ELEMENTS OF PROVABLE HIGH ORDERS IN FINITE FIELDS

SHUHONG GAO

ABSTRACT. A method is given for constructing elements in Fyn whose orders
are larger than any polynomial in n when n becomes large. As a by-product
a theorem on multiplicative independence of compositions of polynomials is
proved.

1. INTRODUCTION AND MAIN RESULTS

For a prime power ¢ and a positive integer n, F,» denotes the finite field of ¢"
elements. It is a well-known open problem to give an efficient algorithm for con-
structing primitive elements in finite fields. There are algorithms in the literature
that find a small set of elements with at least one element in the set being primi-
tive [2, 12, 13, 14, 15]. However, the known methods for testing primitivity in Fyn
require factoring the integer ¢" — 1 or computing discrete logarithms in Fgn. Both
of the latter problems are notoriously difficult and are not known to be solvable in
polynomial time. In practice, it is usually sufficient to have elements of high orders.
But again, computing orders of elements in F;» requires factoring ¢" — 1 or com-
puting discrete logarithms in Fgn. The three related problems of finding primitive
elements, recognizing primitive elements and computing orders of elements in finite
fields are listed as open problems in [1] where more information on their statuses
up to 1994 can be found.

Even though the problem of factoring integers remains hard (and so does com-
puting discrete logarithms in finite fields), we can still ask if it is possible to find
elements in Fy» that can be proved being primitive or having high orders without
the knowledge of how ¢" — 1 factors. By “high orders” of elements in Fy» , we mean
that the orders of elements must be larger than every polynomial in nlogq when
q" — oo. There is some progress in this direction for ¢ = 2. Recently, Gauss pe-
riods have been proven useful in efficient implementation of finite field arithmetic
[6]. A special class of Gauss periods generate optimal normal bases [11, 10]. In [5],
Gao and Vanstone find by computer experiments that type II optimal normal basis
generators are often primitive and always have high orders. Later, von zur Gathen
and Shparlinski [8] prove! that type II optimal normal basis generators indeed have
orders at least 2V2"~2. This is the first result proving that certain elements in Fan
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have high orders without factoring 2™ — 1 for infinitely many n. But this does not
work for all n since, by Gao and Lenstra [4], most fields Fo» do not have optimal
normal bases. In general, Fo» has a normal basis generated by Gauss periods if and
only if 8 4 n [3]. Gao et al [7] show by computer experiments that Gauss periods
always have high orders. It is still open to find a theoretical confirmation for this
phenomenon of Gauss periods.

A new method is given below for constructing elements of provable high orders in
Fy» when ¢ is fixed. Our lower bound for the orders of constructed elements is not
as good as von zur Gathen and Shparlinski’s for optimal normal basis generators,
but our method works for all n and any fixed ¢q. For an integer n > 1, define

n = qlo8 "1,
So 7 is the smallest power of ¢ bigger than or equal to n.

Theorem 1.1. Let g(x) € Fy[z] with deg g(x) < 2log, n and g(x) # az* or az? +b
for any a,b € Fy, k,£ > 0, where p is the characteristic of Fy. Suppose that o € Fgn
has degree n and is a root of z™ — g(x). Then a has order at least

logq n 1
n4logq(2 loggn) 2 .

This theorem suggests a straightforward method for finding elements of high
orders in Fyn :

for each polynomial g(x) € Fylx] of degree at most 2log, n, check if
z™ — g(z) has an irreducible factor of degree n. If yes, then stop.

By Theorem 1.1, any root of an irreducible factor of degree n of z — g(z) is an
element in F,» of high order. Note that there are at most g2 log;m — 2 choices for
g(z) and for each g(z) it can be decided in time polynomial in n whether z™ — g(z)
has an irreducible factor of degree n. The above algorithm runs in polynomial time
when ¢ is fixed.

In comparison, the approaches in [2, 12, 13, 14, 15] construct a small set with
at least one primitive element but one can not tell which one is primitive by the
current state of art. Our approach finds an element that satisfies some easily cheked
conditions and is guaranteed to have high order, though not necessarily a primitive
element.

One might ask whether there is always such a required polynomial g(z) € F, [z]
of degree at most 2log, n for all n. In this respect, we prove the following result.

