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ABSTRACT

The star diameter of a graph measures the minimum distance from any source node to
several other target nodes in the graph. For a class of Cayley graphs from abelian groups, a
good upper bound for their star diameters is given in terms of the usual diameters and the
orders of elements in the generating subsets. This bound is tight for several classes of graphs
including hypercubes and directed n-dimensional tori. The technique used is the so-called
disjoint ordering for a system of subsets, due to Gao, Novick and Qiu (1998).



1 Introduction

A graph models a communication network for a computer system, a parallel computer,
or a telephone system. A node of the graph represents a processor or a switch, and an
edge corresponds to a link between two processors or switches. In several applications,
it is desirable to send messages from one node to several other nodes simultaneously in
the network in minimum delay time. This applies in particular to Rabin’s information
dispersal algorithm (IDA) [18] for efficient and accurate transmission of large files in a parallel
computer or a distributed network. This motivates us studying the star diameter of a graph,
which measures the minimum delay time in such transmission.
Suppose G is a graph (without self-loops and multiple edges). Let w be a positive integer.

For any vertices x, y1, . . . , yw of G with x 6= yi, 1 ≤ i ≤ w, a w-star container from x to
y1, . . . , yw is a collection of w (internally) node-disjoint paths from x to y1, . . . , yw, one for
each yi. Here the vertices y1, . . . , yw may have repetition, thus if y1 appears r times then
the container has r disjoint paths from x to y1. In the case that y1 = · · · = yw = y, a
w-star container is also called a w-wide container from x to y. The length of a container
is the maximum length of its paths. The w-star distance from x to y1, . . . , yw, denoted by
d(x; y1, . . . , yw), is the minimum length among all the w-star containers from x to y1, . . . , yw.
When y1 = · · · = yw = y, d(x; y1, . . . , yw) is simply denoted as dw(x, y). Following [10], the
w-wide diameter of G, denoted by dw(G), is defined to be the maximum of dw(x, y) for all
pairs of distinct vertices x and y in G. The w-star diameter of G, denoted by Dw(G), is
defined to be the maximum of d(x; y1, . . . , yw) for all vertices x, y1, . . . , yw (possibly with
repetition) of G with x 6= yi, 1 ≤ i ≤ w. Certainly, dw(G) ≤ Dw(G).
Note that D1(G) is just the usual diameter of G. Obviously, D1(G) ≤ D2(G) ≤ · · · ≤

Dw(G) ≤ · · · . Suppose that G has connectivity k. Then Menger’s theorem implies that
Dw(G) <∞ iff w ≤ k. A natural question is to quantize Menger’s theorem, that is, to give
a good bound on Dk(G).
The above definition of w-star diameter is slightly different from that in the literature

[10] where it is required that the target nodes be distinct. The benefit of our definition
is that the w-star diameter bounds both the star diameter in [10] and the wide diameter
dw(G), thus allows a uniform treatment for these two parameters. For containers and wide
diameters, see [3, 4, 5, 11, 12, 15, 16, 17, 19, 20, 21]. In general, it seems more difficult to
determine star diameters than wide diameters due to the possibly complicated configuration
of the target nodes.
In this paper, we study a class of Cayley graphs that are defined over abelian groups.

We give a good upper bound for their star diameters in terms of the usual diameters and
the orders of the elements in the generating subsets. This bound is tight for several classes
of graphs including hypercubes and directed n-dimensional tori.
The concept of star diameter applies to both directed and undirected graphs. We view

undirected graphs as special cases of directed graphs where each undirected edge is just two
directed edges with one in each direction.
The rest of the paper is organized as follows. In the next section, we define Cayley
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graphs and state our main results. In Section 3, we present the concept of disjoint ordering
for a system of finite sets and the related results from Gao et al [7], which will be useful
for construction of short disjoint paths later. Section 4 is the technical part of the paper
where we show how to construct short containers in Cayley graphs from abelian groups via
disjoint ordering of sets and thus proves our main results. We conclude in Section 5 with
some comments and open problems for future studies.

2 Main Results

Let G be any group with its binary operation written multiplicatively, and let S be a subset
of G not containing the identity element 1. The Cayley graph Γ(G,S) is defined to be the
(directed) graph whose vertices are the elements of G and, for x, y ∈ G, there is an edge
x → y iff x · g = y for some g ∈ S. When S contains the inverses of all its elements, the
Cayley graph Γ(G,S) is an undirected graph.
For example, the n-dimensional hypercube Hn has a vertex set Z

n
2 = {(a1, . . . , an) : ai =

0 or 1} and two vertices are adjacent if and only if they differ by exactly one coordinate.
This is an undirected graph and can be viewed as a Cayley graph as follows. We know that
G = Zn2 is a group under componentwise addition modulo 2. Take S to be the set of unit
vectors (0, . . . , 1, . . . , 0) where the i-th component is 1 and zero elsewhere, 1 ≤ i ≤ n. Then
the Cayley graph Γ(G,S) is precisely the hypercube Hn.
An n-dimensional torus is a generalized hypercube. For a positive integer m, Zm =

