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Abstract. Motivated by a connection with the factorization of multivariable poly-
nomials, we study integral convex polytopes and their integral decompositions in
the sense of the Minkowski sum. We first show that deciding decomposability of
integral polygons is NP-complete then present a pseudo-polynomial time algorithm
for decomposing polygons. For higher dimensional polytopes, we give a heuristic
algorithm which is based upon projections and uses randomization. Applications of
our algorithms include absolute irreducibility testing and factorization of polyno-
mials via their Newton polytopes.

1 Introduction

It is well-known that the theory of convex polytopes has many applications
across mathematics and computer science [2,9,12,28]. One such application is
to polynomial factorization, and motivated by this connection we discuss de-
composition algorithms for polytopes. Given a multivariable polynomial one
may associate with it, in a way we shall fully explain in Section 2, an integral
polytope called its Newton polytope. It was observed by Ostrowski in 1921
that if the polynomial factors then its Newton polytope decomposes, in the
sense of the Minkowski sum, into the Newton polytopes of the factors. The
ramifications of this simple observation are two-fold. Firstly, criteria which
ensure polytope indecomposability can be used to construct families of ir-
reducible, indeed absolutely irreducible, polynomials. Secondly, algorithms
which test whether a polytope is decomposable and construct decomposi-
tions may be useful in factoring polynomials. Of course, such criteria and
algorithms are also of independent interest and may have other applications.
Indecomposability conditions were explored by the first author in [4] and will
be discussed further in Section 3. Our main focus will be, however, on the
second application, that is on algorithms for decomposing polytopes.
We first show that the problem of testing whether a polytope is indecom-

posable is NP-complete even in dimension two, so there does not exist, unless
NP = P, a genuinely efficient algorithm for decomposing polytopes. However,
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we present a “pseudo-polynomial” time algorithm (see [6]) for testing inde-
composability in dimension two and a modified version which also allows one
to count the number of decompositions and find summands. We also discuss a
heuristic algorithm which uses randomization for testing higher dimensional
polytopes for indecomposability. In Section 5, we describe applications of our
algorithms to polynomials with respect to their irreducibility and factoriza-
tion. In particular, we touch upon an open problem in polynomial factoriza-
tion which we now describe. In his survey paper on polynomial factorization
[16], Kaltofen concludes with several open problems one of which, due to B.
Sturmfels, is stated as follows: “From the support vectors (ej1, . . . , ejn) of a

sparse polynomial
∑t
j=1 aej1,... ,ejnX

ej1
1 · · ·X

ejn
n , compute by geometric con-

siderations the support vectors of all possible factorizations”. This problem
can be attacked by our polytope method, although it must be noted that we
are unable to give a complete solution. The basic idea runs as follows: Given
a bivariable polynomial, we can compute its Newton polytope and then find
all the integral summands of this polytope. The summands correspond to the
Newton polytopes of all the possible factors of the polynomial. The integral
points in a summand give the support vectors of the factor corresponding to
the summand.

The remainder of the paper is organized in the following way. Section 2
contains the necessary background material on the theory of convex polytopes
and in Section 3 we discuss some preliminary results on polytope indecom-
posability which shall be useful to us but are also of independent interest.
Section 4 is devoted to algorithms and is further divided into two parts: In
Section 4.1 we present algorithms for both testing polygons for decompos-
ability and counting and constructing decompositions of polygons. Section
4.2 contains a heuristic randomized algorithm for higher dimensional poly-
topes based upon projections down to dimension two. Finally, in Section 5
we discuss applications of these algorithms to absolute irreducibility testing
and polynomial factorization.

2 Polynomials and Newton polytopes

2.1 Background geometry and algebra

Before describing the connection between polynomials and polytopes, we re-
call some terminology and results from the theory of convex polytopes ([13]).
Let IR denote the field of real numbers and IRn the Euclidean n-space. A
convex set in IRn is a set such that the points on the line segment joining
any two points of the set lie in the set; the convex hull of a set of points is
the smallest convex set which contains them; and the convex hull of a finite
set of points is called a convex polytope. A point of a polytope is called a
vertex (or extreme point) if it does not belong to the interior of any line seg-
ment contained in the polytope. A polytope is always the convex hull of its
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vertices. A hyperplane cuts a polytope if both of the open half spaces deter-
mined by it contain points of the polytope. A hyperplane which does not cut
a polytope, but has a non-empty intersection with it is called a supporting
hyperplane. The intersection of a supporting hyperplane and a polytope is a
(proper) face, and the union of all (proper) faces is the boundary. One may
equivalently define a vertex to be a 0-dimensional face, and 1-dimensional
faces are known as edges.
For two subsets A and B in IRn, define theirMinkowski sum to be A+B =

{a+ b | a ∈ A, b ∈ B}. We call A and B the summands of A+B. It is easy to
show that the Minkowski sum of two convex polytopes is a convex polytope.
Let f ∈ K[X1, . . . ,Xn] be a nonconstant polynomial where K is an ar-

bitrary field. We call f absolutely irreducible over K if it has no non-trivial
factors over the algebraic closure of K. Suppose

f =
∑
ai1...inX

i1
1 · · ·X

in
n .