Theorem 1.2. Let Py(m,n) be the probability of a random polynomial in Fy[z] of
degree m > n having at least one irreducible factor of degree n. Then

1
P,(m,n) ~—, as n— o0,
n
uniformly for ¢ and m > n.

If we model a polynomial of the form z™ — g(x), deg g(z) < 2log,n as a random
polynomial of degree 71 in F, [z], then Theorem 1.2 indicates that one should expect

1
q2logqn__ :n2/n:n

polynomials g(z) € F,[z] of degree at most 2log, n such that 2™ — g(z) has an
irreducible factor of degree n. It is reasonable to expect at least one such g(z) to
exist. We did a computer experiment for polynomials over Fy for n < 300. When
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g = 2, our computer data show that such g(z) do exist and even with a much
smaller degree, i.e., < [log, n] + 3, for n < 300. So the following conjecture seems
plausible.

Conjecture 1.3. For any integer n > 1, there is a polynomial g(x) € Fy[z] of
degree at most 21og, n such that z™ — g(x) has an irreducible factor of degree n.

The proof of Theorem 1.1 needs some properties of composition of polynomials.
Let f(z) € F,[z] and let f*)(x) be the polynomial obtained by composing f(z)
with itself & times, i.e.,

(1) fO(@) = f(@), fP@)=Fff* V@), k>2

Then we prove that the polynomials f (k)(a;), k=1,2,..., are multiplicative inde-
pendent except when f(z) is a monomial or certain binomial. More precisely, we
prove the following theorem which seems interesting by itself.

Theorem 1.4. Suppose that f(x) € F,[z] is not a monomial nor a binomial of the
form ax?’ + b where p is the characteristic of Fy. Then the polynomials

(2) F(@), P @),..., f (@),
are multiplicatively independent in Fy[z|, that is, if
k k Ky
(3) (f@)™ (F@ @)™ - ()" =1,
for any integers n > 1, k1, ko, ... ,kyn, then ki = ko = ... =k, =0.

The remainder of the paper is devoted to proving these results. Section 2 deals
with properties of composition of polynomials and Theorem 1.4 is proved there.
Theorem 1.1 is proved in Section 3, which can be read independently by assum-
ing Theorem 1.4. Finally, Section 4 contains a proof of Theorem 1.2 and some
computational data as well.

2. COMPOSITION OF POLYNOMIALS

Let f(z) € F,[2] with deg f = d > 1. Use the notation in (1). Obviously, £ ()
has degree d*.

Lemma 2.1. There exists an integer k such that

(4) FP (@) = ea®

for some c € Fy if and only if either

(5) f(x) = azx? for some a €T,

or

(6) d=p" and f(z)=az®+b for somea,be F, with a # 0,

where p is the characteristic of Fy and £ > 0 is an integer.

Proof. If f(x) is of the form (5), f(*)(z) is obviously of the form (4) for all k.
We show that if f(z) is of the form (6), then f(*)(x) is of the form (4) for some
k. Suppose ¢ = p™. Since d is a power of p, f(k)(m) is a binomial for all k. In
particular,

F(z) = uz?” +o
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for some u,v € F, with u # 0. As ¢|d™, we have u?" = u and v¥" = v. By

composing f(™ (z) with itself n times, we have
FOm(z) = 2" 4 (P4 e+ 1)d
If ¢ = 1 then fP™)(z) = %" is of the form (4). So assume ¢ # 1. Then

fnm) (z) = Az 4

Take n = g — 1 then ¢® = 1 and f"™)(z) = %" is of the form (4).
Now assume that (4) holds for some k > 2. Write f(z) as
f(.'l?) = alitdlpe + a2xd2pe + 4 atxd‘pe + b

where p is the characteristic of F,, a; € F, \ {0}, b€ F,, t > 1,£>0,d; > dy >
oo >dy > 1, and p t ged(dy, da, ... ,d;). Here d = dip® is the degree of f(x). For
convenience, denote r = p’. Let

h(z) = a1z® + agz® + - + auz? +b,
gi(x) = a’{_imdl + ag_imd2 +-F af_imdt + br_i,i > 1.
Note that if ¢ = p™ then, for any a € F, a =o€ F,. Thus g;(z) € F,[z]
and ' _
(9s(z))" = h(z""), foralli>1.
Hence

f@) = hG)
1@ = B = b ((@@)") = @0@)” = (2o gn@)”

k

f®@) = (grogr_10--0gi(z) ,k>1.

