
Finite Field Multiplier Using Redundant
Representation�

y Huapeng Wu,z M. Anwar Hasan,x Ian F. Blake,{Shuhong Gao

August 23, 2001

Abstract

This article presents simple and highly regular architectures for finite field multipliers
using a redundant representation. The basic idea is to embed a finite field into a cyclotomic
ring which has a basis with the elegant multiplicative structure of a cyclic group. One im-
portant feature of our architectures is that they provide area-time trade-offs which enable us
to implement the multipliers in a partial-parallel/hybrid fashion. This hybrid architecture has
great significance in its VLSI implementation in very large fields. The squaring operation
using the redundant representation is simply a permutation of the coordinates. It is shown
that when there is an optimal normal basis, the proposed bit-serial and hybrid multiplier ar-
chitectures have very low space complexity. Constant multiplication is also considered and
is shown to have advantage in using the redundant representation.

Index terms:

Finite field arithmetic, cyclotomic ring, redundant set, normal basis, multiplier, squaring.
�Part of this manuscript was presented at theWorkshop on Cryptographic Hardware and Embedded Systems’99,

August, 1999, Worcester, MA [23].
yH. Wu is with the Centre for Applied Cryptographic Research, University of Waterloo, Waterloo, Canada. E-

mail:h3wu@cacr.math.uwaterloo.ca.
zM. A. Hasan is with the Department of Electrical and Computer Engineering, University of Waterloo. E-mail:

ahasan@ece.uwaterloo.ca.
xI. F. Blake is with the Department of Electrical and Computer Engineering, University of Toronto, Toronto,

Canada. E-mail: ifblake@comm.utoronto.ca.
{S. Gao is with the Department of Mathematical Sciences, Clemson University. E-mail:

sgao@math.clemson.edu. Gao was supported in part by NSF grant #DMS9970637, NSA grant #MDA904-
00-1-0048 and ONR grant #N00014-00-1-0565.

1

1 INTRODUCTION

Efficient computations in finite fields and their architectures are important in many applications

including coding theory, computer algebra systems and public-key cryptosystems (e.g., ellip-

tic curve cryptosystems). Although all finite fields of the same cardinality are isomorphic, their

arithmetic efficiency depends greatly on the choice of bases for field element representations. The

most commonly used bases are polynomial bases (PB) and normal bases (NB), sometimes com-

bined with dual bases (DB)[15]. A major advantage of normal bases in the fields of characteristic

two is that the squaring operation inNB is simply a cyclic shift of the coordinates of elements, so

these are useful for computing large exponentiations and multiplicative inverses [13, 11, 1]. Also,

the multiplication table of a normal basis is symmetric, so suitable for hardware implementation.

This is the basis for the multiplier of Massey-Omura [16] and that of Onyszchuk et al. [18].

Recently, Gao et al. [7, 8] have proposed a novel method to perform fast multiplication with

a normal basis generated by Gauß periods. The main idea is to embed a field in a larger ring,

perform multiplication (using the Fast Fourier Transform) there and then convert the result back

to the field. The ring they use is referred to as acyclotomic ringwhich has an extremely simple

basis whose elements form a cyclic group. One purpose of this paper is to make this idea more

explicit and present architectures that are suitable for hardware implementation.

We are mainly interested in finite fields of characteristic two, i.e.F2m , which are one of the

two types of fields used most commonly in practice (the other one isFp wherep is a prime). We

show how to find thesmallestcyclotomic ring in whichF2m can be embedded. Since “embed-

ding” is not unique, each element in the ring can be represented in more than one way,i.e., the

representation contains certain amount of redundancy. In this article, we also discuss how this

redundant representation of a field element can be efficiently converted to a normal basis and vice

versa.

Another purpose of our paper is to present architectures for arithmetic inF2m . Both bit-serial

and hybrid multipliers using the redundant representation are proposed and their complexities are

discussed. A modified form of the multipliers using the redundant representation with reduced

complexity are also presented. The bit-serial and hybrid architectures of this modified multiplier

have lower complexity compared to the previously reported normal basis multipliers. A constant

2

multiplier using the redundant representation is also considered.

We should mention other related work here. Itoh and Tsujii [14] constructed a multiplier for a

class of fields defined by irreducible all-one-polynomials (AOPs) and equally-spaced-polynomials

(ESPs). Wolf [22] found a simple multiplication architecture for irreducible AOP’s. Drolet [4]

uses maximum subfields in cyclotomic rings. Silverman [19] considered a special case when

there is a type I optimal normal basis. This case is also considered in [7, 8]. A more recent article

on redundant representation is [10].

The organization of this paper is as follows: Section 2 shows how redundant representation of

a field element can be derived from cyclotomic rings. In Section 3, multiplication operation using

the redundant representation is discussed and then basis conversions are given. Architectures of

bit-serial, bit-parallel, hybrid, and constant multipliers are presented in Section 4. For the field

which has a type II ONB, we show in Section 5 that more efficient architectures can be developed

using a basis derived from the redundant representation. This multiplier architecture is highly

regular and also has low complexity. Finally, a few concluding remarks are given in Section 6.

2 CYCLOTOMIC FIELDS AND REDUNDANT REPRESEN-
TATION

Let K be any field andn a positive integer. Then-th cyclotomic field, denoted byK(n), overK

is defined to be the splitting field ofxn� 1 overK. In particular,n divides#K(e)� 1 for somee

and is thus coprime to the characteristic. Let� be a primitiven-th root of unity in some extension

of K. ThenK(n) is generated by� overK and elements ofK(n) can be written in the form

A = a0 + a1� + a2�
2
+ � � �+ an�1�

n�1; ai 2 K: (1)

Here the representation is not unique, that is, eachn-tuple(a0; a1; : : : ; an�1), ai 2 K, gives an

element ofK(n) but different tuples may give the same element. For example, since1 + � +

�2 + � � � + �n�1
= 0, the twon-tuples(0; 0; : : : ; 0) and (1; 1; : : : ; 1) both represent0, while

(�1; 0; : : : ; 0) and(0; 1; : : : ; 1) both represent�1. Because of such redundant representations,

and by a slight abuse of terminology, we denoteh1; �; �2; : : : ; �n�1i1 as a redundant basis (RB)

for any subfield ofK(n) containingK. Note that aRB is unique for a givenK(n).
1An orderedset of field elements is denoted byh� � � i.

3

On the other hand, we may consider the ringK[x]=(xn � 1), called then-th cyclotomic ring,

denoted byRn(K). If we let � be the congruence class ofx, then�n � 1 and elements ofRn

can also be represented in the form (1). But now the representation isuniqueand so the elements

1; �; �2; : : : ; �n�1 form a true basisfor Rn. Note that the elements1; �; �2; : : : ; �n�1 form a

cyclic group of ordern and

� � �i
=

�
�i+1 i 6= n� 1;

1 i = n� 1:
(2)

This simple multiplication table allows us to design efficient architectures of low complexity as

shown in Section 3.

