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Abstract. A rational function R(x, y) over a field is said to be associative if
R(R(x, y), z) = R(x,R(y, z)). Associative rational functions over a field define group
laws on subsets of the field (plus the point at infinity). In this paper, all the as-
sociative rational functions of two variables over an arbitrary field are determined
and consequently all the groups obtainable from such functions are determined as
well.

1 Introduction and main results

Let IF be any field. Trivially the polynomial x+ y defines, via substitution, a
group operation (or group law) on IF, and the polynomial xy defines a group
operation on IF \ {0}. Further, it is well-known that the polynomial x+ y− 1
also defines a group on IF and that the polynomial x+y+xy defines a group
on IF \ {−1}. It is natural to ask for other such polynomials f(x, y) ∈ IF[x, y]
or even rational functions R(x, y) ∈ IF(x, y) which define group operations
on subsets of IF. More generally, one may consider formal power series in two
variables and this leads to formal groups of dimension one which are closely
related to elliptic curves [6]; see also [4] for formal groups of higher dimension.
We are interested in determining rational functions over IF that can be

used to define group laws on some subsets of IF. Let R(x, y) ∈ IF(x, y) be any
rational function. We say that R(x, y) is associative if the equation

R(R(x, y), z) = R(x,R(y, z)) (1)

is valid in IF(x, y, z), the rational function field with distinct variables x, y, z.
A rational function R1(x, y) is said to be equivalent to R(x, y) if there is a
linear fractional map f(x) = (ax+ b)/(cx+d) ∈ IF(x), ad− bc 6= 0, such that

R1(x, y) = f
−1 (R(f(x), f(y))) (2)
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where IF denotes the algebraic closure of IF and f−1(x) = (−dx+b)/(cx−a) is
the inverse of f . For example, x+y+xy is equivalent to xy under f(x) = x+1.
It is easy to check that R1(x, y) is associative iff R(x, y) is. This defines an
equivalence relation on associative rational functions over IF. The functions
x, y, x + y, x + y + xy are associative but not equivalent to each other. One
of our main goals is to show that they represent all the associative rational
functions over IF.

Theorem 1. Let IF be any field. Then any nonconstant associative rational
function in IF(x, y) is equivalent to exactly one of x, y, x+ y and x+ y + xy.

Remark. In defining the equivalence above, we could have allowed f to be
any rational function in IF(x) whose compositional inverse is also a rational
function in IF(x), that is, f is an automorphism of the field IF(x) fixing IF.
But the only automorphisms of IF(x) that fix IF are linear fractional maps.
With this theorem, we can determine all groups whose elements are from

IF and whose group laws can be defined by rational functions over IF. In the
first place, if G is any finite group of order ≤ |IF| and S is any subset of IF
with |S| = |IF|, then it is well-known that any one-to-one correspondence be-
tween S and G can be used to define a group law on S for which S and G are
isomorphic. Further, this group law for S can always be defined by means of
a polynomial f(x, y) obtained by Lagrange interpolation (for two variables);
thus, every finite group of order ≤ |IF| is possible. However, the polynomial
f(x, y) may not be associative in the above sense and classifying such polyno-
mials amounts to classifying finite groups, which is certainly a hard problem
with a nature different from that of an infinite S. We do not intend to pursue
the case of a finite S in this paper, but instead will concentrate on infinite S.
Henceforth it is assumed that S is infinite (subset of IF) with its group

law defined by a rational function R(x, y) (i.e. for a, b ∈ S, a · b = R(a, b)).
Since a group law is associative, we have

R(R(a, b), c) = R(a,R(b, c)) for all a, b, c ∈ S. (3)

By using the fact that S is infinite, one can show that (3) implies (1).
So R(x, y) must be associative and, by Theorem 1, is equivalent to one of
x, y, x + y, x + y + xy. But none of x or y can define a group so R(x, y) is
equivalent to x+ y or x+ y + xy. The linear fractional map that defines the
equivalence induces an isomorphism of S to some subgroup of the additive or
multiplicative group of IF. We will show that the linear fractional map can
be defined over a quadratic extension of IF, so S is in fact isomorphic to a
subgroup of the additive or multiplicative group of a quadratic extension of
IF.