{0, 1, . . . ,m − 1} denotes the ring of integers modulo m, a cyclic group of order m under
addition. Let m1, . . . ,mn be integers ≥ 2. Define

H(m1, · · · ,mn) = Zm1 × · · · × Zmn ,

the set of all n-tuples (a1, . . . , an) with ai ∈ Zmi for 1 ≤ i ≤ n. Note thatG = H(m1, · · · ,mn)
is a group under componentwise addition. Let S be the set of unit vectors (0, . . . , 1, . . . , 0)
where the i-th component is 1 and zero elsewhere, 1 ≤ i ≤ n. Then the Cayley graph
Γ(G,S) is called a directed n-dimensional torus. Let S1 = S ∪ {−S}. Then Γ(G,S1) is the
undirected version of Γ(G,S) and is simply called an n-dimensional torus. Note that an n-
dimensional torus is also called a generalized hypercube or a toroidal mesh in the literature.
When m1 = · · · = mn = k, it is also called a k-ary n-cube.
The groups used in hypercube and torus graphs above are abelian. There is a large

literature on Cayley graphs from other groups, see [1, 2, 8, 13, 14, 15, 19, 21] for more
information. In this paper, we shall focus mainly on Cayley graphs over abelian groups.
Let G be any finite group, written multiplicatively. An ordered subset B = {b1, . . . , bn}

is called a generating basis, or simply a basis, of G if each element g ∈ G can be written as
a unique product

g = b`11 b
`2
2 · · · b

`n
n , 0 ≤ `i < ei, 1 ≤ i ≤ n,

where ei is the order of bi (that is, ei is the smallest positive integer such that b
ei
i = 1). By

the uniqueness, we mean that if h = b
¯̀
1
1 b
¯̀
2
2 · · · b

¯̀
n
n then g = h implies that

¯̀
i ≡ `i mod ei for
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1 ≤ i ≤ n. If such a basis exists then G has exactly e1e2 · · · en elements.
For example, the unit vectors form a generating basis for Zn2 . For another example,

consider the additive group of Z30. Then the subset {1} is a generating basis for Z30, as
1 has additive order 30 in Z30. Also, the subsets {4, 15}, {6, 10, 15} and {12, 15, 20} are
generating bases of Z30 for its additive group. In additive notation, {4, 15} being a basis
means that each element in Z30 is of the form 15a + 4b where 0 ≤ a < 2 and 0 ≤ b < 15.
This is due to the fact that Z30 ∼= Z2 × Z15 by the Chinese remainder theorem and that
{15} and {4} are bases for Z2 and Z15, respectively. Similarly for the other two sets, as
Z30
∼= Z2 × Z3 × Z5.

Theorem 2.1 Let G be an abelian group and S is a subset of G not containing the identity.
Suppose B ⊆ S ⊆ B ∪ B−1 for some generating basis B of G. Denote by k the cardinality
of S and e the maximum order of elements in S ∩B−1 (and e = 1 when S ∩B−1 is empty).
Then the Cayley graph Γ(G,S) has connectivity k and has k-star diameter

Dk (Γ(G,S)) ≤

{
d+ 1, if e ≤ 2
d+ b(e− 1)/2c, if e > 2.

where d is the usual diameter of Γ(G,S).

Suppose the basis B has k elements. In the case that all elements in B have order 2,
the graph Γ(G,B) is the k-dimensional hypercube and has diameter d = k. In this case, the
upper bound is tight as the k-star diameter is known to be k + 1. If all elements in B have
order larger than 2 then Γ(G,B) is a directed n-dimensional torus. We will show that the
star diameter is d+ 1, so the bound is again tight.

Corollary 2.2 (Directed n-dimensional Torus) Let G be an abelian group with a gen-
erating basis B of n elements. Then the (directed) Cayley graph Γ(G,B) has connectivity n
and

Dn (Γ(G,B)) = d+ 1

where d is the diameter of Γ(G,B).

On the other extreme, if S = B ∪B−1 then Γ(G,S) is undirected.

Corollary 2.3 (Undirected n-dimensional Torus) Let G be an abelian group with a ba-
sis B with n elements and S = B ∪ B−1. Let e be the maximum order of elements in B.
Suppose each element in B has order > 2 (so e > 2). Then the Cayley graph Γ(G,S) has
connectivity 2n and

D2n (Γ(G,S)) ≤ d+ b(e− 1)/2c

where d is the diameter of Γ(G,S).
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3 Disjoint ordering

The concept of disjoint ordering for a collection of subsets is introduced by Gao, Novick and
Qiu [7]. We give the definition and the related results below.
A permutation of the elements of a finite set is called an ordering. Suppose X and Y

are two sets ordered as O1 = (x1, x2, · · · , xk) and O2 = (y1, y2, · · · , y`) where k = |X| and
` = |Y |. We say that O1 and O2 are disjoint if for every 1 ≤ t ≤ min(k, `)

{x1, x2, · · · , xt} 6= {y1, y2, · · · , yt}

as sets, unless t = k = `. Note that X and Y may be the same set which is why we need to
exclude the case t = k = `. For instance, if X = Y = {1, 2, 3} then (1, 2, 3) and (2, 3, 1) are
disjoint but (1, 2, 3) and (2, 1, 3) are not. Also, if X = Y = {1} then the trivial ordering (1)
is disjoint to itself.
A collection of finite sets is said to have a disjoint ordering if each set has an ordering and

all the orderings are pairwise disjoint. In particular, as long as all singletons in the collection
are distinct, the elements in the first position of a disjoint ordering form a system of distinct
representatives. So for a disjoint ordering to exist, the conditions in Hall’s matching theorem
[9] must be satisfied. The converse is also true.