For each term with ai1...in 6= 0, the corresponding exponent vector (i1, . . . , in),
viewed in IRn, is called a support vector of f . Define Supp(f) to be the set
of all support vectors of f , i.e.,

Supp(f) = {(i1, . . . , in) | ai1...in 6= 0}.

Note that Supp(f) is empty if f = 0. The total degree of f , where f 6= 0, is
the maximum value of

∑
1≤j≤n ij over all (i1, . . . , in) ∈ Supp(f). The convex

hull of the set Supp(f), denoted Pf , is known as the Newton polytope of f .
The following lemma was observed by Ostrowski [21] in 1921 (see also [22,

Theorem VI, p. 226]).

Lemma 1. Let f, g, h ∈ K[X1, . . . ,Xn] with f = gh. Then Pf = Pg + Ph.

An integral polytope is a polytope whose vertices have integer coordi-
nates, and we say that an integral polytope is integrally decomposable, or
simply decomposable, if it can be written as a Minkowski sum of two integral
polytopes, each of which has more than one point. A summand in an integral
decomposition is called an integral summand. We say an integral polytope
is integrally indecomposable, or simply indecomposable, if it is not decompos-
able. The Newton polytope of a polynomial is certainly integral and if the
polynomial factors into two polynomials each of which has at least two terms,
then by Lemma 1 its Newton polytope must be decomposable. Thus we have
the following simple irreducibility criterion from [4].

Corollary 2 (Irreducibility Criterion). Let f ∈ K[X1, . . . ,Xn] with f
not divisible by any Xi for 1 ≤ i ≤ n. If the Newton polytope of f is integrally
indecomposable, then f is absolutely irreducible.

In Section 3, we shall discuss in more detail constructions of indecom-
posable polytopes and show how to get indecomposable polytopes of high
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dimension from those of lower dimensions. From these indecomposable poly-
topes one can easily give explicitly many infinite families of polynomials which
are absolutely irreducible when considered over any field.

2.2 Relevant computational problems

From a computational point of view, the following problem is of interest.

Problem 3. Given an integral polytope, say as its list of vertices, decide
whether it is integrally indecomposable.

This problem is not only pertinent to the study of polynomial factoriza-
tion, but is a natural problem to consider and as such may be useful in other
applications. Here the input size is the length of the binary representation
of the coordinates of the vertices. Note that in our applications the polytope
will be presented as the convex hull of a set of integral points. There is a
large literature on computing the convex hull of any finite set of points in
IRn; see [9, pages 361–375]. In particular, the convex hull of t points in a
plane can be computed in time O(t log t) [10]. Any of these algorithms can be
used to compute the vertices of the Newton polytope of a given polynomial
and we shall ignore this computational problem in the presentation of our
algorithms.
As mentioned before, the above problem is NP-complete, thus we shall be

contented with algorithms that are “efficient” in terms of some more generous
measure, say the volume of polytopes. In Section 4 we give such an algorithm
for polytopes in IR2 and we also present a heuristic algorithm for higher
dimensional polytopes which uses randomization. It is an open problem to
develop an “efficient” deterministic or even randomized algorithm for testing
general integral polytopes for indecomposability.
For a decomposable integral polytope, it is desirable to find all of its

integral summands. Here we should identify polytopes that are translations
of each other.

Problem 4. Given an integral polytope, say as its list of vertices, find all of
its integral summands.

Again, this problem seems hard, but we shall give in Section 4 an algo-
rithm for polytopes of dimension two which is “best possible” in the sense
that the running time is linearly related to the number of decompositions.

2.3 Some preliminary results

We shall need more properties of the Minkowski sum. The next result from
[4] describes how the faces decompose in a Minkowski sum of polytopes; for
its proof, see Ewald [2, Theorem 1.5], Grünbaum [13, Theorem 1, p. 317], or
Schneider [24, Theorem 1.7.5].
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Lemma 5. Let P = Q+R where Q and R are polytopes in IRn. Then

(a) Each face of P is a Minkowski sum of unique faces of Q and R.
(b) Let P1 be any face of P and c1, . . . , ck all of its vertices. Suppose that
ci = ai + bi where ai ∈ Q and bi ∈ R for 1 ≤ i ≤ k. Let

Q1 = conv(a1, . . . , ak), R1 = conv(b1, . . . , bk).