Theorem 2. For any infinite subset S of a field IF, if S is a group defined by
a rational function over IF then S is isomorphic to a subgroup of the additive
or multiplicative group of a quadratic extension of IF.
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We should remark that when using a rational function to define a group
law, it is necessary to use∞, the point at infinity (or use the projective space
IP1(IF)). Here we adopt the usual convention that, for a, b, c, d ∈ IF,

a∞+ b

c∞+ d
=
a

c
for c 6= 0,

a∞+ b

c∞+ d
=∞ for ad 6= 0 and c = 0,

a

0
=∞ for a 6= 0.

We give below two examples of groups which can be verified directly. We
denote by IFq a finite field of q elements. Example 3 comes from the proof of
Lemma 12, while Example 4 is a special case of Lemma 11.

Example 3. Let IF = IF2(t
2) where t is transcendental over IF2, S = IF and

R = (xy + t2)/(x+ y). Then R is equivalent to x+ y and R defines a group
on S isomorphic to the additive group

{
1

h+ t
: h ∈ IF

}

of IF2(t), a quadratic extension of IF = IF2(t
2). Note that the group isomor-

phism is defined by f = 1/(x+ t).

Example 4. Let R = (xy − 1)/(x+ y + 1) ∈ IFq(x, y) where q is a power of a
prime > 3. Let ω be a root of X2 +X +1. Then R is equivalent to xy under
the linear fractional map f(x) = (1−ωx)/(x+ω+1). Depending on whether
ω lies in IFq, we have the following two cases.

(a) Suppose q − 1 is divisible by 3. Let S = (IFq ∪ {∞}) \ {ω, ω2}. Then R
defines a group on S isomorphic to the multiplicative group of IFq with
the isomorphism defined by f(x).

(b) Suppose q − 1 is not divisible by 3. Let S = IFq ∪ {∞}. Then R defines
a group on S isomorphic to the unique subgroup of order q + 1 of the
multiplicative group of IFq2 with the isomorphism defined by f(x).

We should mention the related results in formal groups. If one is allowed
to use formal power series for f then x + y and x + y + xy can be obtained
from each other. Indeed if the characteristic of IF is zero then

x+ y + xy = f−1 (f(x) + f(y))

where

f(x) = log(1 + x) = x−
x2

2
+
x3

3
− · · ·+ (−1)n−1

xn

n
+ · · · ,

f−1(x) = exp(x)− 1 = x+
x2

2!
+
x3

3!
+ · · ·+

xn

n!
+ · · · .
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In general, a formal power series R(x, y) ∈ IF[[x, y]] is called a formal group
if R(x, y) = x + y + (terms of orders ≥ 2) and R(x, y) is associative (i.e.
satisfying (1). When the characteristic of IF is zero, it can be proved that
every formal group R(x, y) ∈ IF[[x, y]] is equivalent to x + y via a formal
power series f ∈ IF[[x]] defined by some generalized logarithm associated
with R(x, y); see [6, Proposition 5.2, p. 122] or [4, Corollary 5.4.4, p. 31].
Our result shows that all the formal groups that are rational functions are
equivalent to either x + y or x + y + xy with the equivalence defined by
rational functions, instead of formal power series. Note that determining all
the formal groups that are polynomials is much easier as indicated by the
exercise in [4, p. 2] and Theorem 1.1 in [3, p. 12]; see also Lemma 5 in the
next section.

Our interest in this paper was motivated by the work in [1,2,5] where it
is desirable to construct irreducible polynomials of higher degrees from those
of lower degrees. In [1], Brawley and Carlitz introduce a so-called diamond
operation on a subset of a field and use this operation to form composition of
polynomials. When the diamond operation defines a group law on the subset
then composition of irreducible polynomials gives irreducible polynomials un-
der certain conditions. In [2], it is shown that composition of polynomials can
be computed efficiently if the diamond operation is defined by a polynomial
or a rational function.