Theorem 3.1 (Gao et al 1998) For any finite collection of nonempty finite sets in which
all singletons are distinct, there is a disjoint ordering if and only if there is a system of
distinctive representatives.

Recall that a system of distinctive representatives (SDR) for k sets consists of k distinct
elements with one from each set. A partial SDR is an SDR for a subcollection of the sets.
When an SDR does not exist, one needs to add elements to the sets so that SDR and thus
disjoint ordering exists. By using this technique, Gao et al [7] show how to construct short
containers on hypercube graphs. In the next section, we adapt this method to Cayley graphs
over abelian groups.
We shall need the following lemmas.

Lemma 3.2 Suppose X1, . . . Xw are subsets of a finite set S where w ≤ k = |S|. Let
ti ∈ Xi, 1 ≤ i ≤ m, be a partial SDR of maximum size. Pick any distinct elements
ti ∈ S \ {t1, . . . , tm}, m < i ≤ w. Then for any disjoint ordering of the system

X1, . . . , Xm, Xm+1 ∪ {tm+1}, . . . , Xw ∪ {tw} (1)

the element ti must be the initial element in the ordering of Xi for all m < i ≤ w.

Proof. Suppose for some i > m the initial element a in the ordering of Xi ∪ {ti} is different
from ti. Then a ∈ Xi. Note that the initial elements of the ordering form an SDR for the
system (1). Particularly, X1, . . . , Xm have representatives different from a. This means that
the sets X1, . . . , Xm, Xi have an SDR, contradicting to the maximality of m. �
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Lemma 3.3 Let S = {g1, . . . , gk} be any finite set and Xi ⊆ S, 1 ≤ i ≤ w. For each
pair 1 ≤ i ≤ w and 1 ≤ j ≤ k, there is associated with a real number eij. Suppose the
system X1, . . . , Xw has an SDR. Then there is a disjoint ordering for the system satisfying
the following condition:

Let gσ(i) be the last element in the ordering of Xi, 1 ≤ i ≤ w. For any pair
1 ≤ i < j ≤ w with Xi = Xj, if eiσ(i) ≥ ejσ(i) and ejσ(j) ≥ eiσ(j) then eiσ(i) = ejσ(i)
and ejσ(j) = eiσ(j).

Proof. By Theorem 3.1, the system Xi, 1 ≤ i ≤ w, has a disjoint ordering, say Oi for the
ordering of Xi, 1 ≤ i ≤ w. We show how to rearrange the ordering so that the condition in
the lemma is satisfied. Suppose it is violated by some pair i0 and j0 with Xi0 = Xj0 . We
consider all the sets Xi’s that are equal to Xi0 . For convenience of notation, we may assume
that they are X1, . . . , Xm for some 1 < m ≤ w. So X1 = · · · = Xm 6= Xj for m < j ≤ w.
Let gui be the last element in the ordering Oi where 1 ≤ ui ≤ k and 1 ≤ i ≤ m. Take any
bijection

η : {1, . . . ,m} → {u1, . . . , um},

the latter is viewed as a multiset, that minimizes (among all the bijections) the sum
∑m
i=1 eiη(i).

We claim that, for any pair 1 ≤ i < j ≤ m, if

eiη(i) ≥ ejη(i) and ejη(j) ≥ eiη(j)

then eiη(i) = ejη(i) and ejη(j) = eiη(j). Suppose otherwise, namely, one of the inequalities is
strict. Then

eiη(i) + ejη(j) > ejη(i) + eiη(j).

Switching the values η(i) and η(j) of η would yield a bijection with a smaller sum, contra-
dicting to the choice of η.
Now we rearrange the orderings O1, . . . , Om as follows. Suppose η(i) = uτ(i), for 1 ≤

i ≤ m, where τ(1), . . . , τ(m) is a permutation of 1, . . . ,m. This means that η(i) is the
last element in the ordering Oτ(i) of Xτ(i). To get the desired new ordering of the system,
let Oτ(i) be the new ordering of Xi for 1 ≤ i ≤ m, with the orderings of other sets Xi,
i > m, unchanged. Then the condition in the lemma is satisfied for all pairs 1 ≤ i < j ≤ m.
Certainly, the new ordering for the system Xi, 1 ≤ i ≤ w, is still disjoint and no new
violating pairs are introduced. Repeat this process if the condition in the lemma is violated
by any other pair among Xm+1, . . . , Xk. The condition is satisfied after finitely many steps.
�

4 Short containers

Let G be a group and S a subset of it not containing the identity 1. Suppose S generates G
as a group. Then the Cayley graph Γ(G,S) is connected and the left multiplication by any
element of G induces an automorphism of Γ(G,S). Hence Γ(G,S) is vertex symmetric. This
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implies in particular that, for any two vertices x and y, the set of all the paths from x to y
in Γ(G,S) is in 1-1 correspondence to that from 1 to x−1y with length preserved. Similarly,
for any y1, . . . , yw, the star containers from x to y1, . . . , yw are in 1-1 correspondence to
those from 1 to x−1y1, . . . , x

−1yw with length preserved. Because of this correspondence, we
discuss below how to construct short w-star containers that start at 1 only.
Let y ∈ G. Suppose y is represented as

y = g1g2 · · · g`, gi ∈ S.

Then there is a natural induced path from 1 to y:

1 •
g1−→ •

g2−→ • · · · •
g`−→ • y.

Note that the number ` of elements in y is equal to the length of the induced path. We
call ` the length of y, denoted by |y|. Let y1 = g1g2 · · · g` and y2 = h1h2 · · ·hk be two
representations where gi, hj ∈ S. We say that y1 and y2 are disjoint if their induced paths
are disjoint, namely,

g1 · · · gi 6= h1 · · ·hj

as elements of G, for all 1 ≤ i ≤ ` and 1 ≤ j ≤ k, except when i = ` and j = k. The
exception allows y1 and y2 being the same vertex of Γ(G,S).
When G is abelian, one can change the order of the elements in y in any fashion, and

y is still the same element of G (thus the same node of Γ(G,S) but the induced path will
likely be different. It is exactly this flexibility of reordering that allows us to construct short
w-containers in Γ(G,S). In the following, we view a representation (i.e. a product) of y as
ordered and identify it with its induced path from 1 to y. It should be clear from the context
whether y is viewed as an element of G (thus a node of Γ(G,S)) or a path from 1 to y.
We assume from now on that G is abelian and B ⊆ S ⊆ B ∪B−1 for some basis B of G.

For convenience of discussion, we fix that

B = {b1, . . . , br} and S = {b1, b
−1
1 , . . . , bs, b

−1
s , bs+1, . . . , br} (2)

where bi 6= b
−1
i for 1 ≤ i ≤ s, and for s < i ≤ r, either bi = b

−1
i or b

−1
i 6∈ S. Denote by ei the

order of bi for 1 ≤ i ≤ r.
Since B is a basis of G, any y ∈ G can be written uniquely as y = b`11 · · · b

`r
r where

0 ≤ `i < ei for 1 ≤ i ≤ r. When b
−1
i ∈ S, we may replace b

`i
i by b

−(ei−`i)
i , which yields a

shorter path if ei − `i < `i. So y is better written in the form

y = b`11 · · · b
`r
r (3)

where

−
ei

2
< `i ≤

ei

2
, if 1 ≤ i ≤ s (4)

0 ≤ `i < ei, if s < i ≤ r. (5)

It is straightforward to check that this representation of y is unique, that is, different values
of the `i’s in (4) and (5) give different y’s in (3) as elements of G.
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Lemma 4.1 Suppose that y is written in the form (3)–(5). Then the distance from 1 to y
in Γ(G,S) is d(1, y) =

∑r
i=1 |`i|.

Proof. Certainly, the induced path of y has length
∑r
i=1 |`i|. Suppose that P is any path

from 1 to y in Γ(G,S). We need to show that |P | ≥
∑r
i=1 |`i|. The path P corresponds to

writing y as a product of elements in S. Since G is abelian, we may reordering the elements
in the product and write y in the following form

y = bu11 (b
−1
1 )
v1 · · · buss (b

−1
s )
vsb
us+1
s+1 · · · b

ur
r

= bu1−v11 · · · bus−vss b
us+1
s+1 · · · b

ur
r

where ui and vi are nonnegative integers counting for the numbers of times of bi and b
−1
i

used in forming the edges of P . Reducing the exponents of bi modulo ei appropriately, we
can write y as

y = b
¯̀
1
1 · · · b

¯̀
r
r

where ¯̀i satisfy (4) and (5). The length
∑r
i=1 |
¯̀
i| is never larger than |P | = u1 + v1 + · · ·+

us + vs + us+1 + · · · + ur. By the uniqueness of the representation of y in (3)–(5), we have
that ¯̀i = `i for 1 ≤ i ≤ r. Therefore |P | ≥

∑r
i=1 |`i| as desired. �.

Corollary 4.2 Let S be as in (2). The diameter of Γ(G,S) is

d =
s∑
i=1

bei/2c+
r∑

i=s+1

(ei − 1).