Then Q1 and R1 are faces of Q and R, respectively, and P1 = Q1 +R1.

A polytope of dimension two is called a polygon. (We refrain from using
the term Newton polygon for a 2-dimensional Newton polytope as in num-
ber theory this term is used to refer to the lower boundary of the “Newton
polyhedron” of certain power series.) The only proper faces of a polygon are
its vertices and edges. For polygons, the above lemma can be rephrased as
follows.

Corollary 6. Let P, Q and R be convex polygons (in IRn) with P = Q+R.
Then every edge of P decomposes uniquely as the sum of an edge of Q and
an edge of R, possibly one of them being a point. Conversely, any edge of Q
or R is a summand of exactly one edge of P .

3 Indecomposable polytopes

First of all, we mention the following two constructions of indecomposable
polytopes from [4].

Theorem 7. Let Q be any integral polytope in IRn contained in a hyperplane
H and v ∈ IRn an integral point lying outside of H. Suppose that v1, . . . , vk
are all the vertices of Q. Then the polytope conv(v,Q) is integrally indecom-
posable iff

gcd(v − v1, . . . , v − vk) = 1.

Here and hereafter the gcd of a collection of integral vectors is defined to be
the gcd of all their coordinates together.

Theorem 8. Let Q be an indecomposable integral polytope in IRn that is
contained in a hyperplane H and has at least two points, and let v ∈ IRn be a
point (not necessarily integral) lying outside of H. Let S be any set of integral
points in the polytope conv(v,Q). Then the polytope conv(S,Q) is integrally
indecomposable.

The first construction shows that an integral line segment conv(v0, v1) is
indecomposable iff gcd(v0 − v1) = 1, and an integral triangle conv(v0, v1, v2)
is integrally indecomposable iff gcd(v0−v1, v0−v2) = 1. The second construc-
tion gives many indecomposable polygons with more than three edges. These
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two constructions can be used iteratively to get indecomposable polytopes of
any higher dimension.
In the following, we give a new construction based on a projection. Intu-

itively, one hopes that if a projection of a polytope is indecomposable then
the polytope is indecomposable itself. Unfortunately, this is not true in gen-
eral; consider for example a square and project it along one of its edges. The
following lemma, however, gives a sufficient condition. We say that a linear
map π : IRn −→ IRm is integral if it maps integral points in IRn to integral
points in IRm. It is straightforward to see that the image of any integral
polytope under an integral linear map is still an integral polytope.

Lemma 9. Let P be any integral polytope in IRn and π : IRn −→ IRm any
integral linear map. If π(P ) is integrally indecomposable and each vertex of
π(P ) has only one preimage in P then P must be integrally indecomposable.

Proof. It suffices to show that π(P ) is decomposable if P is decomposable.
Suppose that P = A + B for some integral polytopes A and B in IRn each
with at least two points. Then π(P ) = π(A) + π(B). We need to show that
both π(A) and π(B) have at least two points. Suppose otherwise, say π(A)
has only one point. Let w0 be any vertex of P such that π(w0) is a vertex of
π(P ). Since P = A + B, there are unique vertices u0 ∈ A and v0 ∈ B such
that w0 = u0 + v0. As A has at least two points, it has another vertex u1
such that u0u1 is one of its edges. Then, by Lemma 5, P has an edge w0w1
that starts at w0 and is parallel to u0u1 where w1 is a vertex of P different
from w0. The latter property implies that w1−w0 = t(u1−u0) for some real
number t. Hence

π(w1)− π(w0) = π(w1 − w0) = π(t(u1 − u0)) = t(π(u1)− π(u0)) = 0,

as π(A) has only one point and u1, u0 ∈ A. This means that π maps two
vertices of P to one vertex of π(P ), contradicting our assumption.

Corollary 10. Let P be any integral polytope in IRn and π : IRn −→ IRm any
integral linear map that is injective on the vertices of P . If π(P ) is integrally
indecomposable then so must be P .

Theorem 11. Let Q be any integrally indecomposable polytope in IRm and
π : IRn −→ IRm any integral linear map. Let S be any set of integral points
in π−1(Q) having exactly one point in π−1(v) for each vertex v of Q. Then
the polytope conv(S) in IRn is integrally indecomposable.

Proof. It follows directly from Lemma 9.