For the rest of the paper, we prove Theorem 1 in Section 2 and Theorem
2 in Section 3 .

2 Associative rational functions

We start with the easy case when R(x, y) is a polynomial; its proof involves
the basic ideas that are used in the general case when R(x, y) is an arbitrary
rational function.

Lemma 5. Let R(x, y) ∈ IF[x, y] be a nonconstant polynomial. If R(x, y) is
associative then R(x, y) is equivalent to one of x, y, x+ y, x+ y + xy.

Proof. Suppose R(x, y) =
∑
cijx

iyj . The associativity of R implies

∑
cij(R(x, y))

izj =
∑
cijx

i(R(y, z))j .

Let m be the degree in x of R(x, y). Then comparing the degrees in x in the
above equation gives m2 = m, so m must be 0 or 1. Similarly, the degree
in y of R(x, y) is also at most 1. Hence we may assume that R(x, y) =
axy + bx+ cy + d where a, b, c, d ∈ IF. Then

R(R(x, y), z) = a2xyz + abxy + abxz + acyz + b2x+ bcy + (ad+ c)z + (b+ 1)d

R(x,R(y, z)) = a2xyz + abxy + acxz + acyz + (ad+ b)x+ bcy + c2z + (c+ 1)d.

4



Comparing the coefficients gives

ab = ac, b2 = ad+ b, ad+ c = c2, (b+ 1)d = (c+ 1)d.

First assume a 6= 0. Then b = c and d = (c2 − c)/a, so

R(x, y) = axy + c(x+ y) + (c2 − c)/a.

Let f(x) = (x− c+1)/a. Then x+ y+xy = f−1(R(f(x), f(y))). This means
that in this case R(x, y) is equivalent to x+y+xy under f−1(x) = ax+c−1.
Assume now a = 0. Then b2 = b and c2 = c. If b 6= c then d = 0. Hence

the only choices for R are x, y, x + y + d. The latter is equivalent to x + y
under the map f = x+ d. ut
In general let R(x, y) be any associative rational function over IF, say

R(x, y) = F (x, y)/H(x, y) where F (x, y),H(x, y) ∈ IF[x, y] and gcd(F (x, y),
H(x, y)) = 1. The associativity of R gives a polynomial equation. Similar to
the above argument, we shall compare the degrees of x and y in this equation
and prove that both F (x, y) and H(x, y) have degree at most one in x and y
separately. Then we reduce R to special forms and eventually to polynomials
by linear fractional maps. Since the proof is a little lengthy, we break it into
several lemmas.
The following lemma seems interesting by itself, as it says that relatively

prime polynomials remain relatively prime when their variables are substi-
tuted by other polynomials.

Lemma 6. Let F (x, y),H(x, y) ∈ IF[x, y] with gcd(F (x, y),H(x, y)) = 1 and
degrees fx, hx in x, respectively. Let x1, . . . , xn, z be distinct variables and let
a, b ∈ IF[x1, . . . , xn] with a/b 6∈ IF and gcd(a, b) = 1. Then

bfxF (a/b, z), bhxH(a/b, z)

are polynomials in IF[x1, . . . , xn, z] and are relatively prime.

Proof.We can view F (x, y),H(x, y) as univariate polynomials in y with coeffi-
cients in IF(x), the rational function field in x. Since gcd(F (x, y),H(x, y)) = 1
in IF[x, y], we still have gcd(F (x, y),H(x, y)) = 1 in IF(x)[y]. By the Euclidean
algorithm, there are polynomials U0, V0 ∈ IF(x)[y] such that

U0F + V0H = 1.

