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Abstract. A method is given for constructing elements in Fqn whose orders
are larger than any polynomial in n when n becomes large. As a by-product
a theorem on multiplicative independence of compositions of polynomials is
proved.

1. Introduction and main results

For a prime power q and a positive integer n, Fqn denotes the finite field of qn

elements. It is a well-known open problem to give an efficient algorithm for con-
structing primitive elements in finite fields. There are algorithms in the literature
that find a small set of elements with at least one element in the set being primi-
tive [2, 12, 13, 14, 15]. However, the known methods for testing primitivity in Fqn

require factoring the integer qn − 1 or computing discrete logarithms in Fqn . Both
of the latter problems are notoriously difficult and are not known to be solvable in
polynomial time. In practice, it is usually sufficient to have elements of high orders.
But again, computing orders of elements in Fqn requires factoring qn − 1 or com-
puting discrete logarithms in Fqn . The three related problems of finding primitive
elements, recognizing primitive elements and computing orders of elements in finite
fields are listed as open problems in [1] where more information on their statuses
up to 1994 can be found.

Even though the problem of factoring integers remains hard (and so does com-
puting discrete logarithms in finite fields), we can still ask if it is possible to find
elements in Fqn that can be proved being primitive or having high orders without
the knowledge of how qn−1 factors. By “high orders” of elements in Fqn , we mean
that the orders of elements must be larger than every polynomial in n log q when
qn → ∞. There is some progress in this direction for q = 2. Recently, Gauss pe-
riods have been proven useful in efficient implementation of finite field arithmetic
[6]. A special class of Gauss periods generate optimal normal bases [11, 10]. In [5],
Gao and Vanstone find by computer experiments that type II optimal normal basis
generators are often primitive and always have high orders. Later, von zur Gathen
and Shparlinski [8] prove1 that type II optimal normal basis generators indeed have

orders at least 2
√

2n−2. This is the first result proving that certain elements in F2n

Date: November 7, 1997.
1991 Mathematics Subject Classification. Primary 11T55; Secondary 11Y16, 68Q25, 11T06,

12Y05.
Key words and phrases. Finite fields, primitive elements, elements of provable high orders,

compositions of polynomials.
To appear in Proc. American Math. Soc.
1Von zur Gathen & Shparlinski [8] prove only for a subclass of type II optimal normal basis

generators, i.e., when 2 is primitive modulo 2n+ 1, but their argument can be easily modified to
work for the general case.

1



2 SHUHONG GAO

have high orders without factoring 2n − 1 for infinitely many n. But this does not
work for all n since, by Gao and Lenstra [4], most fields F2n do not have optimal
normal bases. In general, F2n has a normal basis generated by Gauss periods if and
only if 8 - n [3]. Gao et al [7] show by computer experiments that Gauss periods
always have high orders. It is still open to find a theoretical confirmation for this
phenomenon of Gauss periods.

A new method is given below for constructing elements of provable high orders in
Fqn when q is fixed. Our lower bound for the orders of constructed elements is not
as good as von zur Gathen and Shparlinski’s for optimal normal basis generators,
but our method works for all n and any fixed q. For an integer n > 1, define

n̄ = qdlogq ne.

So n̄ is the smallest power of q bigger than or equal to n.

Theorem 1.1. Let g(x) ∈ Fq [x] with deg g(x) ≤ 2 logq n and g(x) 6= axk or axp
`

+b
for any a, b ∈ Fq , k, ` ≥ 0, where p is the characteristic of Fq . Suppose that α ∈ Fqn

has degree n and is a root of xn̄ − g(x). Then α has order at least

n
logq n

4 logq(2 logq n)
− 1

2 .

This theorem suggests a straightforward method for finding elements of high
orders in Fqn :

for each polynomial g(x) ∈ Fq [x] of degree at most 2 logq n, check if
xn̄ − g(x) has an irreducible factor of degree n. If yes, then stop.