Remark. Theorem 8 can be viewed as a special case of Theorem 11 in the
case that Q has sufficiently many integral points besides its vertices, since it
seems likely that there is an integral linear map that projects integral points
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in the cone conv(v,Q) to integral points in its base Q. Such a projection is
impossible if Q has no integral points other than its vertices.
In concluding this section, we would like to discuss the relationship of

integral decomposibility with a different concept of decomposibility of poly-
topes defined in Grünbaum [13, Chapter 15]. Let P,Q be polytopes in IRn

(not necessarily integral). We say that Q is homothetic to P if there is a real
number t ≥ 0 and a vector a ∈ IRn such that

Q = tP + a = {tb+ a : b ∈ P}.

A polytope P is called homothetically indecomposable if it is the case that
whenever P = P1+P2 for any polytopes P1 and P2, then P1 or P2 is homoth-
etic to P . Otherwise, P is called homothetically decomposable. Indecompos-
able polytopes in this sense have been extensively studied in the literature
[3,14,19,20,25–27].
Homothetic decomposability is not directly comparable with integral de-

composability. On the one hand, the only homothetically indecomposable
polytopes in the plane are line segments and triangles so any polygon with
more than 3 edges is homothetically decomposable [13,24]. On the other hand,
we saw above that some triangles can be integrally decomposable and many
polygons with more than 3 edges are integrally indecomposable! The next
result, however, shows that homothetic indecomposability implies integral
indecomposability under a simple condition.

Proposition 12. Let Q be an integral polytope in IRn with vertices vi, where
0 ≤ i ≤ k. If Q is homothetically indecomposable and

gcd(v0 − v1, · · · , v0 − vk) = 1,

then Q is integrally indecomposable.

Proof. Suppose that Q = T + S for some integral polytopes T and S. Then
T or S is homothetic to Q, say T . This means that there is a real number
r ≥ 0 and a ∈ IRn such that T = rQ+ a. Hence the vertices of T are

ui := rvi + a, i = 0, 1, . . . , k.

Since T is integral, all the vertices u0, u1, . . . , uk are integral and in particular

u0 − ui = r(v0 − vi), i = 1, . . . , k

are integral. So r must be a rational number and the denominator of r divides
gcd(v0 − v1, · · · , v0 − vk) = 1; hence r is an integer. As 0 ≤ r ≤ 1, we have
r = 0 or 1. In either case, T is a trivial summand of Q. Therefore Q is
integrally indecomposable.

By the above theorem, the homothetically indecomposable polytopes con-
structed in [3,14,19,20,26,27] give many integrally indecomposable polytopes.
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4 Decomposing polytopes

In this section we present our algorithms for both testing polytopes for in-
decomposability and constructing summands of polytopes. We restrict our
attention to polygons in Section 4.1 before considering the more general case
in Section 4.2.

4.1 Polygons

Given a convex polygon in the Euclidean plane, one may form a finite se-
quence of vectors associated with it as follows. Let v0, v1, . . . , vm−1 be the
vertices of the polygon ordered cyclically in a clockwise direction. The edges
of P are represented by the vectors Ei = vi − vi−1 = (ai, bi) for 1 ≤ i ≤ m,
where ai, bi ∈ ZZ and the indices are taken modulo m. We call each Ei an edge
vector. A vector v = (a, b) ∈ ZZ2 is called a primitive vector if gcd(a, b) = 1.
Let ni = gcd (ai, bi) and define ei = (ai/ni, bi/ni). Then Ei = niei where ei is
a primitive vector, 1 ≤ i ≤ m. Each edge Ei contains precisely ni+1 integral
points including its end points. The sequence of vectors {niei}1≤i≤m, which
we call the edge sequence or a polygonal sequence, uniquely identifies the poly-
gon up to translation determined by v0, and will be the input to our polygon
decomposition algorithm. It will be convenient to identify sequences with
those obtained by extending the sequence by inserting an arbitrary number
of zero vectors. We may thus assume that the edge sequence of a summand
of a polygon P has the same length as that of P . As the boundary of the
polygon is a closed path, we have that

∑
1≤i≤m niei = (0, 0).

Lemma 13. Let P be a polygon with edge sequence {niei}1≤i≤m where ei ∈
ZZ2 are primitive vectors. Then an integral polygon is a summand of P iff its
edge sequence is of the form {kiei}1≤i≤m, 0 ≤ ki ≤ ni, with

∑
1≤i≤m kiei =

(0, 0).

Proof. Let {e′i}1≤i≤m be the edge sequence of an integral summand Q of P .
By the final statement in Corollary 6, each edge of Q occurs as the summand
of some edge ne of P where e is a primitive vector, and it is easily seen that
its corresponding edge vector must be of the form ke with 0 ≤ k ≤ n. The
sum is zero simply because the boundary of Q is a closed path. Conversely,
any sequence of this form will determine a closed path. Since {niei}1≤i≤m
is a polygonal sequence, {kiei}1≤i≤m must define the boundary of a convex
polygon. It will be a summand of P , with the other summand having edge
sequence {(ni − ki)ei}1≤i≤m.