The equation (4) implies that
7 kO0Qgr—10---0Qg1lT) = cr_kxd)f = C()-Td)f
gk ©° g g )

where ¢y = o e F,, and ¢o # 0 as ¢ # 0. Taking derivative on both sides of (7)
yields

(8)
k_
h(gr-10--001(2)) - gh_1(gr-2 0 0 01(2)) -+~ g5(g1(x)) - g3 () = dicoz™ .
Since p f ged(dy, da, ... ,dt), gi(z) # 0 for all i > 1. So the polynomial on the left
hand side of (8) is not zero. Therefore p { dy, otherwise the right hand side would be

dh—1

zero. As dfcy # 0 in F,, the equation (8) implies that g} (x) divides z . Hence

g4 (x) is a monomial. Since ptd;, we must have p | d; for 2 < i < ¢. Hence
gi(z) = dya; "zt i > 1

By (8), g5(g1(z)) = dlafr2 (g1(x))%~1 is also a factor of @1 If d; > 1 then
g1(x) must be a monomial, hence f(z) must be a monomial. If d; = 1, then
dy > dy > -+ > dy > 1 implies that t = 1. Therefore f(x) is a binomial of the form
(6). O
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Lemma 2.2. Let e be the smallest positive integer k such that :17|f(k) (z), ande = 00
if 4 f¥)(x) for all k > 1. Then, for all k,£ > 1,

ged(f® (2), (@) # 1 iff k=¢ (mode).
(When e = oo, k = £ (mode) means that k = {.)

Proof. Suppose that d(z) = ged(f*) (z), f©(z)) has degree > 1 for some k > £ >
1. Let 8 be a root of d() in some extension field of F,. Then f*)(8) = f()(3) =0

Since f®)(z) = fE=O(fO(z)),
f(kJ)(O) _ f(H)(f(é)(ﬂ)) _ f(k)(g) =0

Thus z|f*~9(x) where k — £ > 1. This proves the theorem when e = oo.
Now assume that e < co. Let

fO(z) = 2g(zx), ztg(z)andt>1.

Then, for every i > 1, 09 (z) = 2t h;(x) for some h(z) € F,[z]. If k = ¢ (mode),
say k = { + ue where u > 1, then

@) = 109 (F0@) = (10@)" hula).

Hence f)(z) divides f*)(z) and ged(f*) (z), f©O(z)) # 1. If k # ¢ (mode), say
k= {+ue+r where u > 0 and 1 < r < e. If ged(f* (z), fO(x)) # 1, then, by
the above argument, f(“¢*7)(0) = f*=9(0) = 0. Noting that

Fren @) = 50 (£09(2)) = £ (2 hu(@))

we have f((0) = 0, ie., z | f")(z), contradicting the choice of e. Therefore
ged(f®) (z), fO(z)) = 1 when k # ¢ (mode). O
We are now ready to prove Theorem 1.4. By Lemma 2.2, if 2 { f(™(z) for
all n > 1, then the polynomials in (2) are pairwise relatively prime, and are thus
multiplicatively independent as F, [z] is a unique factorization domain.
So assume that z | f()(z) for some n > 1. Let e be the smallest such integer n,
and

9) fO@) =a'g(z), t=1, xtg(a)

Lemma 2.1 implies that deg g(z) > 1. By Lemma 2.2, f*)(z) and £ (z) have a
nontrivial common factor iff & = ¢ (mode). We just need to show that, for each
n > 1, f(")(z) has a factor of degree > 1 that is relatively prime to all f*)(z)
with k& < n and k = n (mode). Then the equation (3) implies that k, = 0 and,
recursively, k,—1 = ... =k = 0.

Let n = r + ue where u > 1 and 0 < r < e. Then k is of the form r + ie,
0 <i <wu—1. Denote fi(x) = frt)(z) for i > 0. Then f,(z) = f™(z) and
fi(z) = f®(z). By (9),

fil) = 1O (firr(@)) = (fior (@) g(fimr(2)),i > 1.