By eliminating the denominators in U0, V0, we have

UF + V H =W (4)

for some U, V ∈ IF[x, y] and W ∈ IF[x] with W 6= 0. Let ` = fx and m = hx
be the degrees in x of F (x, y) and H(x, y), respectively. In (4), replacing x
by a/b and y by z and eliminating the denominators, which are powers of b,
we have

U1A+ V1B = b
iW (a/b) (5)
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where A = b`F (a/b, z), B = bmH(a/b, z), U1, V1 ∈ IF[x1, . . . , xn, z] and
biW (a/b) ∈ IF[x1, . . . , xn]. It follows that C = gcd(A,B) must divide biW (a/b),
as polynomials in IF[x1, . . . , xn, z]. Since a/b is not a constant in IF, we have
biW (a/b) 6= 0. So C ∈ IF[x1, . . . , xn] and thus C divides all the coefficients of
A,B as polynomials in IF[x1, . . . , xn][z].
Let’s examine the coefficients. Suppose

F (x, y) = F`(x)y
` + · · ·+ F1(x)y + F0(x)

H(x, y) = Hm(x)y
m + · · ·+H1(x)y +H0(x).

Then

A = b`F`(a/b)z
` + · · ·+ b`F1(a/b)z + b

`F0(a/b)

B = bmHm(a/b)z
m + · · ·+ bmH1(a/b)z + b

mH0(a/b).

Since gcd(F (x, y),H(x, y)) = 1 in IF[x, y], the coefficients

F`(x), . . . , F1(x), F0(x),Hm(x), . . . , H1(x),H0(x)

must be relatively prime. Replacing x by a/b in these polynomials and elimi-
nating denominators gives the coefficients of A and B. By a similar argument
above via the Euclidean algorithm, we see that any common divisor of the
coefficients of A and B together must divide a power of b. Since ` = degFi(x)
for some 1 ≤ i ≤ ` and gcd(a, b) = 1, we have gcd(b`Fi(a/b), b) = 1. Hence
the coefficients of A and B must be relatively prime and C must be a con-
stant in IF. ut

Lemma 7. Let R(x, y) = F (x, y)/H(x, y) where F (x, y),H(x, y) ∈ IF[x, y]
with gcd(F (x, y),H(x, y)) = 1. Denote by fx, fy the degrees of F (x, y) in x, y
separately, and similarly hx, hy for that of H(x, y). If R(x, y) is associative
then hx ≤ fx ≤ 1 and hy ≤ fy ≤ 1.

Proof. The associativity of R(x, y) means that

F (R(x, y), z)

H(R(x, y), z)
=
F (x,R(y, z))

H(x,R(y, z))

i.e.
F (R(x, y), z)H(x,R(y, z)) = H(R(x, y), z)F (x,R(y, z)).

To eliminate the denominators, let

A = H(x, y)fxF (R(x, y), z), B = H(y, z)hyH(x,R(y, z)) (6)

C = H(x, y)hxH(R(x, y), z), D = H(y, z)fyF (x,R(y, z)). (7)

Then A,B,C,D ∈ IF[x, y, z] and

H(x, y)hxH(y, z)fyAB = C DH(x, y)fxH(y, z)hy . (8)
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We shall prove that hx ≤ fx ≤ 1; the proof of hy ≤ fy ≤ 1 is similar.
Since gcd(F (x, y),H(x, y)) = 1, we have

gcd(A,H(x, y)) = 1 and gcd(C,H(x, y)) = 1.

By Lemma 6, we also have gcd(A,C) = 1. It follows from (8) that

A | DH(y, z)hy and C | BH(y, z)fy . (9)

Consider the degrees in x of the polynomials in (9). Certainly,

degxDH(y, z)
hy = degxD = fx and degxBH(y, z)

fy = degxB = hx.
(10)

To find the degrees of A and C in x, suppose

F (x, y) =

fx∑
i=i0

ai(y)x
i, H(x, y) =

hx∑
j=j0

bj(y)x
j (11)

where ai(y), bj(y) ∈ IF[y], ai(y) 6= 0 for i = i0 or fx, and bj(y) 6= 0 for j = j0
or hx. Then

