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Abstract

This article presents simple and highly regular architectures for finite field multipliers
using a redundant representation. The basic idea is to embed a finite field into a cyclotomic
ring which has a basis with the elegant multiplicative structure of a cyclic group. One im-
portant feature of our architectures is that they provide area-time trade-offs which enable us
to implement the multipliers in a partial-parallel/hybrid fashion. This hybrid architecture has
great significance in its VLSI implementation in very large fields. The squaring operation
using the redundant representation is simply a permutation of the coordinates. It is shown
that when there is an optimal normal basis, the proposed bit-serial and hybrid multiplier ar-
chitectures have very low space complexity. Constant multiplication is also considered and
is shown to have advantage in using the redundant representation.
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1 INTRODUCTION

Efficient computations in finite fields and their architectures are important in many applications
including coding theory, computer algebra systems and public-key cryptosysamel(ip-

tic curve cryptosystems). Although all finite fields of the same cardinality are isomorphic, their
arithmetic efficiency depends greatly on the choice of bases for field element representations. The
most commonly used bases are polynomial baBBsgnd normal basedNg), sometimes com-

bined with dual base®)[15]. A major advantage of normal bases in the fields of characteristic
two is that the squaring operationNB is simply a cyclic shift of the coordinates of elements, so
these are useful for computing large exponentiations and multiplicative inverses [13, 11, 1]. Also,
the multiplication table of a normal basis is symmetric, so suitable for hardware implementation.
This is the basis for the multiplier of Massey-Omura [16] and that of Onyszchuk et al. [18].

Recently, Gao et al. [7, 8] have proposed a novel method to perform fast multiplication with
a normal basis generated by Gaul3 periods. The main idea is to embed a field in a larger ring,
perform multiplication (using the Fast Fourier Transform) there and then convert the result back
to the field. The ring they use is referred to asyalotomic ringwhich has an extremely simple
basis whose elements form a cyclic group. One purpose of this paper is to make this idea more
explicit and present architectures that are suitable for hardware implementation.

We are mainly interested in finite fields of characteristic two, g~ , which are one of the
two types of fields used most commonly in practice (the other ofig vgherep is a prime). We
show how to find thesmallestcyclotomic ring in whichF,» can be embedded. Since “embed-
ding” is not unique each element in the ring can be represented in more than one.evathe
representation contains certain amount of redundancy. In this article, we also discuss how this
redundant representation of a field element can be efficiently converted to a normal basis and vice
versa.

Another purpose of our paper is to present architectures for arithmeije inBoth bit-serial
and hybrid multipliers using the redundant representation are proposed and their complexities are
discussed. A modified form of the multipliers using the redundant representation with reduced
complexity are also presented. The bit-serial and hybrid architectures of this modified multiplier
have lower complexity compared to the previously reported normal basis multipliers. A constant



multiplier using the redundant representation is also considered.

We should mention other related work here. I1toh and Tsujii [14] constructed a multiplier for a
class of fields defined by irreducible all-one-polynomials (AOPs) and equally-spaced-polynomials
(ESPs). Wolf [22] found a simple multiplication architecture for irreducible AOP’s. Drolet [4]
uses maximum subfields in cyclotomic rings. Silverman [19] considered a special case when
there is a type | optimal normal basis. This case is also considered in [7, 8]. A more recent article
on redundant representation is [10].

The organization of this paper is as follows: Section 2 shows how redundant representation of
a field element can be derived from cyclotomic rings. In Section 3, multiplication operation using
the redundant representation is discussed and then basis conversions are given. Architectures of
bit-serial, bit-parallel, hybrid, and constant multipliers are presented in Section 4. For the field
which has a type Il ONB, we show in Section 5 that more efficient architectures can be developed
using a basis derived from the redundant representation. This multiplier architecture is highly
regular and also has low complexity. Finally, a few concluding remarks are given in Section 6.

2 CYCLOTOMICFIELDS AND REDUNDANT REPRESEN-
TATION

Let K be any field and: a positive integer. The-th cyclotomic fielgd denoted byi ), over I
is defined to be the splitting field af — 1 over K. In particular;: divides# K (<) — 1 for somee
and is thus coprime to the characteristic. Bdde a primitiver-th root of unity in some extension
of K. ThenK ™ is generated by over K and elements ok (") can be written in the form

A=ay+aB+af*+ - +an 18", a€K. (1)

Here the representation is not unique, that is, eatiple (ao, a1, ... ,an-1), a; € K, gives an
element of K™ but different tuples may give the same element. For example, $ire@& +
pE+ -+ "t = 0, the twon-tuples(0,0,...,0) and(1,1,... ,1) both represent, while
(—=1,0,...,0) and(0,1,...,1) both represent-1. Because of such redundant representations,
and by a slight abuse of terminology, we dengite3, 52, ... , 3"~1)! as a redundant basiBE)

for any subfield of k™ containingl’. Note that &RB is unique for a giverk .

1An orderedset of field elements is denoted by - .
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On the other hand, we may consider the riige]/(«" — 1), called the:-th cyclotomic ring
denoted byR,,(K). If we let 5 be the congruence class ofthens™ = 1 and elements oR,,
can also be represented in the form (1). But now the representatiaigiseand so the elements
1,3,5%...,5" ! form atrue basisfor R,. Note that the elements 3, 3%, ... ,3" ! form a
cyclic group of order and

1=n — 1.

R O @

This simple multiplication table allows us to design efficient architectures of low complexity as
shown in Section 3.

Suppose thafF,~ is embedded ik (™, whereq is a prime power. Then arithmetic -
using the redundant representation can be performed following these three steps:

1. Represent elementsi)- in the form (1);

2. View them in the ringk,, and do arithmetic there;

3. Finally convert the result back .

We characterize here all the fields that can be embedd&dihwhenk = F,.