Proof. Since G is vertex symmetric, we just need to compare d(1, y) for y ∈ G. The
corollary follows from Lemma 4.1. �
A representation y =

∏t
i=1 g

`i
i , where gi ∈ S and `i ≥ 0, is called minimal if

∑t
i=1 `i

is equal to the distance from 1 to y in Γ(G,S). By Lemma 4.1, the representation of y in
(3)–(5) is a minimal representation by rewriting b`ii = (b

−1
i )
−`i if `i < 0. Thus we also call

(3)–(5) a minimal representation of y. Note that minimal representation may not be unique.
For instance, if b1 has order 2` for some ` > 1 and if b1, b

−1
1 ∈ S then b

`
1 = (b

−1
1 )
` are both

minimal but b1 6= b
−1
1 . In any case, a representation y =

∏t
i= g

`i
i , where gi ∈ S and `i ≥ 0,

is minimal iff the following two conditions are satisfied:

(a) 0 ≤ `i ≤ ēi − 1 where ēi denotes the order of gi, 1 ≤ i ≤ t; and

(b) g1, . . . , gt are distinct elements in S, and if both gi and g
−1
i are in S then `i ≤ ēi/2

and only one of gi, g
−1
i appears in the list g1, . . . , gt.

A minimal representation y =
∏t
i=1 g

`i
i is called canonical with respect to the basis B if the

following condition is satisfied:

(c) if gi 6∈ B then `i < ēi/2, 1 ≤ i ≤ t.
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The minimal representation y in (3)–(5) is certainly canonical. By the proof of Lemma 4.1,
any canonical minimal representation can be obtained from (3) by permuting the elements
bi’s. So canonical minimal representation is unique up to order.
We next define the supports of elements in G. For any element y ∈ G, write y in a

canonical minimal representation y =
∏t
i= g

`i
i where gi ∈ S and `i ≥ 0. The support of y is

defined to be
Supp(y) = {gi : `i > 0, 1 ≤ i ≤ t}.

which is a subset of S. For example, assuming that b1 has order 5 and b1, b
−1
1 ∈ S, we have

Supp(b21) = {b1} but Supp(b
3
1) = {b

−1
1 }, as b

3
1 = (b

−1
1 )
2. Also, Supp(b2b1b

−1
2 ) = Supp(b1).

Certainly, if y is of the form (3)–(5) then

Supp(y) = {bi : `i > 0} ∪ {b
−1
i : `i < 0}.

Lemma 4.3 Let x = gu11 · · · g
us
s and y = h

v1
1 · · ·h

vt
t be two canonical minimal representations

with Supp(x) = {g1, . . . , gs} and Supp(y) = {h1, . . . , ht}. Suppose that g1 6= h1 and the
ordering (g1, . . . , gs) of Supp(x) is disjoint from the ordering (h1, . . . , ht) of Supp(y). Then
the induced paths of x and y are internally node disjoint whenever the condition in Lemma
3.3 is satisfied, namely, if Supp(x) = Supp(y), supposing that gs = hm for some m < s and
ht = gn for some n < t, then us ≥ vm and vt ≥ un imply that us = vm and vt = un.

Proof. A node, other than 1, on the induced path of x is of the form

x1 = g
u1
1 · · · g

ui−1
i−1 g

u
i for some 1 ≤ i ≤ s and 1 ≤ u ≤ ui.

Similarly a node, other than 1, on the induced path of y is of the form

y1 = h
v1
1 · · ·h

vj−1
j−1 g

v
j for some 1 ≤ j ≤ t and 1 ≤ v ≤ vj.

Then x1 and y1 are both canonical minimal representation with

Supp(x1) = {g1, . . . , gi} and Supp(y1) = {h1, . . . , hj}.

Suppose that x1 = y1. Since canonical minimal representation is unique up to order, we have
Supp(x1) = Supp(y1) and the exponents of the g’s and h’s must be equal accordingly. Hence
{g1, . . . , gi} = {h1, . . . , hj} and thus i = j. But (g1, . . . , gs) is disjoint from (h1, . . . , ht),
it follows that i = s and j = t. So i = j = s = t. Since g1 6= h1, we have s = t > 1.
But {g1, . . . , gt−1} 6= {h1, . . . , ht−1}, we see that gt 6= ht. Thus gs = hm for some m < t
and ht = gn for some n < t. Comparing their exponents gs and ht in x1 and y1, we have
vm = u ≤ us and un = v ≤ vt. If x1 or y1 is an internal node, then one of the inequalities
is strict. This is impossible by the condition (ii). Therefore, the induced paths of x and y
have no common internal node. �
We define a partial ordering on the elements of G, which is needed in the proof of the

next theorem. Let y1, y2 ∈ G. Represent them in canonical minimal form, say

y1 = g
u1
1 · · · g

ut
t , y2 = g

v1
1 · · · g

vt
t

where gi ∈ S, ui ≥ 0 and vi ≥ 0. We say that y1 ≺ y2 if ui ≤ vi for 1 ≤ i ≤ t. We note that
if y1 ≺ y2 and y1 6= y2 then |y1| < |y2|.
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Theorem 4.4 Let B and S as in (2) where B is a generating basis of G. Let x, y1, . . . , yw
be any vertices of Γ(G,S) with x 6= yi, 1 ≤ i ≤ w. Suppose that di is the distance from x
to yi, 1 ≤ i ≤ w. Then there is a container from x to y1, . . . , yw with the path from x to yi
having length at most di + ē where ē = max{e1, . . . , er}.