A =

fx∑
i=i0

ai(z)F (x, y)
iH(x, y)fx−i, C =

hx∑
j=j0

bj(z)F (x, y)
jH(x, y)hx−j (12)

Now the degree in x of F (x, y)iH(x, y)fx−i is

ifx + hx(fx − i) = hxfx + i(fx − hx), i0 ≤ i ≤ fx, (13)

and that of F (x, y)jH(x, y)hx−j is

jfx + hx(hx − j) = h
2
x + j(fx − hx), j0 ≤ j ≤ hx. (14)

First assume fx > hx. Then degxA = f
2
x . By (9) and (10), we have

f2x ≤ fx, so fx ≤ 1. In this case, we have hx = 0 and fx = 1.
Next assume fx = hx. Then all the values in (13) and (14) are equal to

h2x. Denote n = h
2
x. We need to find the coefficient of x

n in A and C. Note
that the leading coefficient of x in F (x, y) is afx(y), denoted by a(y), and
the leading coefficient of x in H(x, y) is bhx(y), denoted by b(y). By (12), the
coefficient of xn in A is

fx∑
i=i0

ai(z)a(y)
ib(y)fx−i = b(y)fxF

(
a(y)

b(y)
, z

)
(15)

and the coefficient of xn in C is

hx∑
j=j0

bj(z)a(y)
jb(y)hx−j = b(y)hxH

(
a(y)

b(y)
, z

)
. (16)
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Since gcd(F (x, y),H(x, y)) = 1, the polynomials in (15) and (16) can not
both equal to zero. Hence A or C has degree n in x. In either case, it follows
from (9) and (10) that n = h2x ≤ hx. So fx = hx ≤ 1.
Finally assume fx < hx. We have from (13) that

degxA = i0fx + hx(fx − i0). (17)

This and (9) imply that

i0fx + hx(fx − i0) ≤ fx.

Since hx > fx, it follows that fx − i0 = 0 and thus f2x ≤ fx. Hence fx ≤ 1
and degxA = degxD = fx. Considering the degrees of x in (8), we have

h2x + degxB = degx C + hxfx.

By (9), degxB ≥ degx C, thus hxfx ≥ h
2
x. But hx > fx ≥ 0, so fx ≥ hx,

impossible as fx < hx by our assumption in this case. ut

Lemma 8. Suppose

R(x, y) =
u1xy + u2x+ u3y + u4
v1xy + v2x+ v3y + v4

∈ IF(x, y) (18)

is associative. Then R(x, y) is equivalent to a polynomial or one of the fol-
lowing

u1xy + u2x+ u3y + u4
v2x+ v3y

,
u1xy + u2x+ u3y + u4

x− y + 1
. (19)

(With possibly different values of u’s and v’s.)

Proof. We first assume that v1 6= 0. Let f(x) = a + 1/x. Then f−1(x) =
1/(x− a). Note that

R(f(x), f(y)) =
u1(a+ 1/x)(a+ 1/y) + u2(a+ 1/x) + u3(a+ 1/y) + u4
v1(a+ 1/x)(a+ 1/y) + v2(a+ 1/x) + v3(a+ 1/y) + v4

=
u1(a

2xy + a(x+ y) + 1) + u2y(ax+ 1) + u3x(ay + 1) + u4xy

v1(a2xy + a(x+ y) + 1) + v2y(ax+ 1) + v3x(ay + 1) + v4xy

=
(u1a

2 + u2a+ u3a+ u4)xy + (u1a+ u3)x+ (u1a+ u2)y + u1
(v1a2 + v2a+ v3a+ v4)xy + (v1a+ v3)x+ (v1a+ v2)y + v1