Theorem 1 [15] Let ¢ be a prime power and be a positive integer witgcd(g,n) = 1. Then
F, is contained irf\") iff m divides the multiplicative order af modulon.

Proof: Letd be the multiplicative order af modulon. By Theorem 2.47 (page 65) of [15],
IE“q(”) has degred so it is isomorphic td, .. The theorem follows, a&,~ is contained irf, . if
and only ifm | d. 0

Remark 1 If there is a type | optimal normal basis iy~ thenF,~ is contained ink ™+ so
there is aRBof sizem + 1 for Fym.



Here a basis faF,~ is {3, 3%, ..., 3™} and the correspondence between field elements and ring
elements is

arf +axf’ + -+ anf" = 01+ af+af’+-- +anf”
(a1 + ao)B + (az + ao)B® + - + (am + a0)f™ 1 ao- 1+ af+ a4 - 4 anf™

This is the case considered by Silverman, Gao, et al. [19, 7, 8].

Remark 2 If there is a type Il optimal normal basis iy thenF,~ is contained ink 2"+, so
there is aRBof size2m + 1 for Fym.

This case will be considered in more detail in Section 5. In concluding this section, in Table 1 we
give the smallest values affor 151 < m < 250 such thaff,- is contained ink ™

3 MULTIPLICATION USING REDUNDANT REPRESEN-
TATION

From now on we only consider fields of characteristic two.

3.1 Multiplication Operation

Consider the basis of our redundant representatioR.foroverT,:

Il = <1767627"' 76n_1>'

Let any two field elementst, B € F,» be represented with respect to (w.r.t}), i.e, A =
Zl , aiftandB = YT "53¢, wherea;, b; € F, are the coordinates of w.r.t. I;. Note that
n > m + 1 and the lists of coefficients:; } and{b,} are not unique.

Sinceg™ = 1, the product of field element$ and B can be given by

n—1 n—1 n—1 n—1 n—1 n—1
:Z B-B) =Y @Y 084 = 3 ailY by = (Zaib(j_,»)>5f,
=0 7=0 =0 7=0 7=0 =0

where(j — 1) in the subscript denotes that- 1 is to be reduced modulo,
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151| 907| 6.0 || 176| 1409| 8.0 || 201| 1609| 8.0 || 226| 227| 1.0
152| 1217| 8.0 || 177| 709| 4.0 || 202| 809| 4.0 || 227 | 5449| 24.0
153| 613| 4.0 || 178| 179| 1.0 || 203| 841| 4.1 | 228| 1603| 7.0
154| 617| 4.0 || 179| 359| 2.0 || 204| 409| 2.0 || 229| 2749| 12.0
155| 311} 2.0 || 180| 181| 1.0 || 205| 821| 4.0 || 230| 461| 2.0
156 169| 1.1 || 181|1087| 6.0 || 206| 619| 3.0 || 231| 463| 2.0
157| 1571} 10.0| 182 | 547 | 3.0 || 207| 829| 4.0 || 232| 929| 4.0
158 | 317| 2.0 || 183| 367| 2.0 || 208 | 2081| 10.0 || 233 | 467| 2.0
159| 749| 4.7 || 184| 799| 4.3 || 209| 419| 2.0 || 234| 1007 | 4.3
160| 2123| 13.3| 185| 1481| 8.0 || 210| 211| 1.0 || 235| 941| 4.0
161| 967| 6.0 || 186| 373| 2.0 || 211|2111| 10.0| 236| 709| 3.0
162| 163| 1.0 || 187 | 1123| 6.0 || 212| 535| 2.5 | 237| 1423| 6.0
163| 653| 4.0 || 188| 941| 5.0 || 213| 853| 4.0 || 238| 717| 3.0
164| 415| 25 | 189| 379| 2.0 || 214| 643| 3.0 || 239| 479| 2.0
165| 661| 4.0 || 190| 573| 3.0 || 215| 1291| 6.0 || 240| 1067 | 4.4
166| 499| 3.0 || 191| 383| 2.0 || 216| 1297| 6.0 || 241 | 1447| 6.0
167|2339| 14.0| 192| 769| 4.0 || 217| 1303| 6.0 || 242| 1331| 5.5
168 | 833| 5.0 || 193| 773| 4.0 || 218| 1091| 5.0 || 243| 487| 2.0
169| 677| 4.0 || 194| 389| 2.0 || 219| 877| 4.0 | 244| 733| 3.0
170| 1021| 6.0 || 195| 869 | 4.5 || 220| 575| 2.6 || 245| 491| 2.0
171| 361| 2.1 || 196| 197| 1.0 || 221| 443| 2.0 || 246| 581| 2.4
172 173| 1.0 || 197 | 3547| 18.0 || 222 | 1043 | 4.7 | 247| 1483| 6.0
173| 347| 2.0 || 198| 437 | 2.2 || 223|2677| 12.0| 248| 1489| 6.0
174| 349| 2.0 || 199| 797 | 4.0 || 224| 449| 2.0 || 249| 1169 4.7
175| 701| 4.0 || 200| 401| 2.0 || 225|1919| 8.5 | 250| 625| 2.5

Table 1: Smallest cyclotomic fiellﬁz(”) that containd,~ as a subfield.

n—1
If we defineAB = C =) ¢;3, we have

4=0

n—1

;=Y abioy, j=01....n—L 3)

1=0
Then a multiplication operation using the redundant representation is decided by expression (3).
On the other hand, the squaring of an eleméniising basis/; can simply be performed as
follows:

A?=ag+ar B+ ap fHY,
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Sinces™ = 1, we haves® = 52" if 25 > n — 1. Note thatr is odd because of the minimum
of the redundant basis, thu& can be written as

A = at @t ana BT aap s B0 4 apn S
= ao—l—a%._lﬁ—l—alﬁz—l—a%._l+lﬁ3_|_...—|-a%._1+%;36”_2—|—an2;16"_1.