Given as input a sequence of edge vectors {niei}1≤i≤m of a polygon P , our
polygon decomposition algorithm will check for the existence of a sequence
of integers ki with 0 ≤ ki ≤ ni, 1 ≤ i ≤ m, such that

∑
1≤i≤m kiei = (0, 0),

km 6= nm, and not all ki = 0. (If P is decomposable then at least one of
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its summands has km 6= nm.) Thus the decision problem underlying our
algorithm is

Polygon Decomposability (PolyDecomp)
Input: The egde sequence {niei}1≤i≤m of an integral convex polygon P .
Question: Does P have a proper integral decomposition?

The input size of an instance of this problem is O(m(logN + logE))
where N = max{n1, . . . , nm} and E the maximum of absolute values of the
coordinates of ei, 1 ≤ i ≤ m. The next result puts the difficulty of this
problem in context.

Proposition 14. PolyDecomp is NP-complete.

Proof. Certainly the language associated with PolyDecomp lies in NP as we
may use a proper decomposition of P to verify membership of the language.
We give a polynomial reduction ofPartition to PolyDecomp which proves,
since Partition is NP-complete [6], that PolyDecomp is NP-complete.
Recall that the input to Partition is a sequence {si}1≤i≤m of positive

integers which we may take to be non-decreasing. Thus s1 ≤ s2 ≤ . . . ≤
sm. Let t =

∑
1≤i≤m si. The question in Partition is whether there is

a subsequence of {si} with sum t/2. Observe that we may assume that t is
even, for otherwise the question is easily answered. Consider now the following
instance of PolyDecomp: the edge sequence

(s1, 1), (s2, 1), . . . (sm, 1),m(0,−1), (−t/2,−1), (−t/2, 1)

where all ni = 1. Firstly, it is easy to check that this is indeed a polygonal
sequence. Secondly, any polygon associated with the polygonal sequence has a
proper decomposition if and only if the sequence {si}1≤i≤m has a subsequence
with sum t/2. Thus we have a polynomial reduction, which completes the
proof.

Since it is widely believed that NP 6= P, it seems unreasonable to attempt
to find a genuinely efficient algorithm for solving PolyDecomp; however,
we shall present an algorithm below whose running time is polynomial in the
length of the sides of the polygon rather than the logarithm of the lengths.
In the parlance of [6], this is an example of a “pseudopolynomial-time” algo-
rithm. In Section 5 we shall indicate how this algorithm may be used to test
bivariable polynomials for absolute irreducibility; the algorithm thus obtained
is efficient in terms of the total degree of the polynomial, rather than the num-
ber of non-zero terms. Thus the distinction between genuinely efficient algo-
rithms for deciding polytope decomposability and “pseudopolynomial-time”
algorithms is mirrored to a certain extent in that between efficient algorithms
for polynomials in terms of their sparse and dense representations.
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Algorithm 15 (PolyDecomp)
Input: The edge sequence {niei}1≤i≤m of an integral convex polygon P start-
ing at a vertex v0 where ei ∈ ZZ

2 are primitive vectors.
Output: Whether P is decomposable.

Step 1: Compute the set IP of all the integral points in P , and set A0 = ∅.

Step 2: For i from 1 up to m − 1, compute the set Ai of points in IP that
are reachable via the vectors e1, . . . , ei:

2.1 For each 0 < k ≤ ni, if v0 + kei ∈ IP then add it to Ai;
2.2 For each u ∈ Ai−1 and 0 ≤ k ≤ ni, if u+ kei ∈ IP then add it to Ai.

Step 3: Compute the last set Am: For each u ∈ Am−1 and 0 ≤ k < nm, if
u+ kem ∈ IP then add it to Am.

Step 4: Return “Indecomposable” if v0 6∈ Am and “Decomposable” otherwise.

Theorem 16. The above algorithm decides decomposability correctly in O(tmN)
vector operations where t is the number of integral points in P , m the number
of edges and N the maximum number of integral points on an edge.

Proof. The running time is easy to see as each set Ai has size at most t.
(Note that by a vector operation we mean addding two vectors, multiplying
a vector by a scalar, or adjoining a point to a set.) To prove the correctness,
observe that all the points in Am are of the form v0+

∑m
i=1 kiei, 0 ≤ ki ≤ ni.