Suppose thatFqm is embedded inK(n), whereq is a prime power. Then arithmetic inFqm

using the redundant representation can be performed following these three steps:

1. Represent elements inFqm in the form (1);

2. View them in the ringRn and do arithmetic there;

3. Finally convert the result back toFqm .

We characterize here all the fields that can be embedded inK(n) whenK = Fq .

Theorem 1 [15] Let q be a prime power andn be a positive integer withgcd(q; n) = 1. Then

Fqm is contained inF(n)q iff m divides the multiplicative order ofq modulon.

Proof: Let d be the multiplicative order ofq modulon. By Theorem 2.47 (page 65) of [15],

F
(n)
q has degreed so it is isomorphic toFqd . The theorem follows, asFqm is contained inFqd if

and only ifm j d. �

Remark 1 If there is a type I optimal normal basis inF2m thenF2m is contained inK(m+1), so

there is aRBof sizem+ 1 for F2m .

4

Here a basis forF2m is f�; �2; : : : ; �mg and the correspondence between field elements and ring

elements is

a1� + a2�
2
+ � � �+ am�

m 7! 0 � 1 + a1� + a2�
2
+ � � �+ am�

m

(a1 + a0)� + (a2 + a0)�
2
+ � � �+ (am + a0)�

m 7 a0 � 1 + a1� + a2�
2
+ � � �+ am�

m:

This is the case considered by Silverman, Gao, et al. [19, 7, 8].

Remark 2 If there is a type II optimal normal basis inF2m thenF2m is contained inK(2m+1), so

there is aRBof size2m + 1 for F2m .

This case will be considered in more detail in Section 5. In concluding this section, in Table 1 we

give the smallest values ofn for 151 6 m 6 250 such thatF2m is contained inK(n).

3 MULTIPLICATION USING REDUNDANT REPRESEN-
TATION

From now on we only consider fields of characteristic two.

3.1 Multiplication Operation

Consider the basis of our redundant representation forF2m overF2 :

I1 = h1; �; �
2; : : : ; �n�1i:

Let any two field elementsA;B 2 F2m be represented with respect to (w.r.t.)I1, i.e., A =Pn�1
i=0 ai�

i andB =
Pn�1

i=0 bi�
i, whereai; bi 2 F2 are the coordinates ofA w.r.t. I1. Note that

n > m+ 1 and the lists of coefficientsfaig andfbig are not unique.

Since�n
= 1, the product of field elementsA andB can be given by

AB =

n�1X
i=0

ai(�
i �B) =

n�1X
i=0

ai(

n�1X
j=0

bj�
i+j

) =

n�1X
i=0

ai(

n�1X
j=0

b(j�i)�
j
) =

n�1X
j=0

� n�1X
i=0

aib(j�i)

�
�j;

where(j � 1) in the subscript denotes thatj � 1 is to be reduced modulon.

5

m n n=m m n n=m m n n=m m n n=m

151 907 6.0 176 1409 8.0 201 1609 8.0 226 227 1.0
152 1217 8.0 177 709 4.0 202 809 4.0 227 5449 24.0
153 613 4.0 178 179 1.0 203 841 4.1 228 1603 7.0
154 617 4.0 179 359 2.0 204 409 2.0 229 2749 12.0
155 311 2.0 180 181 1.0 205 821 4.0 230 461 2.0
156 169 1.1 181 1087 6.0 206 619 3.0 231 463 2.0
157 1571 10.0 182 547 3.0 207 829 4.0 232 929 4.0
158 317 2.0 183 367 2.0 208 2081 10.0 233 467 2.0
159 749 4.7 184 799 4.3 209 419 2.0 234 1007 4.3
160 2123 13.3 185 1481 8.0 210 211 1.0 235 941 4.0
161 967 6.0 186 373 2.0 211 2111 10.0 236 709 3.0
162 163 1.0 187 1123 6.0 212 535 2.5 237 1423 6.0
163 653 4.0 188 941 5.0 213 853 4.0 238 717 3.0
164 415 2.5 189 379 2.0 214 643 3.0 239 479 2.0
165 661 4.0 190 573 3.0 215 1291 6.0 240 1067 4.4
166 499 3.0 191 383 2.0 216 1297 6.0 241 1447 6.0
167 2339 14.0 192 769 4.0 217 1303 6.0 242 1331 5.5
168 833 5.0 193 773 4.0 218 1091 5.0 243 487 2.0
169 677 4.0 194 389 2.0 219 877 4.0 244 733 3.0
170 1021 6.0 195 869 4.5 220 575 2.6 245 491 2.0
171 361 2.1 196 197 1.0 221 443 2.0 246 581 2.4
172 173 1.0 197 3547 18.0 222 1043 4.7 247 1483 6.0
173 347 2.0 198 437 2.2 223 2677 12.0 248 1489 6.0
174 349 2.0 199 797 4.0 224 449 2.0 249 1169 4.7
175 701 4.0 200 401 2.0 225 1919 8.5 250 625 2.5

Table 1: Smallest cyclotomic fieldF (n)
2 that containsF2m as a subfield.

If we defineAB = C
4
=

n�1X
j=0

cj�
j, we have

cj =

n�1X
i=0

aib(j�i); j = 0; 1; : : : ; n� 1: (3)

Then a multiplication operation using the redundant representation is decided by expression (3).

On the other hand, the squaring of an elementA using basisI1 can simply be performed as

follows:

A2
= a0 + a1�

2
+ � � � + an�1�

2(n�1):

6

Since�n
= 1, we have�2j = �2j�n if 2j > n � 1. Note thatn is odd because of the minimum

of the redundant basis, thusA2 can be written as

A2
= a0 + a1�

2
+ � � �+ an�1

2
�n�1

+ an+1
2
� + an+3

2
�3 + � � �+ an�1�

n�2

= a0 + an+1
2
� + a1�

2
+ an+1

2
+1�

3
+ � � �+ an+1

2
+n�3

2
�n�2

+ an�1
2
�n�1:

Clearly, a squaring operation using redundant representation is equivalent to a permutation of the

element coordinates.

3.2 Gauß Period, Normal Basis and Redundant Basis

Some redundant bases can be easily introduced by the normal bases generated with the Gauß

period, and by doing so one can find the relation/conversion between the RB and the normal

basis. This is discussed below.

The Gauß period (GP), which was discovered by Gauß, is defined as follows: Letm;k > 1

be integers such thatn = mk + 1 is a prime, and letq be a prime power withgcd(q; n) = 1.

LetK be the unique subgroup of orderk of the multiplicative group ofZn =Z=nZ, then for any

primitiventh root� of unity in Fqmk , the element

 =

X
�2K

�� (4)

is called aGauß period of type(m;k) overFq , where� is akth root of unity inF �

km+1 . It can be

checked that
 2 Fqm . For example, whenk = 2, � is a square root of unity inF �

2m+1 =Z
�

2m+1.