Clearly, a squaring operation using redundant representation is equivalent to a permutation of the
element coordinates.

3.2 Gauld Period, Normal Basis and Redundant Basis

Some redundant bases can be easily introduced by the normal bases generated with the Gaul3
period, and by doing so one can find the relation/conversion between the RB and the normal
basis. This is discussed below.

The Gaul3 period (GP), which was discovered by Gaul3, is defined as follows:, ket 1
be integers such that = mk + 1 is a prime, and leg be a prime power witlzed(¢,n) = 1.
Let K be the unique subgroup of ordeof the multiplicative group o%,, = Z/nZ, then for any
primitive nth root 3 of unity inF,.., the element
y=> 8 (4)
aek
is called aGaul3 period of typém, k) overF,, wherea is akth root of unity inF, . , . It can be
checked that € F,~. For example, wheh = 2, « is a square root of unity i, ., = Z,, ;.
So,a = £1, andy = 8 + 37, This is the case which will be discussed in Section 5.

GPs have been used to construct normal bases with low complexity [17, 3]. A GP of type
(m, k) overF, naturally introduces a normal badis= (y,42,... ,4%" ) in Fy» overF, if and
only if ged(e, m) = 1, wheree is the order o2 modulor. Furthermore, such a normal basis has
complexity at mostnk’ — 1 with k' = k if k£ even and: + 1 otherwise [3, 21, 6]. Clearly, GPs
of type(m, 1) and(m, 2) generate optimal normal bas&x\Bs) with complexity2m — 1, which
are usually called type-I and type@INBs, respectively [17].

For a normal basis generated Wil of type (m, k), from (4) we have
k—1 ) k—1 ) k—1 )
]2:<77727"'772 >:<Zﬁa7262a7'”7262 a>7
=0 =0 =0
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wherea is a primitive kth root of unity inF, Note that each element ify is a sum ofk

X
m—+1-
elements. Let the set of theke: elements be denoted &5 = {32~ ,i = 0,1,... ,m —1;j =
0,1,...,k—1}. It can be seen that elementsincan serve as a “representation basis{es .
Consider another set &fn elements:S; = {3, 32,... ,3*"}. For any elemenf?*’ € S, we
havep?' e = grelmedmk+l) ¢ G, and thusS; C S,. LetG = F%,,, thenG = (2, ). For any
ke —1},
such thaf = 2'a’ mod (km + 1). Therefore,S, C S; = S, = ;. Obviously, besides element

integerl € {1,2,...,km}, there exist integerse {0,1,... ,m—1} andj € {0,1,...

“1”, the basis of our redundant representation contains exactly the Bauredements as$; or
S.

3.3 Conversions of Bases

Among the three steps of redundant representation arithmetic, the first and the final steps deal
with the change of representations. In this subsection we discuss the conversions between the
normal basis and the redundant basis derived from the Gaul3 period. We show that such conver-
sions can be done in hardware with almost no cost.

Before giving the conversions between normal bdgisndRB I;, we first introduce two
intermediate “bases”. Following the discussion in the previous subsection, we separate each sum
of k terms of/, and put the:m elements in an ordered set and let it be denotef by

—1 —1 —1 k-1
2 7627" ozw” 2M >

‘[3: </87/8a7"' 7/8ak_17/827/82a7"' 7/82ak_17"' 7/8

Clearly, I3 can serve as a “basis” @». The second intermediate “basis” is given by

I4: <67627637"' 76mk>

From the discussion in the previous subsection, we know/fthhas exactly the samek ele-
ments ad; but with a different order. Moreover, the permutation can be carried out as follows.
Let A € Fym andA = (aﬁj),ag‘j),... ,afﬂc) w.rt. I; for y = 3,4. Forany:,1 < i < mk, write

1 = lk+d,wherel <d<kand0<[<m—1. Then

aEB) = aglfi—d = agl)ad—l)v (5)

where (2'a?-!) denote2'a?~! to be reduced module. In this way, we create a one-to-one
correspondence between theand I, based coordinates.
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Obviously, conversions between the normal basis an&Bean be divided into three steps:

(a) Conversions between the normal basis and the intermediatelhiasis
(b) Conversions between two intermediate basesd /,;

(c) Conversions betweeh and theRB.

Step (b) has been solved in (5). It can be implemented as a rewiring of lines and has almost no
cost in hardware. Step (c) is even simpler. Note thatRBecan be obtained by including the
element 1” before the first element of;. If we let A = (ag, a1, ... , ami) W.I.t. the redundant
representation, then

a,':af) fori =1,2,... ,mkanday = 0. (6)

Conversely, ife;’s are given, then

a; if ag =0,

“o= { 1 —a; otherwise 0

In Step (a), the conversion from the normal basiso the intermediate basis can be given
as follows. IfA = (ag, df, ... ,al,_;) w.rt. the normal basig,, then w.r.t/; one has

" m—1

(ag,aly...,al )= (ag, ... ap, @y, ... ay,.... al ceyal ). (8)

k k k

The reverse conversion, however, is much more complicated. Note that it is not possible to
convert every redundant representation, since some of them may not represent an element in the
field 5. Two tasks have to be performed in this step: One is to identify the representation of

a field element w.r.t/3, and the second is to convert the identified field element’s representation
back to the normal basis.

For the interest of this paper which deals with finite field multiplication, it is sufficient to
consider identifying the product of two field elementdjrand then convert it back to the normal
basis. Suppose that the coordinaﬂéé 1 <¢ < n—1ofthe productC w.r.t. I5 are given. Then,
we have the following lemma.