,

and so

f−1 (R(f(x), f(y))) =
(v1a

2 + v2a+ v3a+ v4)xy + (v1a+ v3)x+ (v1a+ v2)y + v1
(−v1a3 + (u1 − v2 − v3)a2 + (u2 + u3 − v4)a+ u4)xy + E

where

E = (−v1a
2+(u1−v3)a+u3)x+(−v1a

2+(u1−v2)a+u2)y+u1−av1. (20)
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Taking a to be a root of the polynomial

−v1X
3 + (u1 − v2 − v3)X

2 + (u2 + u3 − v4)X + u4 (21)

will yield a new R with v1 = 0.
Hence we may assume that v1 = 0 for our original R. We may further

assume that v4 6= 0, otherwise it is of the first type in (19) already. Let
f(x) = ax+ b. Then

R(f(x), f(y)) =
u1(ax+ b)(ay + b) + u2(ax+ b) + u3(ay + b) + u4

v2(ax+ b) + v3(ay + b) + v4

=
u1a

2xy + · · ·

v2ax+ v3ay + (v2 + v3)b+ v4
,

f−1 (R(f(x), f(y))) =
u1axy + · · ·

v2ax+ v3ay + (v2 + v3)b+ v4
.

If v2 + v3 6= 0 then we can take b = −v4/(v2 + v3) and R is equivalent to
the first type in (19). Suppose v2 + v3 = 0, i.e. v2 = −v3. If v2 = 0 then R
is already a polynomial. But if v2 6= 0 then we can take a = v4/v2 and R is
equivalent to the second type in (19). ut

Lemma 9. Let R be associative of the first type in (19). If R is not a poly-
nomial then R must be of the form

xy + u

x+ y

which is indeed associative.

Proof. Assume v2 6= 0; the proof is similar if v3 6= 0. Then R can be rewritten
as

R =
u1xy + u2x+ u3y + u4

x+ vy
=
F (x, y)

H(x, y)

where F (x, y) = u1xy+ u2x+ u3y+ u4 and H(x, y) = x+ vy. Since R is not
a polynomial, gcd(F (x, y),H(x, y)) = 1. Note that

R(R(x, y), z) =
u1zF (x, y) + u2F (x, y) + u3zH(x, y) + u4H(x, y)

F (x, y) + vH(x, y)
=
A

C

R(x,R(y, z)) =
u1xF (y, z) + u2xH(y, z) + u3F (y, z) + u4H(y, z)

xH(y, z) + vF (y, z)
=
B

D

where A,B,C,D are the corresponding numerators and denominators. By
Lemma 6, gcd(A,C) = 1 and gcd(B,D) = 1. So the equation A/C = B/D
implies that C = dD for some constant d ∈ IF. If v = 0 then D = xH(y, z) =
xy and C = F (x, y) = x, impossible for C = dD. Hence we may assume that
v 6= 0. As

C = u1xy + vxz + v
2yz + u2x+ u3y + u4

D = xy + vxz + vu1yz + vu2y + vu3z + vu4.
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Comparing the coefficients of x, y gives u2 = 0 and u3 = 0. Then by the
coefficients of xy, xz and yz we have

u1 = d, v = dv, v
2 = dvu1.

Since v 6= 0, it follows that d = u1 = 1 and hence v = 1. Therefore R is the
required form.

Lemma 10. Let R be associative of the second type in (19). If R is not a
polynomial then R must be of the form

xy + u

x+ y + 1

which is indeed associative.

Proof. Let F (x, y) = u1xy + u2x + u3y + u4 and H(x, y) = x − y + 1. Since
R is not a polynomial, gcd(F (x, y),H(x, y) = 1. Similar to above,

R(R(x, y), z)) =
u1zF (x, y) + u2F (x, y) + u3zH(x, y) + u4H(x, y)

F (x, y)− zH(x, y) +H(x, y)
=
A

C

R(x,R(y, z)) =
u1xF (y, z) + u2xH(y, z) + u3F (y, z) + u4H(y, z)

xH(y, z)− F (y, z) +H(y, z)
=
B

D
.