So,� = �1, and
 = � + ��1. This is the case which will be discussed in Section 5.

GPs have been used to construct normal bases with low complexity [17, 3]. A GP of type

(m;k) overF2 naturally introduces a normal basisI2 = h
;
2; : : : ;
2
m�1

i in F2m overF2 if and

only if gcd(e;m) = 1, wheree is the order of2 modulon. Furthermore, such a normal basis has

complexity at mostmk0 � 1 with k0 = k if k even andk + 1 otherwise [3, 21, 6]. Clearly, GPs

of type(m; 1) and(m; 2) generate optimal normal bases (ONBs) with complexity2m� 1, which

are usually called type-I and type-IIONBs, respectively [17].

For a normal basis generated withGPof type(m;k), from (4) we have

I2 = h
;

2; : : : ;
2

m�1

i = h

k�1X
i=0

��i;

k�1X
i=0

�2�
i

; : : : ;

k�1X
i=0

�2
m�1�ii;

7

where� is a primitivekth root of unity inF �

km+1. Note that each element inI2 is a sum ofk

elements. Let the set of thesekm elements be denoted asS1 = f�2
i�j ; i = 0; 1; : : : ;m� 1; j =

0; 1; : : : ; k � 1g. It can be seen that elements inS1 can serve as a “representation basis” forF2m .

Consider another set ofkm elements:S2 = f�; �2; : : : ; �kmg. For any element�2
i�j 2 S1, we

have�2
i�j

= �2
i�jmod(mk+1) 2 S2, and thus,S1 � S2. LetG = F

�

km+1 thenG = h2; �i. For any

integerl 2 f1; 2; : : : ; kmg, there exist integersi 2 f0; 1; : : : ;m� 1g andj 2 f0; 1; : : : ; k� 1g,

such thatl = 2
i�j

mod (km+ 1). Therefore,S2 � S1) S2 = S1. Obviously, besides element

“1”, the basis of our redundant representation contains exactly the samekm elements asS1 or

S2.

3.3 Conversions of Bases

Among the three steps of redundant representation arithmetic, the first and the final steps deal

with the change of representations. In this subsection we discuss the conversions between the

normal basis and the redundant basis derived from the Gauß period. We show that such conver-

sions can be done in hardware with almost no cost.

Before giving the conversions between normal basisI2 and RB I1, we first introduce two

intermediate “bases”. Following the discussion in the previous subsection, we separate each sum

of k terms ofI2 and put thekm elements in an ordered set and let it be denoted byI3:

I3 = h�; �
�; : : : ; ��k�1

; �2; �2�; : : : ; �2�
k�1

; : : : ; �2
m�1

; �2
m�1�; : : : ; �2

m�1�k�1

i:

Clearly,I3 can serve as a “basis” ofF2m . The second intermediate “basis” is given by

I4 = h�; �
2; �3; : : : ; �mki:

From the discussion in the previous subsection, we know thatI4 has exactly the samemk ele-

ments asI3 but with a different order. Moreover, the permutation can be carried out as follows.

Let A 2 F2m andA = (a
(j)
1 ; a

(j)
2 ; : : : ; a

(j)

mk) w.r.t. Ij for j = 3; 4. For anyi; 1 � i � mk, write

i = lk + d, where1 � d � k and0 � l � m� 1. Then

a
(3)
i = a

(3)

lk+d = a
(4)

(2l�d�1)
; (5)

where(2l�d�1
) denotes2l�d�1 to be reduced modulon. In this way, we create a one-to-one

correspondence between theI3 andI4 based coordinates.

8

Obviously, conversions between the normal basis and theRB can be divided into three steps:

(a) Conversions between the normal basis and the intermediate basisI3;

(b) Conversions between two intermediate basesI3 andI4;

(c) Conversions betweenI4 and theRB.

Step (b) has been solved in (5). It can be implemented as a rewiring of lines and has almost no

cost in hardware. Step (c) is even simpler. Note that theRB can be obtained by including the

element “1” before the first element ofI4. If we letA = (a0; a1; : : : ; amk) w.r.t. the redundant

representation, then

ai = a
(4)
i for i = 1; 2; : : : ;mk anda0 = 0: (6)

Conversely, ifai’s are given, then

a
(4)
i =

�
ai if a0 = 0;

1 � ai otherwise:
(7)

In Step (a), the conversion from the normal basisI2 to the intermediate basisI3 can be given

as follows. IfA = (a00; a
0
1; : : : ; a

0
m�1) w.r.t. the normal basisI2, then w.r.tI3 one has

(a00; a
0

1; : : : ; a
0

m�1) 7! (a00; : : : ; a
0

0| {z }
k

; a01; : : : ; a
0

1| {z }
k

; : : : ; a0m�1; : : : ; a
0

m�1| {z }
k

): (8)

The reverse conversion, however, is much more complicated. Note that it is not possible to

convert every redundant representation, since some of them may not represent an element in the

field F2m . Two tasks have to be performed in this step: One is to identify the representation of

a field element w.r.t.I3, and the second is to convert the identified field element’s representation

back to the normal basis.

For the interest of this paper which deals with finite field multiplication, it is sufficient to

consider identifying the product of two field elements inI3 and then convert it back to the normal

basis. Suppose that the coordinatesc
(3)
i ; 1 � i � n� 1 of the productC w.r.t. I3 are given. Then,

we have the following lemma.

9

Lemma 1 Assume thatA;B 2 F2m are respectively given inI3 by

A =

m�1X
j=0

kX
i=1

a
(3)
jk+i�

2j�i andB =

m�1X
j=0

kX
i=1

b
(3)
jk+i�

2j�i;

where

a
(3)
jk+1 = a

(3)
jk+2 = � � � = a

(3)
jk+k andb(3)jk+1 = b

(3)
jk+2 = � � � = b

(3)
jk+k (9)

for j = 0; 1; : : : ;m�1. Then the productC = AB in I3 obtained using (3) also has the property:

c
(3)
jk+1 = c

(3)
jk+2 = � � � = c

(3)
jk+k for j = 0; 1; : : : ;m� 1.

A proof of this lemma is given in Appendix A.

The lemma allows us to identify theI3 basis representation of the product of two field ele-

ments also represented byI3. Once the product is obtained in thisI3 basis, it can be converted to

the corresponding normal basis as

(c00; : : : ; c
0

0| {z }
k

; c01; : : : ; c
0

1| {z }
k

; : : : ; c0m�1; : : : ; c
0

m�1| {z }
k

) 7! (c00; c
0

1; : : : ; c
0

m�1): (10)

Thus, Step (a) of basis conversion can be realized with (8) and (10).