Lemma 1 Assume thatl, B € F,~ are respectively given if; by

k
Z b k+162ja

=1

-1

k
A=Y dl}) Y andB =

J =1 J

—_

3
3

I\
=]
I\
=]

where

_

GB B B andb]kﬂ k+2

Jk+1 gk+2 Csktk - bﬁklk 9)

fory =0,1,... ,m—1. Then the produat’ = AB in I3 obtained using (3) also has the property:

@ =8 = forj=0,1,... ,m—1.

Cikt1 k42 ]k-|—k

A proof of this lemma is given in Appendix A.

The lemma allows us to identify the basis representation of the product of two field ele-
ments also represented by Once the product is obtained in thisbasis, it can be converted to
the corresponding normal basis as

(067"' 70670/17"' 70/17"' 7cm—17"' 7cm—1) = (0670/17"' 7c:n—1)' (10)

k k k

Thus, Step (a) of basis conversion can be realized with (8) and (10).

3.4 Further Results on Redundant Basis

Lemma 2 Let A € Fy» and thel, basis representation of be obtained from its normal basis

representation by using (8) and (5), and let it b, a{", ..., aY)). If & > 2 is an even
integer, then the Iasﬁ%—k coordinates:), , o), ..., a!*), are a mirror reflection of the firs?%—k

coordinates.

k—1
Proof:  Leta be the primitivek™ root of unity. Thery = )~ 3*" generates a normal basis
=0
L=1{7,%%...,7*" ) in Fyn. Sincek > 2 is an even number anet = —1, thus
72@' _ 62@' _I_ﬁzia _I_ﬁzioﬂ ‘I’""|’62iak_l
A A Sk, i g ioz% 1
— 62 _|_620z_|_‘”_|_62a2 _|_620z _|_62 +_|__|_6
; ; o Bl ; ; i B
— (62 _|_620z_|_‘”_|_62a2 )‘|‘(6_2 ‘I’ﬁ_za‘l’""l’ﬁ_za ) (11)

ziak—l
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E_l E—l
Thus the two intermediate bases are respectively givdp by(3,... ,3** 574, ..., 37* |

1 m—1 L) m—1 m—1 L)
L BETT L g e T BT T e Y andl, = (B, 8%, ..., ™). Itcan be seen
i c (1) () (4) (4) (4) (4)
from (11) that theé: coordinates Ofl W.r.ts: a0, 441 - - - ,a(ziag_l),a(_z,»),a(_z,»a), . ’a(_ziaé—l)

have the same values, whea’) denote'a’ to be reduced module. If a line is drawn at
the middle of thel, basis element sequence betwé&ﬁ andﬁkTm“, then for anyl, coordinate

agfaj) its mirror reflection coordinateff_)(ziaj) — agi)Ziozj) must have the same value. O

For example, lek = 4 andm = 7. Let 5 denote a primitiv&9th root of unity inF,:s . Since
12 is a fourth root of unity irfF,X, theny = 8+ 8?4+ 8~ + 372 is a GauR period of typg, 4)
overF, andy generates a normal basisip : I, = {v,~%,+%,... ,~%"). Subsequently; andl,
are respectively given b = <5751275_175_12752752475_275_247 o 76647676876—6476—768>
andl, = (B,5% 3% ..., 5. Finally, the redundant representation basis can be obtained by
including the element “1” before the elemehin I,. Let the normal basis representation of a
field element4 be (ay, o}, a}, a5, ay, at, ag). We can obtain itd, representation as follows:

SN R R A A S N S S S S A S S S R R S S A S S S A S S S S
A= (ao,al,a5,a2,al,aG,a5,a3,a3,a2,a4,a0,a4,a6,a6,a4,ao,a4,az,a3,a3,a5,a6,a1,a2,a5,a1,a0).

8 consecutive coordinates

It can be seen that in thh basis representation the firist coordinates are a mirror reflection
of the lastl4 coordinates. The corresponding redundant basis representatimsadbtained
simply by including a 0" before the first coordinate in thg representation.

Also note that only eight consecutive coordinates as, ... ,a;;) of the redundant repre-
sentation, which include all the seven coordinates w.r.t. the normal basis, are necessary for
determining the elemem. This fact can be exploited when a multiplication operation using
redundant representations is implemented. If we delha@i®the minimal number afonsecutive
coordinates of the redundant representation needed to determine the element, then Table 2 shows
some values ok for the fields given in Table 1 which can be generated with the Gaul period of

type(m,4).
Lemma 3 For A, B,C € Fym, letC = AB. Assume thatag, ay,... ,an-1), (bo, b1, ... ,ba_1),
and(co, 1, ... ,c,—1) are the representations of, B and C, respectively, w.r.tz;. If ag = by,

thenk evency = ag = by.
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153|613 | 281| 0.46| 177 | 709 | 326 | 0.46 | 207 | 829 | 375| 0.45
163 | 653 | 299| 0.46| 193 | 773 | 357 | 0.46| 213| 853 | 393| 0.46
169 | 677 | 313| 0.46| 199| 797 | 368 | 0.46 | 219| 877 | 396| 0.45
175|701 | 323 | 0.46 | 205| 821 | 374 | 0.46| 235| 941 | 428| 0.45

Table 2: Ratios of to n for some useful values of. with k=4.