Ast > 1, we see that f;_1(x) | i(x) for all ¢ > 1. Consequently, f;(x)|fu—1(z).
Since z ¢ g( ), fi(z) and g(fu 1(z)) are relatively prime for all 0 <4 < u— 1. This

proves the theorem as g(fu 1( ) is a factor of f(”)(x) of degree > 1. O
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3. PrROOF OF THEOREM 1.1

Denote m = fi. Since « is a root of 2™ — g(z), we have a™ = g(a). The facts
that m is a power of ¢ and g(z) € F,[z] imply that,

2 m m
™ = (g()™ = g(a™) = g(g(a) = g (a).

Continuing raising to the mth power, we have

(10) am = g% (a), fori>0.

Let € be the degree of g(z). Then 2 < e < 2log,n and g™®) (z) has degree €*.
Set S = {Zf;é a;m®:0 < a; < pu} where t and p are some positive integers. We
show that if

(11) pet <,
then a® are distinct elements in Fg» for a € S, thus o has order at least
(12) 45 = (u+ 1)
t—1

Suppose that there are integers a # b in S such that a® = a®. Writea = > o aim’
and b = Zf;é b;m* where 0 < a;,b; < pfor 0 < i < t. Then a® = ab can be
rewritten as

H(ami)ai _ H(am‘)bz
=0 i=0
By (10), we have
t—1 t—1
[T @)™ =T (s” ()"
=0 i=0
Let
hl(x) = H (g(i)(m))ai—bi and hQ(m) — H (g(i)(m))bi—ai'
ai>bi a;<b;

Then hi(a) = ha(a). Since a has degree n and hi(z) and ha(z) have degree at
most

t—1 i &1 t
Z,ue =u < pe <mn,
‘ e—1
=0
hi(x) must equal to ha(z). Therefore Hf;é (g(i) (m))ai_bi = 1. By Theorem 1.4, the
polynomials
9(),9?(@),... g™ (@),...
are multiplicatively independent in F,[z]. So a; —b; = 0 for 0 < ¢ < ¢, and thus
a = b, contradicting a # b.
Finally, take

log, n
t= d = .
{mogqu, p=lvn|

Then the equation (11) is satisfied, and

logq n logq n

#S = (M+ 1)t Z (\/ﬁ>2logqe_ — n4log’1€
This finishes the proof. 0

1 _ loggm 1
2 > p3logg(2loggn) 2
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4. POLYNOMIALS WITH AN IRREDUCIBLE FACTOR OF A GIVEN DEGREE

The proof of Theorem 1.2 and some computational results are presented below.

To prove Theorm 1.2, let Ny(m,n) be the number of polynomials in F,[z] of
degree m with at least one irreducible factor of degree n. By inclusion and exclusion
principle, we have

A@W%n>=tggu—1v*<9qu—m

=1

where I, is the number of irreducible polynomials of degree n in F, [x]. Then

[m/n]
(13) P,(m,n) = W = Z (—1)! <I,n>q_”i.

i=1 ¢
It is well-known (see [9], p142, Ex. 3.26 and 3.27) that

n n/2 _ no_
" qlq D<h<q q
n (g—1)m — "7 =n

So, uniformly for ¢ > 2,
I,

(14) o

~

, as m —» 00.

S|

Since I,,/q™ < 1, we see that (Ig‘)q_”i decreases when ¢ increases. Dropping all the
terms on the right hand sight of (13) with ¢ > 1 and those with ¢ > 2, we have

I, I,\ 1 I,
__< ) S-Pq(m7n>§q_nv

q" 2 )¢
ie.,
I, I, -1 I,
By (14), we see immediately that Theorem 1.2 holds. O

To verify Conjecture 1.3, we computed g(z) € Fy[z] of smallest degree such that
z™ + g(z) has an irreducible factor of degree n for n < 300. When ¢ = 2, the
conjecture holds for all n < 300. In Table 1 below, we list the g(z) we found for
degrees n around powers of 2. One can see that deg g(x) < [log, n] + 3 < 2[log, n]
for all the degrees listed. It would be interesting to have a theoretical confirmation
of the conjecture.