Proof. Since Γ(G,S) is vertex symmetric, we may assume that x = 1, the identity of G.
Write yi in the form (3)–(5):

yi = b
ei1
1 b

ei2
2 · · · b

eir
r , 1 ≤ i ≤ w.

Then, by Lemma 4.1, di = |yi| =
∑r
j=1 |eij|. Let Xi = Supp(yi). The system of subsets Xi,

1 ≤ i ≤ w, has a partial SDR of maximum size, say m. Without loss of generality, we may
assume that t1 ∈ X1, . . . , tm ∈ Xm is such a maximum partial SDR. We may assume that
the following is satisfied:

(A) There is no j > m and i ≤ m such that yj ≺ yi with yj 6= yi and the system

X1, . . . , Xi−1, Xj, Xi+1, . . . , Xm

has an SDR of size m.

If this condition is not satisfied, we can replace Xi by Xj and we still have a maximal SDR
for the original system. Repeat this process until there is no such j. The process has to stop
as the total size of the yi’s where Xi have representatives decreases by at least one with each
replacement.
Let S0 = S \ {t1, . . . , tm}. Since ti ∈ Xi, 1 ≤ i ≤ m, form a maximal partial SDR, we

have

S0 ∩Xj = ∅, m < j ≤ w. (6)

We want to add the elements in S0 to Xj one in each for m < j ≤ w. Since complication
arises when S−10 ∩Xj 6= ∅, we need to be careful. Here S

−1
0 = {t

−1 : t ∈ S0}. Define

Zj = S
−1
0 ∩Xj, m < j ≤ w.

If there are empty sets among them, just discard them. Among all the maximal partial
SDR’s for the system Zj, m < j ≤ w, we take one that maximizes the total sum of the
lengths of the yj’s where Zj have representatives. For convenience of notation, we assume
that

t−1` ∈ Z` ⊆ X`, m0 < ` ≤ w

is such a maximal SDR where m0 ≥ m. We claim that the following condition is satisfied:

(B) There is no pair j and ` with m < j ≤ m0 and m0 < ` ≤ w such that

t−1` ∈ Xj but y` ≺ yj, y` 6= yj.
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If (B) is not satisfied for some j, `, we can always let t−1` to represent Zj instead of Z`. Then
the total length of the y`’s with representatives increases by at least one, contradicting to
the choice of the t`’s.
Furthermore, we show that the representatives for Z`’s can be chosen so that the following

condition is satisfied:

(C) For any pair m0 < i < j ≤ w with

{t−1i , t
−1
j } ⊆ Xi ∩Xj,

let ui, uj, vi, vj be the exponents of t
−1
i , t

−1
j in the expression of yi and yj, namely,

yi = · · · (t
−1
i )
ui(t−1j )

vi , yj = · · · (t
−1
i )
uj(t−1j )

vj .

Then ui ≤ uj and vj ≤ vi imply that ui = uj and vi = vj.

When (C) is not satisfied, we can switch the representatives so that t−1j represents Zi
and t−1i represents Zj. The total sum of the exponents of the representatives increases by at
least one. Repeat this process if necessary. Then (C) must be satisfied by the resulted SDR.
Hence we have t` ∈ S0 with t

−1
` ∈ X`, m0 < ` ≤ w. By the maximality of the SDR for

the system Zj’s, we have

Zj ⊆ {t
−1
m0+1
, . . . , t−1w }, m < j ≤ m0.

Thus

for every t ∈ S0 \ {tm0+1, . . . , tw}, t
−1 6∈ Xj, for all m < j ≤ m0. (7)

Finally, pick distinct tj ∈ S0 \ {tm0+1, . . . , tw}, m < j ≤ m0. By (6) and (7), we have w
distinct elements ti ∈ S, 1 ≤ i ≤ w, satisfying the following:

ti ∈ Xi, if 1 ≤ i ≤ m (8)

ti 6∈ Xj, if m < i, j ≤ w (9)

t−1i 6∈ Xj, if m < i, j ≤ m0 (10)

t−1i ∈ Xi, if m0 < i ≤ w. (11)

Also, the conditions (A), (B), and (C) are satisfied.
Now we are ready to construct the container required by the theorem. Suppose that

yi = ỹi(t
−1
i )
ui , m0 < i ≤ w (12)

where ỹi is in canonical minimal form and does not contains any power of ti. Also, let ei be
the order of ti for 1 ≤ i ≤ w. We modify the expressions of yi’s as follows. Define

ȳi = yi εi = 1 if 1 ≤ i ≤ m (13)

ȳi = tiyi εi = t
−1
i if m < i ≤ m0 and t

−1
i ∈ S (14)

ȳi = tiyi εi = t
ei−1
i if m < i ≤ m0 and t

−1
i 6∈ S (15)

ȳi = tiỹi εi = t
ei−ui−1
i if m0 < i ≤ w. (16)
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Certainly, the ȳi’s are in canonical minimal form and

yi = ȳiεi, 1 ≤ i ≤ w.

