7 or 11 (mod 13), u=4 or 8 (mod 12);

11



(ii) ¢g= 4 0r10 (mod 13), u=2or4 (mod 6);

(iii) ¢g= 3 0or9 (mod 13), u=1o0r2 (mod 3).
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