3.4 Further Results on Redundant Basis

Lemma 2 LetA 2 F2m and theI4 basis representation ofA be obtained from its normal basis

representation by using (8) and (5), and let it be(a(4)1 ; a
(4)
2 ; : : : ; a

(4)
n�1). If k � 2 is an even

integer, then the lastmk
2

coordinatesa(4)n+1
2

; a
(4)
n+3
2

; : : : ; a
(4)
n�1 are a mirror reflection of the firstmk

2

coordinates.

Proof: Let � be the primitivekth root of unity. Then
 =

k�1X
i=0

��i generates a normal basis

I2 = h
;

2; : : : ;
2

m�1

i in F2m . Sincek � 2 is an even number and�
k
2 = �1, thus

2
i

= �2
i

+ �2
i�
+ �2

i�2
+ � � �+ �2

i�k�1

= �2
i

+ �2
i�
+ � � �+ �2

i�
k
2
�1

+ �2
i�

k
2
+ �2

i�
k
2
+1

+ � � � + �2
i�k�1

= (�2
i

+ �2
i�
+ � � �+ �2

i�
k
2
�1

) + (��2
i

+ ��2
i�
+ � � �+ ��2

i�
k
2
�1

): (11)

10

Thus the two intermediate bases are respectively given byI3 = h�; : : : ; �
�
k
2
�1

; ��1; : : : ; ���
k
2
�1

;

: : : ; �2
m�1

; : : : ; �2
m�1�

k
2
�1

; ��2
m�1

; : : : ; ��2
m�1�

k
2
�1

i andI4 = h�; �2; : : : ; �mki. It can be seen

from (11) that thek coordinates ofAw.r.t I4: a
(4)

(2i)
; a

(4)

(2i�)
; : : : ; a

(4)

(2i�
k
2
�1)

; a
(4)

(�2i)
; a

(4)

(�2i�)
; : : : ; a

(4)

(�2i�
k
2
�1)

have the same values, where(2i�j
) denotes2i�j to be reduced modulon. If a line is drawn at

the middle of theI4 basis element sequence between�
km
2 and�

km
2
+1, then for anyI4 coordinate

a
(4)

(2i�j)
its mirror reflection coordinatea(4)

n�(2i�j)
= a

(4)

(�2i�j)
must have the same value. 2

For example, letk = 4 andm = 7. Let � denote a primitive29th root of unity inF228 . Since

12 is a fourth root of unity inF �
29 , then
 = �+ �12+ ��1+ ��12 is a Gauß period of type(7; 4)

overF2 and
 generates a normal basis inF27 : I2 = h
;

2;
4; : : : ;
64i. Subsequently,I3 andI4

are respectively given byI3 = h�; �12; ��1; ��12; �2; �24; ��2; ��24; : : : ; �64; �768; ��64; ��768i

andI4 = h�; �2; �3; : : : ; �28i. Finally, the redundant representation basis can be obtained by

including the element “1” before the element� in I4. Let the normal basis representation of a

field elementA be(a00; a
0
1; a

0
2; a

0
3; a

0
4; a

0
5; a

0
6). We can obtain itsI4 representation as follows:

A = (a00; a
0

1; a
0

5; a
0

2; a
0

1; a
0

6; a
0

5; a
0

3; a
0

3; a
0

2; a
0

4; a
0

0; a
0

4; a
0

6;| {z }
8 consecutive coordinates

a06; a
0

4; a
0

0; a
0

4; a
0

2; a
0

3; a
0

3; a
0

5; a
0

6; a
0

1; a
0

2; a
0

5; a
0

1; a
0

0):

It can be seen that in theI4 basis representation the first14 coordinates are a mirror reflection

of the last14 coordinates. The corresponding redundant basis representation ofA is obtained

simply by including a “0” before the first coordinate in theI4 representation.

Also note that only eight consecutive coordinates(a4; a5; : : : ; a11) of the redundant repre-

sentation, which include all the seven coordinates w.r.t. the normal basis, are necessary for

determining the elementA. This fact can be exploited when a multiplication operation using

redundant representations is implemented. If we denoteh as the minimal number ofconsecutive

coordinates of the redundant representation needed to determine the element, then Table 2 shows

some values ofh for the fields given in Table 1 which can be generated with the Gauß period of

type(m; 4).

Lemma 3 For A;B;C 2 F2m , letC = AB. Assume that(a0; a1; : : : ; an�1), (b0; b1; : : : ; bn�1),

and(c0; c1; : : : ; cn�1) are the representations ofA;B andC, respectively, w.r.t.I1. If a0 = b0,

thenk even,c0 = a0 = b0.

11

m n h h=n m n h h=n m n h h=n

153 613 281 0.46 177 709 326 0.46 207 829 375 0.45
163 653 299 0.46 193 773 357 0.46 213 853 393 0.46
169 677 313 0.46 199 797 368 0.46 219 877 396 0.45
175 701 323 0.46 205 821 374 0.46 235 941 428 0.45

Table 2: Ratios ofh to n for some useful values ofm with k=4.

Proof: It follows from Lemma 2,b1 = bn�1; b2 = bn�2; : : : ; bn�1
2

= bn+1
2

. Then from (3) we

havec0 =

n�1X
i=0

aibn�i =

n�1X
i=0

aibi = a0b0 +

n�1X
i=1

aibi. Note that(a1; a2; : : : ; an�1) have exactlyk

copies of the normal basis coordinates, and the same property also applies to(b1; b2; : : : ; bn�1)

(refer to (9)). Then
n�1X
i=1

aibi =

mkX
i=1

aibi can be written as a sum ofm partial sums, where each

partial sum is a sum ofk same values which is clearly zero sincek is even. Then
n�1X
i=1

aibi = 0

andc0 = a0b0. 2

This property will be used later to obtain efficient architecture for finite field multiplier.

4 ARCHITECTURES FOR RB MULTIPLICATION

In this section we present architectures for hardware implementation of the multiplication:A �

B = C based on (3), whereA;B andC are represented with respect to the redundant basisI1.

Conversion betweenI1 and the normal basisI2, as discussed in Subsection 3.3, can be performed

without any logic gates.

4.1 Bit-Serial Multipliers

Parallel-in serial-out version An architecture for a parallel-in-serial-out (PISO) multiplier is

shown in Fig. 1. Then-bit register, which is initially loaded withB, is cyclically shifted with

a clock. The contents of this register are bit-wise multiplied with the coordinates ofA and the

resultantn bits are added usingn � 1 modulo two adders (arranged in a binary tree form for

minimum delay). For a straightforward implementation, this PISO multiplier requiresn flip-

12

flops,2 n AND gates andn� 1 XOR gates, and the multiplication is completed inn clock cycles.