Step 2.1 ensures that ki 6= 0 for some i < m and Step 3 insists that km < nm
(note that v0 + kem 6∈ IP for all k > 0). If one of the points in Am is equal
to v0 then

∑m
i=1 kiei = (0, 0), and so the sequence {kiei} forms the edge

sequence of a proper integral summand of P . On the other hand, for any
proper integral summand Q of P , Q can be “slid” into P at v0, that is, Q can
be translated so that v0 is a vertex of Q and Q lies inside P . Hence all the
vertices of Q must lie in P and thus in IP . Consequently its edge sequence
will be detected by our algorithm.

We next give a simple generalisation of the above algorithm which not
only outputs the number of proper decompositions of the polygon, but also
outputs an array. The array may then be used to recover all decompositions,
a single “recovery” requiring linear time. Thus the total time taken to recover
all decompositions is essentially linearly related to the number of decompo-
sitions. This is the best that one can expect; however, it does not yield a
“pseudopolynomial-time” algorithm as the number of decompositions may
be exponential in the area of the polygon. For example, consider the polygon
with edge sequence

(1, 1), (2, 1), . . . , (m, 1),m(0,−1), t(−1, 0)
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where t = (m+ 1)m/2. The polygon has area less than 12 + 22 + · · ·+m2 =
O(m3) while the number of integral summands is exactly 2m.

Algorithm 17 (PolyDecompNum)
Input: The edge sequence {niei}1≤i≤m of an integral convex polygon P start-
ing at a vertex v0 where ei ∈ ZZ

2 are primitive vectors.
Output: The number of integral summands of P including the trivial ones,
and an array A. Each cell in A contains a pair (u, S) where u is a non-negative
integer and S is a subset of {(k, i) : 1 ≤ k ≤ ni, 1 ≤ i ≤ m}.

Step 1: Compute the set IP of all the integral points in P (so v0 ∈ IP );
say IP has t points. Initialize a t-array A0 indexed by the points in IP . Set
A0[v] := (0, ∅) for all v ∈ IP except the cell A0[v0] which is set to (1, ∅).

Step 2: For i from 1 up to m, compute the t-array Ai from Ai−1:

2.1 First copy the contents of all the cells of Ai−1 into Ai (this step is for
k = 0).

2.2 For each v ∈ IP with the first number of the cell Ai−1[v] nonzero, and
for each 0 < k ≤ ni, if v′ = v + kei ∈ IP then update the cell Ai[v′] as
follows: if (u1, S1) is the value of Ai−1[v] and (u2, S2) the current value
of Ai[v

′] then the new value of Ai[v
′] is (u1 + u2, S2 ∪ {(k, i)}).

Step 3: Return the number u and the array A = Am, where (u, S) is the
content of cell Am[v0].

Theorem 18. The integer output by Algorithm 17 is the total number of
integral summands of the polygon P .

Proof. Supposing v = v0 + k1e1 + · · · + kiei, we may view the vector sum
as a path from v0 to v, so the number of such paths is equal to the sum of
the numbers of paths from v0 to v − kei for 0 ≤ k ≤ ni, using e1, . . . , ei−1.
Hence the numbers of paths can be computed iteratively as described in the
algorithm: the number u in Ai[v] records the number of paths from v0 to v
using e1, . . . , ei and the set S records all the pairs (k, j), j ≤ i, for which a
path reaches v with its last edge being kej with k > 0. Thus the integer in
cell Am[v0] is the total number of closed paths

∑
1≤i≤m kiei starting at v0.

By Lemma 13 this is the number of integral summands of P .

The significance of the array A output by the algorithm is that it may be
used to recover all decompositions of the polygon P . We show how a single
decomposition can be recovered: Suppose the cell A[v0] contains the pair
(u, S). Choose any (k, i) ∈ S. The line segment kei will be the “final edge”
(counting clockwise) in our summand of P . Let (u′, S′) be the contents of
cell B[v0 − kei]. Pick any (k′, i′) ∈ S′ with i′ < i. The line segment k′ei′ will
be the “penultimate edge” in our summand of P . We continue in this way,
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and as our sequence of i’s is decreasing we shall eventually return to the cell
A[v0]. At that point we will have recovered one summand in a decomposition
of P .

With regard to the running time, each cell in the array can be updated
at most mN times, thus the running time is O(tmN) “cell updates”. The
data in each cell is a pair (u, S) where S is a set of size at most mN and
u an integer less than Nm (an upper bound on the number of summands).
Updating the integer u involves integer addition and this has a bit complexity
of O(logNm) = O(m logN). Updating the set S simply involves unioning it
with an element (k, i). Ignoring logarithmic factors, we can consider this a sin-
gle bit operation. Thus the running time of PolyDecompNum is O(tm2N)
bit operations, ignoring logarithmic factors.