Proof: It follows from Lemma 2p, = b,,_1,b3 = b,,_o, ... ,bnT_l = bn%. Then from (3) we
n—1 n—1 n—1
havecy = Z a;b,_; = Z a;b; = apby + Z a;b;. Note that(a,, as, ... ,a,—1) have exactlye
1=0 1=0 =1
copies of the normal basis coordinates, and the same property also applied40... ,b,-1)
n—1 mk

(refer to (9)). Then§ a;b; = § a;b; can be written as a sum af partial sums, where each
n—1

partial sum is a sum of same values which is clearly zero sincés even. Then ~a;b; = 0

=1
andCO == Clobo. O

This property will be used later to obtain efficient architecture for finite field multiplier.

4 ARCHITECTURES FOR RB MULTIPLICATION

In this section we present architectures for hardware implementation of the multiplication:

B = C based on (3), wherd, B andC are represented with respect to the redundant bdasis
Conversion betweeh and the normal basis, as discussed in Subsection 3.3, can be performed
without any logic gates.

4.1 Bit-Serial Multipliers

Parallel-in serial-out version An architecture for a parallel-in-serial-out (PISO) multiplier is
shown in Fig. 1. The:-bit register, which is initially loaded witlB, is cyclically shifted with

a clock. The contents of this register are bit-wise multiplied with the coordinatdsasfd the
resultantr bits are added using — 1 modulo two adders (arranged in a binary tree form for
minimum delay). For a straightforward implementation, this PISO multiplier requiriip-

12



flops? n AND gates anch — 1 XOR gates, and the multiplication is completechinlock cycles.

The PISO multiplier architecture shown in Fig. 1 can be optimized and its time and space
complexities can be greatly reduced if certain properties of the redundant representation basis are
taken into consideration. Since the redundant basis coordifiatgs, containk copies of the
normal basis coordinateg for all j,(; = 0,1,... ,m — 1), leta;, = a;, = --- = q,,. Ifthese
k coordinates are bit-wise multiplied with,, b, ... ,b;,, respectively, then part of the PISO
multiplier (refer to Fig. 1) computes, by, +a;, b, + - - - +a;, by, which requires: AND andk — 1
XOR gates. Since;, = a,, = - -+ = «q,,, One can equivalently computg (b;, + by, +--- + by, ),
which requires onlyt AND and% — 1 XOR gates. This reduces the total number of AND ghtes
in the PISO multiplier fromn to m + 1, while the number of XOR gates remains the same.

\—‘bn—l bn—Z bn—S bn—4
a1 a9 a

T

®: Binary Tree

i ¢, j=n—1,n-2,...,1,0
Figure 1: Bit serial multiplier using the redundant representation.

It is also possible to reduce the number of clock cycles needed by the PISO multiplier. To-
wards this end, if we can change the order of the input bits to the PISO multiplier such that in
the firstu (m < p < n) clock cycles the multiplier generates thgseonsecutive coordinates of
C that have at least one copy @f, for all j,(; = 0,1,... ,m — 1), then the computation time
would reduce fromn(= km + 1) to i clock cycles. The value gf can be considerably lower
thann. Table 2 lists minimum values ¢f (denoted a%) for £ = 4 and150 < m < 250 that
are of interest of elliptic curve cryptosystems. It can be seen from the table thatHot, the
computation time is reduced by more tH&86. In fact for any even value @f, the computation

2Note that inputd can directly come from a register that is not necessarily part of the multiplier. As a result, in
determining the circuit complexity of the multiplier, no register is considered for
30ne more AND gate may be saved if one can ensuretatvays hasiy = 0.
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time is always less thaém. Let then consecutive coordinates that the PISO multiplier needs to
generate bey, ¢y4y, ... ,cryu—1. Then if we change the connection to the AND gates in Fig. 1
such thatao, a1, ... ,a,—1) is replaced bYay 4, @y yps1s- - - avyu—1), then the PISO multiplier
will generate the required coordinates o€ in the first. clock cycles.

Serial-in parallel-out version A serial-in parallel-out (SIPO) multiplier which is capable of
running at a very high clock rate is shown in Fig. 2, where the elerBeiststored in a cyclic
shift register and the elemedtis shifted in a bit-serial fashion. Each of theaccumulator units
consists of a mod adder and a flip-flop. These flip-flops are initialized to zero and contain the
productC' aftern clock cycles.

an—1y...,01,00

Wbo ‘ b1 ‘ rrrrrrrrrrrrrrr ‘bn—Z ‘bn—l W

Figure 2: High speed architecture for bit-serial redundant representation multiplier.

Compared to the parallel-in serial-out multiplier of Fig. 1, the SIPO multiplier cogtstra
flipflops and one mor&XOR gate. However, it can support a very high clock rate since the
critical path consists of one XOR and one AND gate only. Another clear advantage of this SIPO
architecture over the PISO one is that the former can be efficiently implemented in software
using the full width of the datapath of the processor on which the software is executed. The
optimization for this architecture includes reducing the number of accumulation unitssiach
that the results in the: flipflops have exactly one copy of the coordinates w.r.t. to the normal
basis.

Table 3 shows a comparison of the two multipliers presented here and the parallel-in serial-out
polynomial ring multiplier proposed in [4]. In Table 3, sineedenotes the size of the maximum
subfields in cyclotomic rings, for the same fidligd. one always has’ > n. For example, when
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m = 4, we haven = n’ = 5; whenm = 5, we haver’ = 31 andn = 11; whenm = 9, we have
n' =73 andn = 19.

#of | #of | #Flip | #clk
Multipliers AND | XOR | flops | cycles Critical path basis
Drolet [4] n' | n—1 n' n' Ts+ [logyn'|Tx poly. ring
Fig 1(optimized)| m | n—1 n h Ts + ([logy k] + [log, m])Tx | redundant
Fig 2(optimized)| m m |n+m n Ts+ Ty redundant

Table 3: Comparison of bit-serial multipliers using polynomial ring basis and redundant repre-
sentation.