We also computed the order of o which is a root of the irreducible factor of
z™ + g(z) of degree n. In Table 1, “Ind” means the index of « which is by definition
(2"—1)/e where e is the order of c. Almost all the indices are smaller than n, i.e., the
orders of « are at least (2™ —1)/n, except for n = 11, 30, 252. For values of n < 300
not listed in the table, the only exception is n = 180 with g(z) = 2" + 2%+ 23 +2+1
and index 49775.
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their useful comments and encouragement.
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n [ 7] 9@ Tnd o R 1) Tnd
723 2242 +1 1 70 | 27 | a8 +a® + 2t 423 +1 3
8| 23 | 2t 4234241 5 100 | 27 | 20 423 4+ 2 +1 11
9| 24 | 23 42241 1 1010 | 27 | 28 4+ 26 42 +1 1
10 | 2% | e 42341 3 || 102 | 27 | 27 + 23 +22 41 1
11 | 2% | 25423 +22 4241 23 || 103 | 27 | 27 + 2% +1 1
12 | 24 | 28 42t 422 4241 1 104 | 27 | 25 423 42 +1 1
13 | 24 | 23 41 1 105 | 27 | 28 4+ 27 + 2% + 2% + 23 + 22 41 1
14 | 24 | 24224041 1| 125 | 27 | 23 +1 1
15 | 2% | a2 42+1 1] 126 | 27 | 22+ 2"+ 2t 423 422 42 +1 3
16 | 24 | 25+ 23 +a 41 3 127 | 27 | 22 42z +1 1
17 | 25 | 25+ a3 v 41 1 128 | 27 | 27" 422 42 +1 1
18 | 25 | 2% +22 4+ 41 7l 120 | 28 | 28 + a3 + 241 1
19 | 2° | @® 4% 4224241 1] 130 | 28 | 27T+ 2+ 2% + 23 422 4241 1
20 | 2° | 27 42t 423 422 41 1 131 | 28 | @8 427 423 4241 1
30 | 25 | @3 42z +1 99 132 | 28 | 28 4+ 2% 4+ 2% + 23 41 117
31 2f a:i-f—:cs-f—l , 1 133 2: a:g+a:§+:c3+a>2+l 1
32 | 2% | 27T + 23 4+ 22 41 3 || 134 | 2 28 + 2% 41 3
33 | 26 | 23 + 22 41 70| 135 | 28 | 210 407 420 425 42t 423 41 1
34 | 26 | 26 425 4 2% 423 +22 1 1 || 200 | 28 | 29 4+ 27 4+ 20 + 2% + 2% 1 15
35 | 26 | 2" 4+ 25 4+ 2% 423 a2 41 1 || 201 | 28 | 27 41 1
36 | 20 | 2P+ a2t 423 4241 1| 202 | 28 | 28 + 2+ a2+ 41 3
37 | 26 | 2% +1 1] 203 | 28 | 21 427 40241 1
38 | 26 | 26 423 41 3 || 204 | 28 | 210 429 + 25 422 41 1
39 | 26 | 27 425 4+ 2% 422 41 1 || 205 | 28 | 29 4+ 25 4 2% 4+ 23 +1 1
40 | 26 | 25 423 422 41 11 || 250 | 28 | 29 + 28 + 27 + 26 + 2% y 2% 1 1
60 | 26 | 2® a2+ 1 15 || 251 | 28 | 29 4+ 28 420 425 423 422 41 1
61 | 26 | 20 + 22 4241 1] 252 | 28 | 28 + 27 + 28 + 2t + 23 4+ 22 41 273
62 | 26 | 2% 422 42 +1 3| 253 | 28 | 28 + 2"+ 22 42z +1 1
63 | 26 | 22 4z +1 7|l 254 | 28 | 2% + 22 4241 1
64 23 w§+zz+w+1 1 || 255 2: w(150+L 1, 1
65 | 2 23 + 22 41 1| 256 | 2 210 4 0B 4 o2 41 1
66 | 27 | 27 425 2t 423 41 1| 257 | 22 | 2% 428 4+ 27 4+ 2% 422 1241 1
67 | 27 | &5 4z +1 1 || 258 | 29 | 210 4 26 4 2% 4 23 + 22 41 1
68 | 27 | 27 41 1| 259 | 29 | 211 429 4+ 27 4+ 2% + 23 +1 1
69 | 27 | 2"+ a8 422 4241 1] 260 | 29 | 210 4 2% 428 y 241 25

TABLE 1. Smallest g(z) € Fa[z] such that 2™ + g(z) has an irre-
ducilbe factor of degree n.
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