4.2 Higher dimensional polytopes

The problem of testing higher dimensional polytopes for decomposability
appears to be significantly more difficult. Certainly it is NP-complete as it
includes that of polygons as a special case. It would be interesting to inves-
tigate whether this problem was “strongly NP-complete” in the sense of [6];
this essentially means that the problem remains “NP-complete” when one
bounds running time by the lengths, instead of logarithm of the lengths, of
the edge vectors. If this more general problem is “strongly NP-complete” then
it is unlikely there is an algorithm for determining whether a convex polytope
of arbitrary dimension is indecomposable whose running time is polynomial
in terms of the volume of the polytope.

In this section, we present a heuristic “randomized algorithm” based on
the projections considered in Lemma 9. The algorithm has running time poly-
nomial in the lengths of the edges of the polytope, thus is “efficient” in the
sense which we have been considering. The idea is to choose a random inte-
gral linear map that projects a polytope into a polygon in a plane and then
test the decomposability of the polygon. If the polygon is indecomposable
and the condition of Lemma 9 is satisfied then the original polytope is inde-
composable. We will show that the condition of Lemma 9 is always satisfied
with high probability, but we do not know how to prove a good bound on the
probability that the projected polygon be indecomposable when the original
polytope is indecomposable.

We now describe the details of our algorithm. Let S ⊂ IRn be any finite set
of integral points, which will be the input to our algorithm, and P = conv(S).
We want to decide whether P is integrally indecomposable. Note that P
can be computed from S by any of the algorithms in [9,10]; however, our
algorithm does not require that the vertices, which are all in S, of P be
known in advance but detects them automatically. This is because the points
of S that are mapped to vertices of a polygon will be vertices of P , provided
each vertex of the polygon has only one preimage in S.
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To describe a projection, we write points in IRn as column vectors, so a
set S of ` points can be represented as an n × ` matrix where each column
stands for a point; for convenience, we still denote the matrix by S. As the
points in S are distinct so are the columns of S. Let u, v ∈ IRn be two integral
points. Then for any point w ∈ IRn, the matrix-vector product (u, v)tw can
be viewed as a point in IR2. This defines an integral projection π from IRn

into IR2 and

(u, v)tS (1)

is the image of S under π in IR2. The polygon defined by the convex hull
of the points in (1) is called the shadow polygon, or simply shadow, of P
projected by u and v. The next lemma from [5] arises in a different context
and tells us how likely it is that the projection is injective on the set S; its
proof is straightforward.

Lemma 19. Let S be an n× ` matrix over a field with no repeated columns
and let K be any subset of cardinality k of the same field. Pick ui ∈ K
randomly and independently, 1 ≤ i ≤ n, and let

(a1, · · · , a`) = (u1, · · · , un)S.

Then with probability at least 1− `(`−1)2k the entries a1, . . . , a` are distinct.

Now let K = {−`2, . . . ,−1, 0, 1, . . . , `2} which has k = 2`2+1 integers. If
we choose the entries of u and v from K at random and independently, then
with probability at least 3/4 the points in (1) are distinct, so the condition in
Lemma 9 is satisfied, i.e., each vertex of the shadow has only one preimage
in S. This probability can be increased arbitrarily close to 1 if one increases
the size of the set K.

Algorithm 20 (PolytopeDecomp)
Input: A finite set S of integral points in IRn.

Output: “Indecomposable”or “Failure”; the first case means that the polytope
P = conv(S) is proved to be indecomposable while the latter means the
decomposibility of P is not decided.

Step 0: Form the points in S as an n × ` matrix, still denoted by S, where
` is the cardinality of S and each column represents a point. Fix a set K of
small integers.

Step 1: Pick two vectors u, v ∈ Kn randomly and compute the projection
(u, v)tS = (a1, . . . , a`) where ai ∈ ZZ

2.

Step 2: Compute the vertices, say v1, . . . , vm in a clockwise direction, of the
convex polygon defined by the points a1, . . . , a`. If more than two points of S
are mapped to one of the vertices vi’s, then output “Failure” and stop here.
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Step 3: Compute Ei = vi − vi−1 = niei where ni is a positive integer and ei
is a primitive vector, 1 ≤ i ≤ m.

Step 4: Input the edge sequence {niei} to Algorithm PolyDecomp. If the
latter says “Indecomposable” then output “Indecomposable”, otherwise out-
put “Failure”.

The correctness of this algorithm follows from our discussion above. If P
is integrally decomposable then the algorithm will always output “Failure”.
It remains an open problem to determine how likely it is that the algorithm
will output “Indecompsable” if P is integrally indecomposable. It is possible
that there are indecomposable polytopes whose shadow polygons are always
decomposable; for such polytopes our algorithm will not work. We would be
very interested in seeing such examples.
On the other hand, it can be proved that most polytopes in IRn, n ≥ 3, are

homothetically indecomposable [24, Theorem 3.2.14, p152]. By Proposition
12, we may expect that most integral polytopes are integrally indecomposable
so our algorithm may detect most of them quickly. It would be interesting
to know how likely it is that a random shadow polygon of a random integral
polytope (under some probability distribution) is indecomposable.