Constant multiplier For an implementation of multiplication operation, if one of the inputs

(i.e, either A or B) is known or fixed, the multiplier is called a constant multiplier. In the
past, efficient architectures for such constant multipliers were proposed using polynomial and its
dual basis. When normal bases are used, the constant multiplier are however not that efficient.
This is mainly because most normal basis multipliers require that Aadhd B be shifted in

cyclic fashion in each step of the multiplication operation. To alleviate this problem, the PISO
multiplier shown in Fig. 1 can be used with its inpdtbeing a fixed element. Although the

P1SO multiplier’s inputs and outputs are represented with respect to the redundant basis, one can
change the representation from a normal basis to the redundant basis and vice versa without any
logic gates.

When the redundant representation is used, one has another advantage in constructing a con-
stant multiplier. Since a field element can have more than one redundant representation, we may
find the representation with tHeastHamming weight to reduce implementation complexity.

For the representations of an element w.r.t. to a RB, the representation with the fewest nonzero
coordinates is referred to as ttrenimal representationf the element, and one has the following:

Theorem 2 Let (1,4,...,3"!) be a redundant representation basisFgr overF, and A €
F,. Then the minimal representation afwith RB has a Hamming weight equal to or less than
L 5 Lif k = 1 orm is even, andl_éfiJrl if £ > 1 andm is odd.
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Proof: The theorem follows by noting that can be written as

A = ataf+-Faf!
= (ao—1)+ T 4+a)B+ -+ (1 +an)p" "

4.2 Parallel Architectures

Full parallel version Since the architecture shown in Fig. 1 operates in parallel-in and serial-
out fashion, it can be easily parallelized. Fig. 3 shows the circuit (mogililehat generates
one coefficient; of the productC. The inputs to moduléd/ are A and:-fold cyclically shifted
version of B. Clearly, a full bit-parallel multiplier can be obtained by usitnguchM modules.

The circuits for modulelM can be optimized to save AND gates in the same way as we
discussed for the PISO multiplier. Also the number of modules can be reduced &nce it
is sufficient to generate only those coordinates that correspond to the normal basis, dach
module requires» AND andn — 1 XOR gates, and there are suchM modules’ Hence the
total number of gates for the bit parallel multiplier is

m? AND gates
m(n —1) XOR gates

The time delay due to gatesTs + ([log, k| + [log, m|)Tx.

Figure 3: Parallelization of the bit-serial redundant representation multiplier.

4Here we assume thatis even and the first coordinates #fand B, ag = by = 0. Then we have, = 0 by
Lemma 3. If the above condition is not satisfied, there shouledkbe 1 modules.
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Hybrid version The above bit parallel architecture has a clear advantage over some similar
existing architectures. It can be implemented in partial parallel (hybrid) fashion to provide con-
siderable amount of space and time trade-offs. In a space constrained environment,tif only
copies ofM modules are available to implement the multiplier( ¢ < n), then the multiplica-

tion operation can be arranged such that in one clock eygle are computed, and the operation
can be completed |ﬁ%w clock cycles. This feature could be very useful in VLSI implementation
since it might be difficult to implement a full-scale bit-parallel multiplier when the field is very
large.

Fig. 4 shows the architecture of a hybrid multiplier using only titomodules. There are

two shift registersk; and R,. RegisterR; is of Iength”TJrl bits and initially loaded with

bi,bs, ..., ba_s,by. RegisterR; is 5 1 bits long and initially loaded with,, b4, ... , b, 1. The

interlacingmodule combines the outputs from the two registers into one such that its first bit is
the first bit fromR;, the second bit is the first bit fromi,, the3rd bit is the second bit fron&,,
the4th bit is the second bit fronk,, ..., and so on. During the first clock cycle, the interlacing
module has outputs in the ordeb;, by, ... ,b,_1,bo. Then moduleM on the left-hand side
generateg, and modulelM on the right-hand side produces During the second clock cycle,

the outputs of the interlacing modulebs by, ... ,b,_1, by, b1, b, andc; andcs are generated by
the M modules. This process is repeated and after a tot%fclock cycles, all the coordinates

of C are generated.
n
acmgl SNl q

) Ci+1
—— M —

JL___

Figure 4: Hybrid redundant representation multiplier architectute %).

{ai ?:_01

5 ARCHITECTURE FOR TYPE-II ONB MULTIPLIER

In this section we deal with type-1l ONB. Extending the work of Gao and Vanstone [6], we
present several bit-serial and bit-parallel multiplier architectures.
17



5.1 Algorithm

Below we consider in more detail Remark 2 given in Section 2.

Theorem 3 [6] Let 3 be a primitive(2m + 1) root of unity inF,» andy = 3 + % generates

a type Il optimal normal basis. Then;,: = 1,2,... ,m} with v, = 3¢ + é = Bt gt

1 =1,2,...,m,is also a basis iy .

From the discussion in the previous section, the complexitiesRE multiplier can be greatly
reduced by applying certain properties of the redundant representations. However, we can do
better. ForB € F,» and~; as defined in Theorem 3, define

. 2 mod 2m + 1, if 0 <imod2m +1<

s(1) (12)