The PISO multiplier architecture shown in Fig. 1 can be optimized and its time and space

complexities can be greatly reduced if certain properties of the redundant representation basis are

taken into consideration. Since the redundant basis coordinatesfaig
n�1
i=0 containk copies of the

normal basis coordinatesa0j for all j; (j = 0; 1; : : : ;m � 1), let ai1 = ai2 = � � � = aik. If these

k coordinates are bit-wise multiplied withbl1; bl2; : : : ; blk, respectively, then part of the PISO

multiplier (refer to Fig. 1) computesai1bl1+ai2bl2+ � � �+aikblk, which requiresk AND andk�1

XOR gates. Sinceai1 = ai2 = � � � = aik , one can equivalently computeai1(bl1 + bl2 + � � �+ blk),

which requires only1 AND andk � 1 XOR gates. This reduces the total number of AND gates3

in the PISO multiplier fromn tom+ 1, while the number of XOR gates remains the same.

��
����
����
��

����
����
��

�� �� ����
��

����
��

��

: Binary Tree

bn�4bn�3bn�1 bn�2 b0b1

cj ; j = n� 1; n� 2; : : : ; 1; 0

a3a2a1a0 an�1an�2

Figure 1: Bit serial multiplier using the redundant representation.

It is also possible to reduce the number of clock cycles needed by the PISO multiplier. To-

wards this end, if we can change the order of the input bits to the PISO multiplier such that in

the first� (m � � � n) clock cycles the multiplier generates those� consecutive coordinates of

C that have at least one copy ofcj , for all j; (j = 0; 1; : : : ;m � 1), then the computation time

would reduce fromn(= km + 1) to � clock cycles. The value of� can be considerably lower

thann. Table 2 lists minimum values of� (denoted ash) for k = 4 and150 � m � 250 that

are of interest of elliptic curve cryptosystems. It can be seen from the table that fork = 4, the

computation time is reduced by more than50%. In fact for any even value ofk, the computation
2Note that inputA can directly come from a register that is not necessarily part of the multiplier. As a result, in

determining the circuit complexity of the multiplier, no register is considered forA.
3One more AND gate may be saved if one can ensure thatA always hasa0 = 0.

13

time is always less thank
2
m. Let the� consecutive coordinates that the PISO multiplier needs to

generate becl0; cl0+1; : : : ; cl0+��1. Then if we change the connection to the AND gates in Fig. 1

such that(a0; a1; : : : ; an�1) is replaced by(al0+�; al0+�+1; : : : ; al0+��1), then the PISO multiplier

will generate the required� coordinates ofC in the first� clock cycles.

Serial-in parallel-out version A serial-in parallel-out (SIPO) multiplier which is capable of

running at a very high clock rate is shown in Fig. 2, where the elementB is stored in a cyclic

shift register and the elementA is shifted in a bit-serial fashion. Each of then accumulator units

consists of a mod2 adder and a flip-flop. These flip-flops are initialized to zero and contain the

productC aftern clock cycles.

b0 b1 bn�2 bn�1

cn�2 cn�1

an�1; : : : ; a1; a0

c0 c1

Figure 2: High speed architecture for bit-serial redundant representation multiplier.

Compared to the parallel-in serial-out multiplier of Fig. 1, the SIPO multiplier costsn extra

flipflops and one moreXOR gate. However, it can support a very high clock rate since the

critical path consists of one XOR and one AND gate only. Another clear advantage of this SIPO

architecture over the PISO one is that the former can be efficiently implemented in software

using the full width of the datapath of the processor on which the software is executed. The

optimization for this architecture includes reducing the number of accumulation units tom, such

that the results in them flipflops have exactly one copy of the coordinates w.r.t. to the normal

basis.

Table 3 shows a comparison of the two multipliers presented here and the parallel-in serial-out

polynomial ring multiplier proposed in [4]. In Table 3, sincen0 denotes the size of the maximum

subfields in cyclotomic rings, for the same fieldF2m one always hasn0 > n. For example, when

14

m = 4, we haven = n0 = 5; whenm = 5, we haven0 = 31 andn = 11; whenm = 9, we have

n0 = 73 andn = 19.

of # of # Flip # clk
Multipliers AND XOR flops cycles Critical path basis
Drolet [4] n0 n0 � 1 n0 n0 TA + dlog2 n

0eTX poly. ring
Fig 1(optimized) m n � 1 n h TA + (dlog2 ke+ dlog2me)TX redundant
Fig 2(optimized) m m n +m n TA + TX redundant

Table 3: Comparison of bit-serial multipliers using polynomial ring basis and redundant repre-
sentation.

Constant multiplier For an implementation of multiplication operation, if one of the inputs

(i.e., eitherA or B) is known or fixed, the multiplier is called a constant multiplier. In the

past, efficient architectures for such constant multipliers were proposed using polynomial and its

dual basis. When normal bases are used, the constant multiplier are however not that efficient.

This is mainly because most normal basis multipliers require that bothA andB be shifted in

cyclic fashion in each step of the multiplication operation. To alleviate this problem, the PISO

multiplier shown in Fig. 1 can be used with its inputA being a fixed element. Although the

PISO multiplier’s inputs and outputs are represented with respect to the redundant basis, one can

change the representation from a normal basis to the redundant basis and vice versa without any

logic gates.

When the redundant representation is used, one has another advantage in constructing a con-

stant multiplier. Since a field element can have more than one redundant representation, we may

find the representation with theleast Hamming weight to reduce implementation complexity.

For the representations of an element w.r.t. to a RB, the representation with the fewest nonzero

coordinates is referred to as theminimal representationof the element, and one has the following:

Theorem 2 Let h1; �; : : : ; �n�1i be a redundant representation basis forF2m overF2 andA 2

F2m . Then the minimal representation ofA with RB has a Hamming weight equal to or less than
n� 1
2

if k = 1 orm is even, andn� k + 1
2

if k > 1 andm is odd.

15

Proof: The theorem follows by noting thatA can be written as

A = a0 + a1� + � � �+ an�1�
n�1

= (a0 � 1) + (1 + a1)� + � � �+ (1 + an�1)�
n�1:

2

4.2 Parallel Architectures

Full parallel version Since the architecture shown in Fig. 1 operates in parallel-in and serial-

out fashion, it can be easily parallelized. Fig. 3 shows the circuit (moduleM) that generates

one coefficientci of the productC. The inputs to moduleM areA andi-fold cyclically shifted

version ofB. Clearly, a full bit-parallel multiplier can be obtained by usingn suchM modules.

The circuits for moduleM can be optimized to save AND gates in the same way as we

discussed for the PISO multiplier. Also the number of modules can be reduced tom. Since it

is sufficient to generate only thosem coordinates that correspond to the normal basis, eachM

module requiresm AND andn � 1 XOR gates, and there arem suchM modules.4 Hence the

total number of gates for the bit parallel multiplier is

m2 AND gates;
m(n� 1) XOR gates:

The time delay due to gates isTA + (dlog2 ke + dlog2me)TX.