5 Applications to polynomials

A direct application of Algorithm 15 in the light of Corollary 2 gives an
algorithm for testing absolute irreducibility of bivariable polynomials. One
simply first checks whether the input polynomial has any factors of the form
Xi and if not computes the edge sequence of its Newton polytope, which can
be done in O(t log t) operations where t is the number of nonzero terms in
the polynomial. Algorithm 15 may then be used to determine whether this
polygon is decomposable; if it is indecomposable then the polynomial must
be absolutely irreducible. In the case that the polygon is decomposable the
test is inconclusive. The running time of this algorithm is easily checked to
be O(n3) where n is the total degree of the polynomial. A similar test based
on Algorithm 20 may be devised to test general multivariable polynomials
for absolute irreducibility where S is taken to be the set of support vectors
of the polynomial to be tested.
Certainly, this polytope approach cannot decide irreducibility of some

polynomials since it uses only their “shapes”, i.e. Newton polytopes, and the
coefficients do not come into play. However, our algorithm is extremely fast
compared to the infallible algorithms in [1,7,11,15,17,18], thus it may be used
as a pretest before applying the more expensive methods. For random sparse
polynomials, their Newton polytopes may be viewed as random integral poly-
topes. As we mentioned at the end of the last section, most integral polytopes
are expected to be indecomposable. Hence the “shapes” of most polynomials
are indecomposable, so our algorithm can detect them quickly in most of the
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cases. This means that our polytope method should be particularly effective
for random sparse polynomials.
We finish by returning to the problem of Sturmfels quoted in Section 1. In

this problem, one is given the list of support vectors of a polynomial f but the
coefficients of f are not specified. From the support vectors, one can compute
their convex hull. So one is essentially given the Newton polytope Pf of f
with the requirement that the terms of f corresponding to the integral points
of Pf not on the given list of support vectors must have zero coefficient. The
question is how such a polynomial f factors in general? What are the Newton
polytopes and support vectors for the factors?
A natural approach is to find the set of all integral summands of Pf , as

this set contains the Newton polytopes of all possible factors. Each summand
may correspond to a factor of f , and if this is the case then the set of integral
points in the summand contains the support vectors of the corresponding
factor. For bivariable polynomials, one may find all integral summands by
applying Algorithm 17 and the method suggested immediately after it. It
seems that most integral polytopes do not have many integral summands, so
our method is expected to be effective for random sparse polynomials. We
would like to add that this method can be refined by taking into account the
possible factorizations of the univariable polynomials defined by the edges of
the polygon; however, we do not pursue this at present.
We should point out that some integral summands may not correspond

to any factor of f . For example, let

f = (a+ bXn) + Y m(c+ dXn) ∈ K[X,Y ].

Its Newton polytope is a rectangle defined by the support vectors (0, 0), (0, n),
(m, 0) and (n,m). This rectangle has (n+1)(m+1) integral summands. But
f is almost always absolutely irreducible except for a few cases! Moreover,
in general even when we find a summand Pg of Pf which corresponds to a
factor g of the polynomial f under consideration, it may be the case that not
all integral points in Pg are support vectors of g. We only know for sure that
the vertices of Pg are among the support vectors of g.
Finally, we mention that deciding irreducibility of sparse polynomials can

be considered a special case of the above problem. Even though we have
shown that deciding decomposability of integral polytopes is NP-complete,
we still do not know whether deciding irreducibility is also NP-complete. The
latter problem is not even known for sparse univariable polynomials.

6 Conclusion

The Newton polytope of a polynomial carrys a lot of information about its
factors, and so it is fruitful to study algorithms for deciding decomposability
of integral polytopes and for finding all the integral summands when they
are decomposable. For polygons, we showed that deciding decomposability is
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NP-complete but gave a pseudo-polynomial time algorithm for testing decom-
posability and for constructing all possible decompositions. For polytopes of
dimension larger than two, we presented an indecomposability lemma based
on projections, and this lemma gives a heuristic method for testing decom-
posability of polytopes in any dimension. However, a rigorous analysis of this
algorithm is still lacking. It is also desirable to have an algorithm for finding
all the integral summands for polytopes in arbitrary dimensions. The cor-
responding problems for (sparse) polynomials are also open: it is not even
known whether deciding irreducibility of sparse polynomials is NP-complete.
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