By Theorem 1.1, any root of an irreducible factor of degree n of xn̄ − g(x) is an
element in Fqn of high order. Note that there are at most q2 logq n = n2 choices for
g(x) and for each g(x) it can be decided in time polynomial in n whether xn̄− g(x)
has an irreducible factor of degree n. The above algorithm runs in polynomial time
when q is fixed.

In comparison, the approaches in [2, 12, 13, 14, 15] construct a small set with
at least one primitive element but one can not tell which one is primitive by the
current state of art. Our approach finds an element that satisfies some easily cheked
conditions and is guaranteed to have high order, though not necessarily a primitive
element.

One might ask whether there is always such a required polynomial g(x) ∈ Fq [x]
of degree at most 2 logq n for all n. In this respect, we prove the following result.

Theorem 1.2. Let Pq(m,n) be the probability of a random polynomial in Fq [x] of
degree m ≥ n having at least one irreducible factor of degree n. Then

Pq(m,n) ∼
1

n
, as n −→∞,

uniformly for q and m ≥ n.

If we model a polynomial of the form xn̄− g(x), deg g(x) ≤ 2 logq n as a random
polynomial of degree n̄ in Fq [x], then Theorem 1.2 indicates that one should expect

q2 logq n ·
1

n
= n2/n = n

polynomials g(x) ∈ Fq [x] of degree at most 2 logq n such that xn̄ − g(x) has an
irreducible factor of degree n. It is reasonable to expect at least one such g(x) to
exist. We did a computer experiment for polynomials over F2 for n ≤ 300. When
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q = 2, our computer data show that such g(x) do exist and even with a much
smaller degree, i.e., ≤ dlog2 ne+ 3, for n ≤ 300. So the following conjecture seems
plausible.

Conjecture 1.3. For any integer n > 1, there is a polynomial g(x) ∈ Fq [x] of
degree at most 2 logq n such that xn̄ − g(x) has an irreducible factor of degree n.

The proof of Theorem 1.1 needs some properties of composition of polynomials.
Let f(x) ∈ Fq [x] and let f (k)(x) be the polynomial obtained by composing f(x)
with itself k times, i.e.,

f (1)(x) = f(x), f (k)(x) = f(f (k−1)(x)), k ≥ 2.(1)

Then we prove that the polynomials f (k)(x), k = 1, 2, . . . , are multiplicative inde-
pendent except when f(x) is a monomial or certain binomial. More precisely, we
prove the following theorem which seems interesting by itself.

Theorem 1.4. Suppose that f(x) ∈ Fq [x] is not a monomial nor a binomial of the

form axp
`

+ b where p is the characteristic of Fq . Then the polynomials

f(x), f (2)(x), . . . , f (n)(x), . . .(2)

are multiplicatively independent in Fq [x], that is, if(
f(x)

)k1
(
f (2)(x)

)k2 · · ·
(
f (n)(x)

)kn
= 1,(3)

for any integers n ≥ 1, k1, k2, . . . , kn, then k1 = k2 = . . . = kn = 0.

The remainder of the paper is devoted to proving these results. Section 2 deals
with properties of composition of polynomials and Theorem 1.4 is proved there.
Theorem 1.1 is proved in Section 3, which can be read independently by assum-
ing Theorem 1.4. Finally, Section 4 contains a proof of Theorem 1.2 and some
computational data as well.

2. Composition of polynomials

Let f(x) ∈ Fq [x] with deg f = d ≥ 1. Use the notation in (1). Obviously, f (k)(x)
has degree dk.

Lemma 2.1. There exists an integer k such that

f (k)(x) = cxd
k

(4)

for some c ∈ Fq if and only if either

f(x) = axd for some a ∈ Fq(5)

or

d = p` and f(x) = axd + b for some a, b ∈ Fq with a 6= 0,(6)

where p is the characteristic of Fq and ` ≥ 0 is an integer.

Proof. If f(x) is of the form (5), f (k)(x) is obviously of the form (4) for all k.
We show that if f(x) is of the form (6), then f (k)(x) is of the form (4) for some
k. Suppose q = pm. Since d is a power of p, f (k)(x) is a binomial for all k. In
particular,

f (m)(x) = uxd
m

+ v



4 SHUHONG GAO

for some u, v ∈ Fq with u 6= 0. As q|dm, we have ud
m

= u and vd
m

= v. By

composing f (m)(x) with itself n times, we have

f (nm)(x) = cnxd
nm

+ (cn−1 + · · ·+ c+ 1)d.