: Binary Tree M

ci

b(i�n+1)

an�1a1
bi

a0 a2
b(i�1) b(i�2)

Figure 3: Parallelization of the bit-serial redundant representation multiplier.

4Here we assume thatk is even and the first coordinates ofA andB, a0 = b0 = 0. Then we havec0 = 0 by
Lemma 3. If the above condition is not satisfied, there should bem + 1 modules.

16

Hybrid version The above bit parallel architecture has a clear advantage over some similar

existing architectures. It can be implemented in partial parallel (hybrid) fashion to provide con-

siderable amount of space and time trade-offs. In a space constrained environment, if onlyt

copies ofM modules are available to implement the multiplier (1 � t � n), then the multiplica-

tion operation can be arranged such that in one clock cyclet cj ’s are computed, and the operation

can be completed in
l
n
t

m
clock cycles. This feature could be very useful in VLSI implementation

since it might be difficult to implement a full-scale bit-parallel multiplier when the field is very

large.

Fig. 4 shows the architecture of a hybrid multiplier using only twoM modules. There are

two shift registersR1 andR2. RegisterR1 is of length n+ 1
2

bits and initially loaded with

b1; b3; : : : ; bn�2; b0. RegisterR2 is n� 1
2

bits long and initially loaded withb2; b4; : : : ; bn�1. The

interlacingmodule combines the outputs from the two registers into one such that its first bit is

the first bit fromR1, the second bit is the first bit fromR2, the3rd bit is the second bit fromR1,

the4th bit is the second bit fromR2, : : : , and so on. During the first clock cycle, the interlacing

module has outputs in the order:b1; b2; : : : ; bn�1; b0. Then moduleM on the left-hand side

generatesc0 and moduleM on the right-hand side producesc1. During the second clock cycle,

the outputs of the interlacing module isb3; b4; : : : ; bn�1; b0; b1; b2 andc2 andc3 are generated by

theM modules. This process is repeated and after a total of
l
n
2

m
clock cycles, all the coordinates

of C are generated.

inter-
lacing

M M

n

R2

n+1

2

faig
n�1

i=0

n

n�1

2

R1

shift
cyclic

cj+1cj

Figure 4: Hybrid redundant representation multiplier architecture (t = 2).

5 ARCHITECTURE FOR TYPE-II ONB MULTIPLIER

In this section we deal with type-II ONB. Extending the work of Gao and Vanstone [6], we

present several bit-serial and bit-parallel multiplier architectures.

17

5.1 Algorithm

Below we consider in more detail Remark 2 given in Section 2.

Theorem 3 [6] Let � be a primitive(2m + 1)
st root of unity inF2m and
 = � +

1

�
generates

a type II optimal normal basis. Thenf
i; i = 1; 2; : : : ;mg with
i = �i
+

1

�i = �i
+ �2m+1�i,

i = 1; 2; : : : ;m, is also a basis inF2m .

From the discussion in the previous section, the complexities of aRB multiplier can be greatly

reduced by applying certain properties of the redundant representations. However, we can do

better. ForB 2 F2m and
i as defined in Theorem 3, define

s(i)
4
=

8<
:

i mod 2m + 1; if 0 6 i mod 2m+ 1 6 m;

2m+ 1� i mod 2m+ 1; otherwise.
(12)

Obviously,s(0) = 0; s(i) = s(2m+1� i) and
i =
s(i) for any integeri. As
i
j =
i+j +
i�j ,

we have
i �
j =
s(i+j) +
s(i�j). Let B = (b1; : : : ; bm) 2 F2m with respect to the basis

h
1;
2; : : : ;
mi andb0 = 0, then

i �B =

mX
j=1

bj
i �
j =

mX
j=1

bj(
s(i+j) +
s(i�j)) =

mX
j=1

(bs(j+i) + bs(j�i))
j :

The final step in the above equation comes from proper substitutions of the subscript variables.

The above constant multiplication
i�B was proposed by Gao and Vanstone [6]. In order to obtain

a general multiplier, letA = (a1; : : : ; am) be an element inF2m , w.r.t. the basish
1;
2; : : : ;
mi,

then multiplication ofA andB can proceed as follows:

A �B =

mX
i=1

ai(
i �B) =

mX
i=1

ai

mX
j=1

(bs(j+i) + bs(j�i))
j =

mX
j=1

� mX
i=1

ai(bs(j+i) + bs(j�i))
�

j:

If the product is denoted asC =

mX
j=1

cj
j , also in the basish
1;
2; : : : ;
mi, then

cj =

mX
i=1

ai(bs(j+i) + bs(j�i)); j = 1; 2; : : : ;m: (13)

18

Note that
 also generates a normal basish
;
2; : : : ;
2
m�1

i = h
1;
2; : : : ;
2m�1i. From
i =

s(i) and the expression (12), it can be seen that the basish
1;
2; : : : ;
mi is a permutation of the

above normal basis. Thus in hardware a squaring operation using the basish
1;
2; : : : ;
mi costs

nothing but rearrangement of wires.

5.2 Architectures

Parallel-in serial-out multiplier An architecture to implement this multiplication is shown in

Figure 5. A(2m + 1)-bit register, which is divided into two parts (left and right) and is shifted

cyclically, storesbs(i); i = 0; 1; : : : ; 2m. A total ofm AND gates andm XOR gates are used to

generatem terms ofaibj ’s. Finally, anotherm � 1 XOR gates, formed as a binary tree, takem

terms ofaibj ’s as inputs and produce the coordinatecj of C. In one clock cycle, the register is

shifted once and onecj is generated at the output port. A multiplication is completed inm clock

cycles.

The size complexity of the multiplier in Fig. 5 ism AND gates and2m� 1 XOR gates, along

with a (2m + 1)-bit shift register. The delay in the critical path isTA + (1 + dlog2me)TX. A

comparison of the proposed multiplier with some other similar bit-serial normal basis multipliers

is shown in Table 4. As it can be seen except for the multiplier of Geiselmann and Gollmann [9],

the proposed multiplier has an overall space and time complexities that is better than those of

any other multiplier listed in the table. The multiplier of [9] requires aboutm
2

fewer XOR gates,

however, the proposed multiplier has a highly regular structure which makes it attractive for

hardware implementation for very large fields.

Multipliers #AND #XOR #flipflops # clk cycles basis

Massey-Omura [16] 2m� 1 2m� 2 2m m normal
Feng [5] 2m� 1 3m� 2 3m� 2 m normal

Agnewet al [2] m 2m� 1 3m m normal

Geiselmann-Gollmann[9] m 3m� 1
2

2m m normal
presented here m 2m� 1 2m + 1 m normal5

5In fact, it is a permutation of the normal basis.

Table 4: Comparison of bit-serial multipliers when there is a type II ONB.