Let Supp(ȳi) = X̄i, 1 ≤ i ≤ w. Then

X̄i = Xi if 1 ≤ i ≤ m

X̄i = Xi ∪ {ti} if m < i ≤ m0
X̄i = (Xi \ {t

−1
i ) ∪ {ti} if m0 < i ≤ w.

Note that t1, . . . , tw form an SDR for the system X̄1, . . . , X̄w and each element in X̄i has
a postive exponent in ȳi, 1 ≤ i ≤ w. By Theorem 3.1, there is a disjoint ordering and the
disjoint ordering can be chosen so that the exponents of the last elements in the ordering
satisfy the condition in Lemma 3.3.
We rewrite the product ȳi according to the ordering of X̄i, 1 ≤ i ≤ w. For instance, if

ȳi = b
`1
1 b
`2
2 b
`3
3 and X̄i = {b1, b2, b3} is ordered as (b2, b3, b1) then ȳi is rewritten as b

`2
2 b
`3
3 b
`1
1 .

By Lemma 4.3, the resulted representations of ȳi, 1 ≤ i ≤ w, are pairwise disjoint, so the
induced paths are pairwise disjoint. For convenience of notation, the new ȳi is still denoted
by ȳi, 1 ≤ i ≤ w. By appending εi to ȳi, we have a path Pi = ȳiεi from 1 to yi, 1 ≤ i ≤ w.
Obviously, the length of Pi is

|ȳi|+ |εi| ≤ di + ē

for 1 ≤ i ≤ w.
It remains to show that the paths Pi, 1 ≤ i ≤ w, are pairwise (internally) node disjoint.

We only need to prove that the end node of ȳi and the nodes introduced by εi do not become
an internal node of any other path. Let z be any node on Pi, other than 1. Then

Supp(z) ⊆

{
Xi, if 1 ≤ i ≤ m
Xi ∪ {ti}, if m < i ≤ w.

Let a1, . . . , aw be the initial elements in the disjoint orderings of X̄1, . . . , X̄w used above.
Then a1, . . . , aw are distinct and, by Lemma 3.2, ai = ti for m < i ≤ w. Since ai is the first
node after 1 on Pi, we have

ai ∈ Supp(z), if 1 ≤ m, (17)

ti ∈ Supp(z), if m < i ≤ m0 and z 6= yi (18)

ti or t
−1
i ∈ Supp(z), if m0 < i ≤ w. (19)

And, in the last case, t−1i ∈ Supp(z) only if z is of the form z = ỹit
u
i for some u ≥ ei/2− 1.

Suppose that z is a common node, other than 1, of Pi and Pj for some 1 ≤ i < j ≤ w.
We show that z = yi = yj, i.e., z is the last node of both Pi and Pj. This done in six cases
according to the values of i and j.
Case 1: 1 ≤ i < j ≤ m. Nothing to prove.
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Case 2: m < i < j ≤ m0. Since ti 6∈ Xj, we have ti 6∈ Supp(z). By (18), z = yi. Similarly,
we also have z = yj.
Case 3: m0 < i < j ≤ w. Since ti 6∈ Xj and ti 6= tj, we have ti 6∈ Supp(z) ⊆ Xj ∪ {tj}. By
(19), t−1i ∈ Supp(z). Similarly, t

−1
j ∈ Supp(z). So z must be of the form

z = tiỹit
vi
i = tj ỹjt

vj
j

with ei/2− 1 ≤ vi ≤ ei−ui− 1 and ej/2− 1 ≤ vj ≤ ej −uj − 1. The minimal representation
of z is of the form

z = ỹi(t
−1
i )
ei−vi−1 = ỹj(t

−1
j )
ej−vj−1.

Hence t−1i appears in ỹj, say with exponent cj, and t
−1
j appears in ỹi, say with exponent ci.

We have

ei − vi − 1 = cj, ej − vj − 1 = ci. (20)

As vi ≤ ei − ui − 1 and vj ≤ ej − uj − 1, we have cj ≥ ui and ci ≥ uj. By (C), this implies
that cj = ui and ci = uj. It follows from (20) that

vi = ei − ui − 1 and vj = ej − uj − 1.

Thus yi = z = yj.
Case 4: 1 ≤ i ≤ m and m < j ≤ m0. As ti 6= tj and ti ∈ Supp(z) ⊆ Xj ∪ {tj}, we have
ti ∈ Xj. If z is an internal node of Pj then tj ∈ Supp(z) ⊆ Xi, hence we have an SDR