If c = 1 then f (pm)(x) = xd
pm

is of the form (4). So assume c 6= 1. Then

f (nm)(x) = cnxd
nm

+
cn − 1

c− 1
d

Take n = q − 1 then cn = 1 and f (nm)(x) = xd
nm

is of the form (4).
Now assume that (4) holds for some k ≥ 2. Write f(x) as

f(x) = a1x
d1p

`

+ a2x
d2p

`

+ · · ·+ atx
dtp

`

+ b

where p is the characteristic of Fq , ai ∈ Fq \ {0}, b ∈ Fq , t ≥ 1, ` ≥ 0, d1 > d2 >

· · · > dt ≥ 1, and p - gcd(d1, d2, . . . , dt). Here d = d1p
` is the degree of f(x). For

convenience, denote r = p`. Let

h(x) = a1x
d1 + a2x

d2 + · · ·+ atx
dt + b,

gi(x) = ar
−i

1 xd1 + ar
−i

2 xd2 + · · ·+ ar
−i

t xdt + br
−i

, i ≥ 1.

Note that if q = pm then, for any a ∈ Fq , a
r−i = ar

i(m−1)

∈ Fq . Thus gi(x) ∈ Fq [x]
and

(gi(x))
ri

= h(xr
i

), for all i ≥ 1.

Hence

f(x) = h(xr)

f (2)(x) = h ((h(xr)r) = h
(
(g1(x))

r2
)

= (g2(g1(x)))
r2

= (g2 ◦ g1(x))
r2

...

f (k)(x) = (gk ◦ gk−1 ◦ · · · ◦ g1(x))
rk
, k ≥ 1.

The equation (4) implies that

gk ◦ gk−1 ◦ · · · ◦ g1(x) = cr
−k

xd
k
1 = c0x

dk1 ,(7)

where c0 = cr
−k
∈ Fq , and c0 6= 0 as c 6= 0. Taking derivative on both sides of (7)

yields

g′k(gk−1 ◦ · · · ◦ g1(x)) · g
′
k−1(gk−2 ◦ · · · ◦ g1(x)) · · · g

′
2(g1(x)) · g

′
1(x) = dk1c0x

dk1−1.

(8)

Since p - gcd(d1, d2, . . . , dt), g
′
i(x) 6= 0 for all i ≥ 1. So the polynomial on the left

hand side of (8) is not zero. Therefore p - d1, otherwise the right hand side would be

zero. As dk1c0 6= 0 in Fq , the equation (8) implies that g′1(x) divides xd
k
1−1. Hence

g′1(x) is a monomial. Since p - d1, we must have p | di for 2 ≤ i ≤ t. Hence

g′i(x) = d1a
−ri

1 xd1−1, i ≥ 1.

By (8), g′2(g1(x)) = d1a
−r2

1 (g1(x))
d1−1 is also a factor of xd

k
1−1. If d1 > 1 then

g1(x) must be a monomial, hence f(x) must be a monomial. If d1 = 1, then
d1 > d2 > · · · > dt ≥ 1 implies that t = 1. Therefore f(x) is a binomial of the form
(6).
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Lemma 2.2. Let e be the smallest positive integer k such that x|f (k)(x), and e =∞
if x - f (k)(x) for all k ≥ 1. Then, for all k, ` ≥ 1,

gcd(f (k)(x), f (`)(x)) 6= 1 iff k ≡ ` (mode).

(When e =∞, k ≡ ` (mode) means that k = `.)

Proof. Suppose that d(x) = gcd(f (k)(x), f (`)(x)) has degree≥ 1 for some k > ` ≥
1. Let β be a root of d(x) in some extension field of Fq . Then f (k)(β) = f (`)(β) = 0.