By Lemma 6, gcd(A,C) = gcd(B,D) = 1. So C = dD for some d ∈ IF. As

C = u1xy − xz + yz + (u2 + 1)x+ (u3 − 1)y − z + u4 + 1

D = xy − xz − u1yz + x+ (1− u2)y − (u3 + 1)z − u4 + 1,

comparing the coefficients of xy, xz, yz gives

u1 = d, −1 = −d, 1 = −du1.

So d = u1 = 1 and 2 = 0, which means that the characteristic of IF is 2. Now
the coefficients of x, y give

u2 + 1 = d, u3 − 1 = d(−u2 + 1).

So u2 = u3 = 0 and R is the required type. ut

Lemma 11. Every rational function of the form

xy + u

x+ y + v

is equivalent to xy.

Proof. Let a, b be the two roots of the polynomial X2 − vX − u and f =
(x+ a)/(x+ b). Then one can check directly that the function in the lemma
is equal to f−1(f(x) · f(y)). ut
Proof of Theorem 1. Let R ∈ IF(x, y) be any associative rational function.

By Lemma 7, R must be of the form (18), hence equivalent to a polynomial
or one of the two types in (19). In the latter case, by Lemmas 9 and 10, R
must be of the form in Lemma 11, which is equivalent to xy thus to x+y+xy.
Therefore R is equivalent to x, y, x+ y or x+ y + xy by Lemma 5.
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3 Determining the groups

This section is devoted to proving Theorem 2.
Before we proceed to the proof, we make some general remarks. Suppose

that f : S −→ G is any bijection of sets and (G, ·) is a group. Then one can
define a group law on S as follows:

a · b = f−1(f(a) · f(b)), ∀a, b ∈ S. (22)

Here f is automatically a group isomorphism from S to G. On the other hand,
if S already has a group law that satisfies (22) for some bijection f : S −→ G
then f is a group isomorphism from S to G.
Now let S be an infinite subset of IF ∪ {∞} where IF is a field. Suppose

that a group law on S is defined by a rational function R ∈ IF(x, y), i.e.
a · b = R(a, b) for a, b ∈ S. By Theorem 1, R is equivalent to x + y or xy
via some linear fractional map f ∈ IF(x), i.e. R(x, y) = f−1(f(x) + f(y)) or
f−1(f(x)f(y)). Hence

a · b = R(a, b) = f−1(f(a) + f(b)), ∀a, b ∈ S

or
a · b = R(a, b) = f−1(f(a)f(b)), ∀a, b ∈ S.

Let G = f(S) ⊆ IF. Then G is an additive subgroup of IF in the first case
or a multiplicative group of IF in the second case. Obviously G is in the
same extension of IF as that defining the map f . From the polynomial (21),
it seems that one may need to go to a cubic extension of IF to find the
coefficients of f . We prove that this is not the case and indeed a quadratic
extension of IF suffices. Consequently S is isomorphic to a subgroup (additive
or multiplicative) of a quadratic extension of IF, hence Theorem 2 is proved.
It remains to prove that the equivalence of R can be realized by a linear

fractional map over a quadratic extension of IF. This is done by the next two
lemmas.

Lemma 12. Suppose R ∈ IF(x, y) is equivalent to x + y. Then the equiv-
alence can be defined by a linear fractional map over IF, except when the
characteristic of IF is 2 and IF is not perfect in which case a required linear
fractional map can be found in a quadratic extension of IF.

Proof. Suppose R(x, y) = f−1(f(x) + f(y)) where f = (ax + b)/(cx + d)
with a, b, c, d ∈ IF and ad − bc 6= 0. First assume that c = 0. Then f can be
rewritten as f = ax+ b for some a, b ∈ IF with a 6= 0. In this case,

R = f−1(f(x) + f(y)) = x+ y + b/a.