2m 4+ 1 — 2 mod 2m + 1, otherwise.
Obviously,s(0) = 0,5(i) = s(2m +1—1i) andy; = v, forany integet. Asv;v; = vit; +7i-j,
we havey; - v; = Yo(i+s) + Vsti—j)- Let B = (b1,... . by) € Fyn with respect to the basis
<’)/1,")/2, PN 77m> andbo = 0, then

m

Yi-B =) b= Zb (Vstita) + Voti=i)) = Y (Bogiray + bsi— )75
7=1

Jj=1
The final step in the above equation comes from proper substitutions of the subscript variables.
The above constant multiplicatien B was proposed by Gao and Vanstone [6]. In order to obtain
a general multiplier, lett = (ay, ... ,an,) be an elementifiy- , w.r.t. the basigy:, v2, ... , Ym),
then multiplication ofA and B can proceed as follows:

m

A-BZZ%(%'B):Z%Z s(5+1) ‘|'le Z(Za, s(7+1) —I_b”)))%

=1 =1 7=1 7=1 =1

If the product is denoted &S = Z ¢;7;, also in the basiéy;, y2, ... ,vm), then

=1

C; = Z Cli(bs(j+i) + bs(j—i)), ] — 17 27 co., M. (13)



AT = (1,72, -y Yam ). Fromey; =

7vs(iy @and the expression (12), it can be seen that the basis,, . .. ,y.,) is a permutation of the

Note thaty also generates a normal baéis~?, . ..

above normal basis. Thus in hardware a squaring operation using thé-hasis. . . ,¥,,) costs
nothing but rearrangement of wires.
5.2 Architectures

Parallel-in serial-out multiplier
Figure 5. A(2m + 1)-bit register, which is divided into two parts (left and right) and is shifted

An architecture to implement this multiplication is shown in

cyclically, storesh,;),z = 0,1, ..
generaten terms ofq;b;'s. Finally, anothern — 1 XOR gates, formed as a binary tree, take
terms ofa;b,’s as inputs and produce the coordinatef C. In one clock cycle, the register is
shifted once and ong is generated at the output port. A multiplication is completea:iolock

.,2m. A total of m AND gates andn XOR gates are used to

cycles.

The size complexity of the multiplier in Fig. 5i8 AND gates an@m — 1 XOR gates, along
with a (2m + 1)-bit shift register. The delay in the critical pathds + (1 + [log, m])Tx. A
comparison of the proposed multiplier with some other similar bit-serial normal basis multipliers
is shown in Table 4. As it can be seen except for the multiplier of Geiselmann and Gollmann [9],
the proposed multiplier has an overall space and time complexities that is better than those of
any other multiplier listed in the table. The multiplier of [9] requires aldgutewer XOR gates,
however, the proposed multiplier has a highly regular structure which makes it attractive for
hardware implementation for very large fields.

| Multipliers | #AND | #XOR | #flipflops| # clk cycles| basis |
Massey-Omura [16] || 2m —1 | 2m — 2 2m m normal
Feng [5] 2m—1{3m—2 | 3m —2 m normal
Agnewet al [2] m 2m —1 Im m normal
Geiselmann-Gollmann[9] m % 2m m normal
presented here m 2m —1 | 2m +1 m normal®

SIn fact, it is a permutation of the normal basis.

Table 4: Comparison of bit-serial multipliers when there is a type Il ONB.




b Cmys
b @) bo
bo —® bs
bm_3 U_) bm—2
bm—2 ul-) bm—l

l;m_l ‘?@al az as am—2 |Gm—1 am b

| ®: Binary Tree

l cj, g=mm—1,...,1

Figure 5: New bit-serial multiplier using basis; ).

Serial-in parallel-out multiplier ~ Similar to the RB multiplier architecture discussed in Sec-
tion 4, a high speed architecture for the modified RB multiplier is also available, which is shown
in Fig. 6. The coefficients,, by, . .. , b, of the elemenB, w.r.t. the basig~;), are initially stored

in a register of lengtBm + 1 which can be shifted cyclically. The coefficiemts, a,,_1, ... , a1

of the element4, w.r.t the basig~), are fed into the system from the left in a bit-serial fash-
ion. There aren accumulation units and they are the same as those in Fig. 2. During the first
clock cycle, the daté, + 61,0, + ba,...,b,—1 + b,, are respectively multiplied with,, at
the m bit-multipliers. Note that, = 0. Them bit-products, which are,,(by + b1), am(b1 +

b2), .y am(bm—2+bm-1), @m(bnm_1+by), are then stored in the accumulation units. After the
second clock cyclen values ofa,, (bg 4 b1) + @m—1(b1 + b2), am(by + b2) + @m—1(bo + bs), ...,

A (bm—2 F bm—1) + @m-1(bm—3+ b)), am(bm—1+bm) + @m—1(bm—2 + by, ) are respectively stored

in m flipflops. Afterm clock cycles, the contents of the flipflops at the top are the coordinates

of the producC.

Compared to the multiplier shown in Fig. 5, the high-speed version multiplier has a higher
complexity. Besidesn AND gates2m XOR gates, and a cyclic shift register of length + 1,
the high-speed version multiplier also need8flipflops. The critical path has a delayBf + 27,
which is however much shorter than that of the multiplier shown in Fig. 5.

20



aj,as...

Figure 6: High speed multiplier architecture for a type 11 ONB.

Hybrid multiplier architecture  The bit-serial multiplier shown in Fig. 5 can be easily made
parallel or partial parallel. Fig. 7 shows an architecture of a hybrid multiplier using the basis
{(~i), which yields two out ofmn coordinates of the product per clock cycle, and completes a
multiplication operation in[%w clock cycles. Note that bit-serial and full parallel multipliers
can be viewed as special cases of the hybrid architecture.