Since f (k)(x) = f (k−`)(f (`)(x)),

f (k−`)(0) = f (k−`)(f (`)(β)) = f (k)(β) = 0.

Thus x|f (k−`)(x) where k − ` ≥ 1. This proves the theorem when e =∞.
Now assume that e <∞. Let

f (e)(x) = xtg(x), x - g(x) and t ≥ 1.

Then, for every i ≥ 1, f (ie)(x) = xt
i

hi(x) for some h(x) ∈ Fq [x]. If k ≡ ` (mode),
say k = `+ ue where u ≥ 1, then

f (k)(x) = f (ue)
(
f (`)(x)

)
=
(
f (`)(x)

)tu
hu(x).

Hence f (`)(x) divides f (k)(x) and gcd(f (k)(x), f (`)(x)) 6= 1. If k 6≡ ` (mode), say
k = ` + ue + r where u ≥ 0 and 1 ≤ r < e. If gcd(f (k)(x), f (`)(x)) 6= 1, then, by
the above argument, f (ue+r)(0) = f (k−`)(0) = 0. Noting that

f (ue+r)(x) = f (r)
(
f (ue)(x)

)
= f (r)

(
xt
u

hu(x)
)
,

we have f (r)(0) = 0, i.e., x | f (r)(x), contradicting the choice of e. Therefore
gcd(f (k)(x), f (`)(x)) = 1 when k 6≡ ` (mode).

We are now ready to prove Theorem 1.4. By Lemma 2.2, if x - f (n)(x) for
all n ≥ 1, then the polynomials in (2) are pairwise relatively prime, and are thus
multiplicatively independent as Fq [x] is a unique factorization domain.

So assume that x | f (n)(x) for some n ≥ 1. Let e be the smallest such integer n,
and

f (e)(x) = xtg(x), t ≥ 1, x - g(x).(9)

Lemma 2.1 implies that deg g(x) ≥ 1. By Lemma 2.2, f (k)(x) and f (`)(x) have a
nontrivial common factor iff k ≡ ` (mode). We just need to show that, for each
n ≥ 1, f (n)(x) has a factor of degree ≥ 1 that is relatively prime to all f (k)(x)
with k < n and k ≡ n (mode). Then the equation (3) implies that kn = 0 and,
recursively, kn−1 = . . . = k1 = 0.

Let n = r + ue where u ≥ 1 and 0 ≤ r < e. Then k is of the form r + ie,
0 ≤ i ≤ u − 1. Denote fi(x) = f (r+ie)(x) for i ≥ 0. Then fu(x) = f (n)(x) and
fi(x) = f (k)(x). By (9),

fi(x) = f (e)
(
fi−1(x)

)
=
(
fi−1(x)

)t
g
(
fi−1(x)

)
, i ≥ 1.

As t ≥ 1, we see that fi−1(x) | fi(x) for all i ≥ 1. Consequently, fi(x)|fu−1(x).
Since x - g(x), fi(x) and g

(
fu−1(x)

)
are relatively prime for all 0 ≤ i ≤ u− 1. This

proves the theorem as g
(
fu−1(x)

)
is a factor of f (n)(x) of degree ≥ 1.
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3. Proof of Theorem 1.1

Denote m = n̄. Since α is a root of xm − g(x), we have αm = g(α). The facts
that m is a power of q and g(x) ∈ Fq [x] imply that,

αm
2

=
(
g(α)

)m
= g(αm) = g(g(α)) = g(2)(α).

Continuing raising to the mth power, we have

αm
i

= g(i)(α), for i ≥ 0.(10)

Let ε be the degree of g(x). Then 2 ≤ ε ≤ 2 logq n and g(k)(x) has degree εk.

Set S = {
∑t−1
i=0 aim

i : 0 ≤ ai ≤ µ} where t and µ are some positive integers. We
show that if

µ εt ≤ n,(11)

then αa are distinct elements in Fqn for a ∈ S, thus α has order at least

#S = (µ+ 1)t.(12)

Suppose that there are integers a 6= b in S such that αa = αb. Write a =
∑t−1
i=0 aim

i

and b =
∑t−1
i=0 bim

i where 0 ≤ ai, bi ≤ µ for 0 ≤ i < t. Then αa = αb can be
rewritten as

t−1∏
i=0

(
αm

i)ai
=
t−1∏
i=0

(
αm

i)bi
.