19

���� ��������������

: Binary Tree

am�2 am�1a3a2a1 am

b0

b1

b2

bm

bm�1

bm�2

bm�3

b1

b2

b3

bm

bm�1

bm�2

cj; j =m;m� 1; : : : ; 1

Figure 5: New bit-serial multiplier using basish
ii.

Serial-in parallel-out multiplier Similar to the RB multiplier architecture discussed in Sec-

tion 4, a high speed architecture for the modified RB multiplier is also available, which is shown

in Fig. 6. The coefficientsb1; b1; : : : ; bm of the elementB, w.r.t. the basish
ii, are initially stored

in a register of length2m+ 1 which can be shifted cyclically. The coefficientsam; am�1; : : : ; a1

of the elementA, w.r.t the basish
i, are fed into the system from the left in a bit-serial fash-

ion. There arem accumulation units and they are the same as those in Fig. 2. During the first

clock cycle, the datab0 + b1; b1 + b2; : : : ; bm�1 + bm are respectively multiplied witham at

them bit-multipliers. Note thatb0 = 0. Them bit-products, which aream(b0 + b1); am(b1 +

b2); : : : ; am(bm�2+bm�1); am(bm�1+bm), are then stored in them accumulation units. After the

second clock cycle,m values ofam(b0 + b1) + am�1(b1+ b2), am(b1 + b2) + am�1(b0 + b3); : : : ,

am(bm�2+ bm�1)+am�1(bm�3+ bm), am(bm�1+ bm)+am�1(bm�2+ bm) are respectively stored

in m flipflops. Afterm clock cycles, the contents of them flipflops at the top are the coordinates

of the productC.

Compared to the multiplier shown in Fig. 5, the high-speed version multiplier has a higher

complexity. Besidesm AND gates,2m XOR gates, and a cyclic shift register of length2m + 1,

the high-speed version multiplier also needsm flipflops. The critical path has a delay ofTA+2TX ,

which is however much shorter than that of the multiplier shown in Fig. 5.

20

cm�1

bm�1

bm�2

b1
b0 b1

b2

bm�1

bm
bm

a1; a2 : : : ; am

c1 c2 cm

Figure 6: High speed multiplier architecture for a type II ONB.

Hybrid multiplier architecture The bit-serial multiplier shown in Fig. 5 can be easily made

parallel or partial parallel. Fig. 7 shows an architecture of a hybrid multiplier using the basis

h
ii, which yields two out ofm coordinates of the product per clock cycle, and completes a

multiplication operation in
lm
2

m
clock cycles. Note that bit-serial and full parallel multipliers

can be viewed as special cases of the hybrid architecture.

It can be seen from Fig. 7 that moduleM 0 is all combinatorial circuits and similar to module

M in Fig. 3. In Fig. 7, two copies of moduleM 0 are used and each of them generates one prod-

uct coordinate at a time. The cyclic shift module enables a cyclic shift of2m + 1 coefficients

bs(0); bs(1); : : : ; bs(2m), and costs no gates and registers. Whenm is even, the2m + 1-bit reg-

ister is initially loaded withb0; b2; : : : ; bm,bm�1; bm�3; : : : ; b1,b1; b3; : : : ; bm�1; bm,bm�2; : : : ; b2.

Whenm is an odd number, the order of the2m + 1 bits initially loaded into the register is

b0; b2; : : : ; bm�1; bm,bm�2; : : : ; b1,b1; b3; : : : ; bm,bm�1; bm�3; : : : ; b2. The permutation module takes

the2m+ 1 bits from the shift register and during the first clock cycle its output is in the order of

bs(0); bs(1); : : : ; bs(2m). Values ofs(i) can be calculated using (12) and always lie between0 and

m, inclusive, fori = 0; 1; : : : ; 2m. Note that theM 0 module, which generatescj, takes2m out

of 2m+ 1 bits frombs(0); : : : ; bs(2m) and leaves the bitbs(j) out.

Obviously, the multiplier’s space complexity depends on how manyM 0 modules are used

in the partially parallel architecture. EachM 0 module consists of2m � 1 XOR gates andm

AND gates, which is shown in the right-hand side in Fig. 7. The total complexity of the hybrid

21

Multipliers #AND #XOR # clk cycles� cycle period

Massey-Omura [12] (2m� 1)t (2m� 2)t
l
m
t

m
� [TA + dlog2(2m� 1)eTX]

Proposed here mt (2m� 1)t
l
m
t

m
� [TA + (1 + dlog2me)TX]

Table 5: Comparison of hybrid multipliers when there is a type II ONB (1 6 t 6 m+ 1).

multiplier with twoM 0 modules is4m� 2 XOR gates and2m AND gates. Comparison between

this work and the bit-parallel Massey-Omura multiplier proposed by Wang et al. [20] is made and

shown in Table 5. It can be seen that with the same number of XOR gates used and approximately

same time delay, the multiplier presented here uses about only half the number of AND gates used

in the Massey-Omura multiplier.

��

�������� �����
�
�
�

�
�
�
�

����
�
�
�
�
�����
�
�
�

�
�
�
�

��������
�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�����

: Binary Tree

2m+ 1

shifttation
cyclic

2m

faig
i=m

i=1

b0; b1; : : : ; bm; bm; bm�1; : : : ; b1

shift register contents:

m m

Permu-

2m

cj cj+1

M 0 M 0

M 0

ci

a2
a1

bs(i�1) bs(i�2)
bs(i�m)

bs(i+m)bs(i+2)bs(i+1)
am

Figure 7: Bit-parallel multiplier using basish
ii.

6 CONCLUDING REMARKS

In this paper, we have considered multiplication inF2m using a redundant representation. The

basic idea behind the multiplication is to embed the fieldF2m into the smallest cyclotomic field

F
(n)
2 and do the arithmetic inF (n)

2 . We have presented the smallestn for various values ofm that

are of practical interest for elliptic curve cryptosystem.

We have also shown that the redundant representation can be used to obtain efficient bit-serial,

bit-parallel, and hybrid multiplier structures. Additionally. we have discussed how to reduce the

time and space complexities of these multipliers using properties of the redundant representation.

22

The conversions from the redundant representation to the corresponding normal basis and vice

versa have been given. We have shown that these conversions can be implemented in hardware

without any logic gates.

When there is a type I ONB inF2m , it follows from our discussion in Section 4 that the

minimal representation of a constant field element always has a Hamming weight not greater

thanm
2

. Consequently, the proposed constant multiplier has very low complexity. When there

exists a type II ONB, very simple and highly regular multiplier architecture can be obtained using

the redundant representation (refer to Section 5). It has been shown that such multipliers have

lower or equivalent complexity compared to most of the previously proposed similar multipliers.

Hybrid or partial parallel architectures have also been presented for this type of ONBs.

One question arising from the work presented here remains: Can this modified redundant

representation multiplier described in Section 5 be generalized to any fieldF2m?