t1 ∈ X1, . . . , ti−1 ∈ Xi−1, tj ∈ Xi, ti+1 ∈ Xi+1, . . . , tm ∈ Xm, ti ∈ Xj

of size m + 1, contradicting to the maximality of m. So z must be the end node of Pj, i.e.,
z = yj. As z = yj is a node on Pi, we have yj ≺ yi and ai ∈ Supp(z) = Supp(yj) = Xj. Hence
the system X1, . . . , Xi−1, Xj, Xi+1, . . . , Xm has an SDR. By the condition (A), it follows that
yi = yj.
Case 5: 1 ≤ i ≤ m and m0 < j ≤ w. Since ai 6= aj = tj and ai ∈ supp(z), by (19), we
have ai ∈ Xj. If tj ∈ Supp(z) then tj ∈ Xi by (17), and so the system X1, . . . , Xm, Xj has
an SDR of size m + 1, contradicting to the maximality of m. Hence t−1j ∈ Supp(z). As a
node on Pj, z must be of the form

z = tj ỹjt
v
j = ỹj(t

−1
j )
ej−v−1

for some v satisfying ej/2− 1 ≤ v ≤ ej − uj − 1. Since z is node on Pi, we have z ≺ yi. As
v ≤ ej − uj − 1, we have uj ≤ ej − v − 1 and so

yj = ỹj(t
−1
j )
uj ≺ ỹj(t

−1
j )
ej−v−1 = z ≺ yi.

This means that yj ≺ yi and t
−1
j ∈ Xi. By the condition (B), it follows that yj = yi. But

yj ≺ z ≺ yi, we have yj = z = yi.
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Case 6: m < i ≤ m0 and m0 < j ≤ w. In this case, we have

Supp(z) ⊆ Xi ∪ {ti}, and tj or t
−1
j ∈ Supp(z) ⊆ Xj ∪ {tj}.

Since tj 6∈ Xi and tj 6= ti, we see that tj 6∈ Xi ∪ {ti}, so tj 6∈ Supp(z). Hence t
−1
j ∈ Supp(z).

It follows that z, as a node on Pj, must be of the form,

z = tj ỹjt
v
j = ỹj(t

−1
j )
ej−v−1

for some v satisfying ej/2 − 1 ≤ v ≤ ej − uj − 1. Thus Supp(z) = Xj. Since i, j > m, we
have ti 6∈ Xj and so ti 6∈ Supp(z). By (18), we must have z = yi. As v ≤ ej − uj − 1, we
have uj ≤ ej − v − 1, hence

yj = ỹj(t
−1
j )
uj ≺ ỹj(t

−1
j )
ej−v−1 = z = yi.

Note that Zj has the representative t
−1
j but Zi does not. By the condition (B), we have

z = yi = yj. This concludes the proof of the theorem. �
Proof of Theorem 2.1: The diameter d of Γ(G,S) is determined by Corollary 4.2.

Now use Theorem 4.4, but examine the lengths of the paths Pi’s more carefully. Certainly,
for 1 ≤ i ≤ m, |Pi| = |yi| ≤ d. For m < i ≤ m0, Xi = Supp(yi) does not contain ti and
t−1i . If t

−1
i ∈ S then |yi| ≤ d − bei/2c ≤ d − 1, so |Pi| ≤ |yi| + 2 ≤ d + 1. If t

−1
i 6∈ S then

|yi| ≤ d− (ei − 1), so |Pi| ≤ |yi| + ei ≤ d + 1. Hence |Pi| ≤ d + 1 for m < i ≤ m0. If e = 1
or 2, which means that s = 0 in (2), then the proof is finished, as the next case will not
happen.
Assume that e ≥ 3, thus m0 < w. For m0 < i ≤ w, t

−1
i ∈ S and |ỹi| ≤ d − bei/2c as ỹi

does not contain ti and t
−1
i . As ui ≥ 1, we have

|Pi| = |ỹi|+ ei − ui ≤ d− bei/2c+ ei − 1 ≤ d+ ei − bei/2c − 1 = d+ b(ei − 1)/2c,

which is at most d+ b(e− 1)/2c. This completes the proof. �

5 Comments and open questions

For the class of Cayley graphs we discussed, it remains to completely determine the true
star diameters. For hypercubes and directed torus, we know that their w-star diameters are
equal to their w-wide diameters. A curious question is: for which class of graphs does this
phenomenon hold?
Our bound on star diameters is based on explicit construction of short containers. The

main property we used is the commutativity of the group operation. It may be possible that
our method could be extended to many other Cayley graphs over abelian groups.
For the class of graphs we discussed, their connectivity is just the cardinality of the

generating set (which is assumed to generate the group), and their wide diameter is also
easy to determine. For general Cayley graphs, however, the first obstacle is to determine
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its connectivity which may be much smaller than the cardinality of the generating set. The
problem of deciding whether a given Cayley graph is connected itself seems already hard,
since testing primitivity of elements in a finite field is just a special instance (where G is cyclic
and S has only one element). Interestingly, if a Cayley graph Γ(G,S) is given connected then
its connectivity (or fault tolerance) can be determined efficiently (i.e. in time polynomial in
|S| and log |G|). We will leave the details to a forthcoming paper [6].
Note that, for general Cayley graphs, finding the usual diameter is already NP-hard. But

it may not be unreasonable to ask for a good upper bound for the star and wide diameters in
term of the usual diameter. For the class of graphs we discussed, the star and wide diameters
are at most 2d where d is the usual diameter. We wonder whether this is true for all Cayley
graphs.
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