By (10), we have
t−1∏
i=0

(
g(i)(α)

)ai
=
t−1∏
i=0

(
g(i)(α)

)bi
.

Let

h1(x) =
∏
ai>bi

(
g(i)(x)

)ai−bi
and h2(x) =

∏
ai<bi

(
g(i)(x)

)bi−ai
.

Then h1(α) = h2(α). Since α has degree n and h1(x) and h2(x) have degree at
most

t−1∑
i=0

µεi = µ
εt − 1

ε− 1
< µεt ≤ n,

h1(x) must equal to h2(x). Therefore
∏t−1
i=0

(
g(i)(x)

)ai−bi
= 1. By Theorem 1.4, the

polynomials

g(x), g(2)(x), . . . , g(n)(x), . . .

are multiplicatively independent in Fq [x]. So ai − bi = 0 for 0 ≤ i < t, and thus
a = b, contradicting a 6= b.

Finally, take

t =

⌊
logq n

2 logq ε

⌋
, µ = b

√
nc.

Then the equation (11) is satisfied, and

#S = (µ+ 1)t ≥ (
√
n)

logq n

2 logq ε
−1

= n
logq n

4 logq ε
− 1

2 ≥ n
logq n

4 logq(2 logq n)
− 1

2 .

This finishes the proof.
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4. Polynomials with an irreducible factor of a given degree

The proof of Theorem 1.2 and some computational results are presented below.
To prove Theorm 1.2, let Nq(m,n) be the number of polynomials in Fq [x] of

degreem with at least one irreducible factor of degree n. By inclusion and exclusion
principle, we have

Nq(m,n) =

bm/nc∑
i=1

(−1)i−1

(
In

i

)
qm−ni

where In is the number of irreducible polynomials of degree n in Fq [x]. Then

Pq(m,n) =
Nq(m,n)

qm
=

bm/nc∑
i=1

(−1)i−1

(
In

i

)
q−ni.(13)

It is well-known (see [9], p142, Ex. 3.26 and 3.27) that

qn

n
−
q(qn/2 − 1)

(q − 1)n
≤ In ≤

qn − q

n
.

So, uniformly for q ≥ 2,

In

qn
∼

1

n
, as n −→∞.(14)

Since In/q
n ≤ 1, we see that

(
In
i

)
q−ni decreases when i increases. Dropping all the

terms on the right hand sight of (13) with i ≥ 1 and those with i ≥ 2, we have

In

qn
−

(
In

2

)
1

q2n
≤ Pq(m,n) ≤

In

qn
,

i.e.,

In

qn

(
1−

In − 1

2qn

)
≤ Pq(m,n) ≤

In

qn
.

By (14), we see immediately that Theorem 1.2 holds.
To verify Conjecture 1.3, we computed g(x) ∈ F2 [x] of smallest degree such that

xn̄ + g(x) has an irreducible factor of degree n for n ≤ 300. When q = 2, the
conjecture holds for all n ≤ 300. In Table 1 below, we list the g(x) we found for
degrees n around powers of 2. One can see that deg g(x) ≤ dlog2 ne+3 ≤ 2dlog2 ne
for all the degrees listed. It would be interesting to have a theoretical confirmation
of the conjecture.

We also computed the order of α which is a root of the irreducible factor of
xn̄+g(x) of degree n. In Table 1, “Ind” means the index of α which is by definition
(2n−1)/ewhere e is the order of α. Almost all the indices are smaller than n, i.e., the
orders of α are at least (2n−1)/n, except for n = 11, 30, 252. For values of n ≤ 300
not listed in the table, the only exception is n = 180 with g(x) = x7 +x5 +x3 +x+1
and index 49775.