Acknowledgment

We thank Ellen Liu for her help with the proof of Lemma 1. We also thank the anonymous

reviewers for their useful and valuable comments.

References

[1] G. B. Agnew, R. Beth, R. C. Mullin, and S. A. Vanstone. Arithmetic operations in GF(2
m
).

J. Cryptology, 6:3–13, 1993.

[2] G. B. Agnew, R. C. Mullin, I. Onyszchuk, and S. A. Vanstone. An implementation for a

fast public key cryptosystem.J. Cryptology, 3:63–79, 1991.

[3] D. W. Ash, I. F. Blake, and S. A. Vanstone. Low complexity normal bases.Disc. Appl.

Math., 25:191–210, 1989.

[4] G. Drolet. A new representation of elements of finite fields GF(2
m) yielding small com-

plexity arithmetic circuits.IEEE Trans. Comput., 47(9):938–946, 1998.

23

[5] M. Feng. A VLSI architecture for fast inversion in GF(2
m). IEEE Trans. Comput., 38:1383–

1386, 1989.

[6] S. Gao and S. Vanstone. On orders of optimal normal basis generators.Math. Comp.,

64(2):1227–1233, 1995.

[7] S. Gao, J. von zur Gathen, and D. Panario. Gauss periods and fast exponentiation in finite

fields. InLecture Notes in Computer Science, volume 911, pages 311–322. Springer-Verlag,

1995.

[8] S. Gao, J. von zur Gathen, D. Panario, and V. Shoup. Algorithms for exponentiation in finite

fields. J. of Symbolic Computation, 29:879–889, 2000.

[9] W. Geiselmann and D. Gollmann. VLSI design for exponentiation in GF(2
m
). In

AUSCRYPT’90, pages 398–405. Springer-Verlag, 1990.

[10] W. Geiselmann and H. Lukhaub. Redundant representation of finite fields. InProceedings

of Public Key Cryptography, pages 339–352. Springer-Verlag, 2001.

[11] M. A. Hasan, M. Wang, and V. K. Bhargava. Modular construction of low complexity

parallel multipliers for a class of finite fields GF(2
m). IEEE Trans. Comput., 41(8):962–

971, 1992.

[12] M. A. Hasan, M. Wang, and V. K. Bhargava. A modified Massey-Omura parallel multiplier

for a class of finite fields.IEEE Trans. Comput., 42(8):1278–1280, 1993.

[13] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverse in GF(2
m) using

normal bases.Inform. and Comput., 78:171–177, 1988.

[14] T. Itoh and S. Tsujii. Structure of parallel multipliers for a class of fields GF(2
m). Inform.

and Comput., 83:21–40, 1989.

[15] R. Lidl and H. Niederreiter.Finite Fields. Addison-Wesley Publishing Company, Reading,

MA, 1983.

[16] J. L. Massey and J. K. Omura. Computational method and apparatus for finite field arith-

metic. U.S. Patent No.4587627, 1984.

24

[17] R. Mullin, I. Onyszchuk, S. A. Vanstone, and R. Wilson. Optimal normal bases in GF(pn).

Disc. Appl. Math., 22:149–161, 1988.

[18] I.M. Onyszchuk, R.C. Mullin, and S.A. Vanstone. Computational method and apparatus for

finite field multiplication. U.S. Patent No.4,745,568, 1988.

[19] J. H. Silverman. Fast multiplication in finite field GF(2N). In CHES’99, LNCS 1717, pages

122–134. Springer-Verlag, 1999.

[20] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed. VLSI

architectures for computing multiplications and inverses in GF(2
m
). IEEE Trans. Comput.,

34(8):709–717, 1985.

[21] A. Wassermann. Konstruktion von Normalbasen.Bayreuther Mathematische Schriften,

pages 155–164, 1990.

[22] J. K. Wolf. Low complexity finite field multiplication. Disc. Math., 106/107:497–502,

1992.

[23] H. Wu, M. A. Hasan, and I. F. Blake. Highly regular architectures for finite field compu-

tation using redundant basis. InCHES’99, LNCS 1717, pages 269–279. Springer-Verlag,

1999.

A A Proof to Lemma 1

Proof: Assume that the normal basis is introduced byGPof type(m;k). Let � be the primitive

kth root of unity inF�km+1 . Then from (4) the normal element can be given as

 = � + ��
+ ��2

+ � � �+ ��k�1

:

Since w.r.t. the basisI3 we have

A =

m�1X
j=0

kX
i=1

a
(3)
jk+i�

2j
i andB =

m�1X
j=0

kX
i=1

b
(3)
jk+i�

2j
i;

25

wherea(3)jk+1 = a
(3)
jk+2 = � � � = a

(3)
jk+k andb(3)jk+1 = b

(3)
jk+2 = � � � = b

(3)
jk+k for j = 0; 1; : : : ;m� 1,

then from (5) and (6), the coefficients ofA andB w.r.t. I1 are

a2j = a2j� = � � � = a2j�k�1 andb2j = b2j� = � � � = b2j�k�1: (14)

Then, extend the coefficientsc(2j) andc(2j�i); 1 � i � k � 1, of the productC using (3), it

follows

c(2j) = a0b(2j) + a1b(2j�1) + a2b(2j�2) + � � �+ an�1b(2j�n+1) (15)

c(2j�i) = a0b(2j�i) + a1b(2j�i�1) + a2b(2j�i�2) + � � �+ an�1b(2j�i�n+1) (16)

In the following we will show that

c(2j) = c(2j�i) for i = 1; 2; : : : ; k � 1: (17)

Comparing the above two expressions (15) and (16), we find that the first terms of the two

expressions have the same valuea0b(2j) = a0b(2j�i), sinceb(2j) = b(2j�i) from (14). For the

second terma1b(2j�1) on the righthand side of (15), we can find a term in (16),a(�i)b(2j�i��i) =

a(�i)b(�i(2j�1)), which has the same value. For the third terma2b(2j�2) on the righthand side of

(15), there is also a term in (16),a(2�i)b(2j�i�2�i) = a(2�i)b(�i(2j�2)), with the same value. Then,

for the last terman�1b(2j�n+1) on the righthand side of (15), the corresponding term in (16) is

a((n�1)�i)b(2j�i�(n�1)�i) = a((n�1)�i)b(�i(2j�(n�1))). It can be seen that (17) holds by noting that

then� 1 numbers:(�j�1
); (2�j�1

); : : : ; ((n� 1)�j�1
) are a permutation of1; 2; : : : ; n � 1 for

j = 1; 2; : : : ; k � 1.

Replacingci in (7) by using (17), and then replacingc(4)i using (5), it followsc(3)jk+1 = c
(3)
jk+2 =

� � � = c
(3)
jk+k, for j = 0; 1; : : : ;m� 1, which ends the proof. 2

26