It can be seen from Fig. 7 that modul¢ is all combinatorial circuits and similar to module
M in Fig. 3. In Fig. 7, two copies of modul®/’ are used and each of them generates one prod-
uct coordinate at a time. The cyclic shift module enables a cyclic shithoft 1 coefficients
bs(0), bs(1), - - - > bs(2m), @Nd costs no gates and registers. Whers even, them + 1-bit reg-
ister is initially loaded withbg, b2, . . . , b0 1,03, ... , 01,061,063, ... .01, 000,02, ..., ba.
Whenm is an odd number, the order of tie: + 1 bits initially loaded into the register is
bo, b2y oo s b 1,002, .. 01,0103, ... by b1, b3, . .., by The permutation module takes
the2m + 1 bits from the shift register and during the first clock cycle its output is in the order of
bs(0), Ds(1)s - - - > bs(2m)- Values ofs(z) can be calculated using (12) and always lie betweeand
m, inclusive, for: = 0,1,... ,2m. Note that thel/’ module, which generates, takes2m out
of 2m + 1 bits fromb, ), . . . , bs2m) and leaves the bit,; out.

Obviously, the multiplier's space complexity depends on how mafiynodules are used
in the partially parallel architecture. Eadid’ module consists o2m — 1 XOR gates andn
AND gates, which is shown in the right-hand side in Fig. 7. The total complexity of the hybrid
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| Multipliers | #AND | #XOR | #clkcyclesx cycle period |
Massey-Omura [12] (2m — 1)t | (2m — 2)t X [T + [logy(2m — 1)|Tx]
X [Ta + (1 4 [logy m])Tx]

Proposed here mt (2m — 1)t

Table 5: Comparison of hybrid multipliers when there is a type 1l ONE(t < m + 1).

multiplier with two M’ modules istm — 2 XOR gates an@m AND gates. Comparison between

this work and the bit-parallel Massey-Omura multiplier proposed by Wang et al. [20] is made and
shown in Table 5. It can be seen that with the same number of XOR gates used and approximately
same time delay, the multiplier presented here uses about only half the number of AND gates used
in the Massey-Omura multiplier.

b, i—m
—2m4+1 bo(i—1)) bs(i—2) s(i—m)
Permu- cw_:llc a RN N I O S -+ -,
tation shift om : ........... |

HEEE i - ' !

| |

|

shift register contents; | M’ [ M A D G |
bo,b1,... sbm b, bm—1, ... ,b1 ¢j Cj+1 | |
. i v g . :
: .

| |

{a: 27

® : Binary Tree '
M

Figure 7: Bit-parallel multiplier using basis; ).

6 CONCLUDING REMARKS

In this paper, we have considered multiplicatiorifiy. using a redundant representation. The
basic idea behind the multiplication is to embed the figld into the smallest cyclotomic field
IE‘Z(”) and do the arithmetic iEz(”). We have presented the smalledbr various values of» that
are of practical interest for elliptic curve cryptosystem.

We have also shown that the redundant representation can be used to obtain efficient bit-serial,
bit-parallel, and hybrid multiplier structures. Additionally. we have discussed how to reduce the
time and space complexities of these multipliers using properties of the redundant representation.
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The conversions from the redundant representation to the corresponding normal basis and vice
versa have been given. We have shown that these conversions can be implemented in hardware
without any logic gates.

When there is a type | ONB iy, it follows from our discussion in Section 4 that the
minimal representation of a constant field element always has a Hamming weight not greater
than%. Consequently, the proposed constant multiplier has very low complexity. When there
exists a type Il ONB, very simple and highly regular multiplier architecture can be obtained using
the redundant representation (refer to Section 5). It has been shown that such multipliers have
lower or equivalent complexity compared to most of the previously proposed similar multipliers.
Hybrid or partial parallel architectures have also been presented for this type of ONBs.

One question arising from the work presented here remains: Can this modified redundant
representation multiplier described in Section 5 be generalized to anyFfie®l
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A A ProoftoLemmal

Proof: Assume that the normal basis is introduced3®of type (m, k). Let o be the primitive
kth root of unity inlF;;, ., . Then from (4) the normal element can be given as

kE—1

y=0+B% 48+ 4

Since w.r.t. the basif we have

3

m—

-1 k k
A=) >"a 6% andB = > o), B,

] =1 j:O 1=1

I\
=]
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whereay, | = alp, = = d, andd(}, =08, = =) forj=0,1,... ,m -1,
then from (5) and (6), the coefficients afand B w.r.t. [; are
Uoj = Ugjo = *** = Uojuk—1 andsz = sza = e = szak—l. (14)

Then, extend the coefficients;) andc,iqiy, 1 < @ < k — 1, of the producC using (3), it
follows

C(2iy = @ob(2s) + a1bi_yy + azbi_gy + -+ + @n_1bi_ni1) (15)

C(2iai) = @ob(2iaiy + a1bd(2iai-1) + @2biai—2) + +++ + @n_1biai—nt1) (16)
In the following we will show that

C(2i) = C(2iai) for: = 1,2, ce ,k — 1. (17)

Comparing the above two expressions (15) and (16), we find that the first terms of the two
expressions have the same valyé ;i) = aob(ziaiy, SINCEb(5) = baiqiy from (14). For the
second term,; b(;;_;y on the righthand side of (15), we can find a term in (16):b(z2iai—ai) =
a(aiyD(ai(2i—1)), Which has the same value. For the third tergh,;_,) on the righthand side of
(15), there is also a term in (16)2q)b(2iai—24i) = @(2qi)b(ai(2i—2)),» With the same value. Then,
for the last termu,,_1b;i_,41) on the righthand side of (15), the corresponding term in (16) is
A((n=1)a’)D(2iai—(n—1)ai) = C((n-1)a")D(ai(2i-(n—1)))- It CAN be seen that (17) holds by noting that
then — 1 numbersi(a?=1), (2a771),... ,((n — 1)a?~!) are a permutation of,2,... ,n — 1 for
j=12...,k—1.

Replacing:; in (7) by using (17), and then replaciﬁ) using (5), it 1‘oIIowsc§:,?Jrl = cﬁ)_l_z =
c= cﬁlk forj =0,1,... ,m — 1, which ends the proof. O

26