As R ∈ IF(x, y), we have b/a ∈ IF. Let g = x + b/a. Then we have R =
g−1(g(x) + g(y)) so the equivalence is defined by a linear map over IF.
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Now assume c 6= 0. Then f can be rewritten as as f = (ax + b)/(x + d)
for some a, b, d ∈ IF with ad− b 6= 0. Note that

R = f−1(f(x) + f(y)) =
(b− 2ad)xy − ad2(x+ y)− bd2

axy + b(x+ y) + 2bd− ad2
.

There are two cases depending on a = 0 or not. Suppose a = 0. Then b 6= 0
(as ad− b 6= 0), and

R =
bxy − bd2

b(x+ y) + 2bd
=
xy − d2

x+ y + 2d
∈ IF(x, y).

So 2d, d2 ∈ IF. If char(IF) 6= 2 then 2d ∈ IF implies that d ∈ F . If char(IF) = 2
and IF is perfect then d2 ∈ IF implies that d ∈ IF. In both cases f is defined
over IF. If char(IF) = 2 but IF is not perfect then d may not be in IF but
always in a quadratic extension of IF; See Example 3 for an instance.
Suppose a 6= 0. Then R can be rewritten as

R =
( b
a
− 2d)xy − d2(x+ y)− b

a
d2

xy + b
a
(x+ y) + 2d b

a
− d2

∈ IF(x, y).

Hence
b

a
,
b

a
− 2d, d2 ∈ IF.

This implies that d ∈ IF except when char(IF) = 2 and IF is not perfect.
The proof is finished by noting that R = g−1(g(x) + g(y)) where g = (x +
b/a)/(x+ d). ut

Lemma 13. Suppose that R ∈ IF(x, y) is equivalent to xy. Then the equiv-
alence is defined by a linear fractional map over a quadratic extension of
IF.

Proof. Suppose R(x, y) = f−1(f(x)f(y)) where f = (ax + b)/(cx + d) with
a, b, c, d ∈ IF and ad− bc 6= 0. If c = 0 then f is of the form f = ax+ b with
a 6= 0 and

R = f−1(f(x)f(y)) = axy + b(x+ y) + (b2 − b)/a.

Since R ∈ IF(x, y), we have a, b,∈ IF, so f ∈ IF(x).
Hence we may assume that c 6= 0. Then f can be rewritten as f =

(ax+ b)/(x+ d) for some a, b, d ∈ IF with ad− b 6= 0. One can check directly
that

R = f−1(f(x)f(y)) =
(b− a2d)xy − bd(a− 1)(x+ y)− bd(b− d)

(a2 − a)xy + a(b− d)(x+ y) + b2 − ad2
. (23)

If a = 0 then we see easily that b, d ∈ IF and so f is defined over IF. If a = 1
then

R =
xy − bd

x+ y + b+ d
∈ IF(x, y).
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Hence bd, b+ d ∈ IF and thus b, d are in a quadratic extension of IF. We may
now assume that a 6= 0 or 1. Then (23) may be rewritten as

R =
b−a2d
a2−a xy −

bd
a
(x+ y)− bd

a
b−d
a−1

xy + b−d
a−1 (x+ y) +

b2−ad2

a2−a

.

Since R ∈ IF(x, y), we have

b− d

a− 1
,
bd

a
,
b− a2d

a2 − a
,
b2 − ad2

a2 − a
∈ IF.

If a = −1 then bd, b− d ∈ IF so b, d are in a quadratic extension of IF. Hence
we may further assume that a 6= −1. Let

b− d = c1(a− 1), a
2d− b = c2(a

2 − a)

where c1, c2 ∈ IF. Then

b =
a

a+ 1
(c1a+ c2), d =

1

a+ 1
(c1 + c2a).

Note
bd

a
=

1

(a+ 1)2
(c1a+ c2)(c1 + c2a) ∈ IF.

Let c3 = bd/a ∈ IF. Then we see that a is a root of the quadratic polynomial

c3(X + 1)
2 − (c1X + c2)(c1 + c2X) ∈ IF[X].

So a, b, d all lie in a quadratic extension of IF. This proves that f is always
defined over a quadratic extension of IF. ut
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