Acknowledgement. The author would like to thank Stephen D. Cohen for
sharing his idea in the proof of Lemma 2.2, and Joel Brawley and Jenny Key for
their useful comments and encouragement.
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n n̄ g(x) Ind n n̄ g(x) Ind

7 23 x2 + x + 1 1 70 27 x8 + x5 + x4 + x3 + 1 3

8 23 x4 + x3 + x + 1 5 100 27 x6 + x3 + x + 1 11

9 24 x3 + x2 + 1 1 101 27 x8 + x6 + x + 1 1

10 24 x4 + x3 + 1 3 102 27 x7 + x3 + x2 + 1 1

11 24 x5 + x3 + x2 + x + 1 23 103 27 x7 + x5 + 1 1

12 24 x6 + x4 + x2 + x + 1 1 104 27 x5 + x3 + x + 1 1

13 24 x3 + 1 1 105 27 x8 + x7 + x5 + x4 + x3 + x2 + 1 1

14 24 x4 + x2 + x + 1 1 125 27 x3 + 1 1

15 24 x2 + x + 1 1 126 27 x9 + x7 + x4 + x3 + x2 + x + 1 3

16 24 x5 + x3 + x + 1 3 127 27 x2 + x + 1 1

17 25 x5 + x3 + x + 1 1 128 27 x7 + x2 + x + 1 1

18 25 x5 + x2 + x + 1 7 129 28 x8 + x3 + x + 1 1

19 25 x5 + x3 + x2 + x + 1 1 130 28 x7 + x6 + x5 + x3 + x2 + x + 1 1

20 25 x7 + x4 + x3 + x2 + 1 1 131 28 x8 + x7 + x3 + x + 1 1

30 25 x3 + x + 1 99 132 28 x8 + x5 + x4 + x3 + 1 117

31 25 x4 + x + 1 1 133 28 x6 + x4 + x3 + x2 + 1 1

32 25 x7 + x3 + x2 + 1 3 134 28 x8 + x5 + 1 3

33 26 x3 + x2 + 1 7 135 28 x10 + x7 + x6 + x5 + x4 + x3 + 1 1

34 26 x6 + x5 + x4 + x3 + x2 + 1 1 200 28 x9 + x7 + x6 + x5 + x4 + 1 15

35 26 x7 + x5 + x4 + x3 + x + 1 1 201 28 x7 + 1 1

36 26 x5 + x4 + x3 + x + 1 1 202 28 x8 + x5 + x2 + x + 1 3

37 26 x5 + 1 1 203 28 x11 + x7 + x2 + 1 1

38 26 x6 + x3 + 1 3 204 28 x10 + x9 + x5 + x2 + 1 1

39 26 x7 + x5 + x4 + x2 + 1 1 205 28 x9 + x5 + x4 + x3 + 1 1

40 26 x5 + x3 + x2 + 1 11 250 28 x9 + x8 + x7 + x6 + x5 + x4 + 1 1

60 26 x5 + x + 1 15 251 28 x9 + x8 + x6 + x5 + x3 + x2 + 1 1

61 26 x6 + x2 + x + 1 1 252 28 x8 + x7 + x5 + x4 + x3 + x2 + 1 273

62 26 x4 + x2 + x + 1 3 253 28 x8 + x7 + x2 + x + 1 1

63 26 x2 + x + 1 7 254 28 x4 + x2 + x + 1 1

64 26 x4 + x3 + x + 1 1 255 28 x6 + x3 + 1 1

65 27 x3 + x2 + 1 1 256 28 x10 + x5 + x2 + 1 1

66 27 x7 + x5 + x4 + x3 + 1 1 257 29 x9 + x8 + x7 + x5 + x2 + x + 1 1

67 27 x5 + x + 1 1 258 29 x10 + x6 + x4 + x3 + x2 + 1 1

68 27 x7 + 1 1 259 29 x11 + x9 + x7 + x4 + x3 + 1 1

69 27 x7 + x6 + x2 + x + 1 1 260 29 x10 + x9 + x8 + x + 1 25

Table 1. Smallest g(x) ∈ F2 [x] such that xn̄ + g(x) has an irre-
ducilbe factor of degree n.
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