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9.1 Theory and Models

Chapter 8 has described several of the classical models of cryptography
in which the decryption key was the same as or easily derivable from
the encryption key. This meant that the corresponding encryption and
decryption algorithms were closely related in the sense that one could
be easily deduced from the other. Such cryptographic systems are called
symmetric-key or conventional systems, and their security relies exclu-
sively on the secrecy of the keys. Other examples of private-key systems
are the Data Encryption Standard (DES) [24] and IDEA [12], in which
users of the system who share a secret key can communicate securely
over an unsecure channel. In all of the private-key systems, two users
who wish to correspond must have a common key before the commu-
nication starts, and in practice, establishing a common secret key can
be expensive, difficult, and sometimes nearly impossible, especially in a
large network where the users need not know each other.

In 1976, Diffie and Hellman [7] introduced a revolutionary new con-
cept called public-key cryptography based on the simple observation that
the encryption and decryption could be separated; i.e., they recognized
that a knowledge of the encryption key (or equivalently, the encryption
algorithm) need not imply a knowledge of the decryption key (or algo-
rithm). In such a system, the encryption key can be made public, say in
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a public directory, while the decryption key can be kept secret. Anyone
wishing to send a message to a person in the directory can simply look up
the public encryption key for that person and use it to encrypt the mes-
sage. Then, assuming the decryption key is known only to the intended
receiver of the message, only that person can decrypt the message.

Of course in such a public-key system it must be computationally
infeasible to deduce the decryption key (or the decryption algorithm)
from the public key (or the public encryption algorithm), even when
general information about the system and how it operates is known.
This leads to the idea of one-way functions.

A function f is called a one-way function if for any x in the necessarily
large domain of f , f(x) can be efficiently computed but for virtually all
y in the range of f , it is computationally infeasible to find any x such
that f(x) = y.

Public-key cryptography requires a special set of one-way functions
{Ek : k ∈ K} where K, the so-called key space, is a large set of possible
keys , and Ek is a map from a plaintext spaceMk to a ciphertext space
Ck. The one-way nature of Ek implies that for virtually all ciphertexts
c = Ek(m) it is computationally infeasible to recover the plaintext m
from a given k and c. However, since the legitimate recipient of the mes-
sage must be able to recover m from c, more is required of these one-way
functions. Specifically, each Ek must have an inverse Dk, and this in-
verse must be easily obtainable given some additional secret information
d. The extra information d is called a trap-door of Ek and the functions
Ek themselves are called trap-door one-way functions. It is also required
that, with a knowledge of Dk, m = Dk(c) be easy to compute for all c
in the ciphertext space. Thus, a public-key cryptosystem consists of a
family of trap-door one-way functions.

Before proceeding, we will make a few remarks on the length of mes-
sages. For a given key k, the function Ek usually acts only on plaintexts
of fixed length whereas, in practice, a message can be of arbitrary length.
However, the message can be cut into appropriate pieces, called blocks,
so that Ek can act on each block. The whole message is then encrypted
by encrypting each block individually. This operating mode is called the
Electronic Code Book (ECB) mode. (Other operating modes include Ci-
pher Block Chaining (CBC) mode, Cipher Feedback (CFB) mode, and
Output Feedback (OFB) mode [24].) The point here is that the plaintext
space (i.e., the domain of Ek) may be finite but a message of arbitrary
length can be encrypted using Ek.

To summarize we give our first model of public-key cryptography.
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DEFINITION 9.1 A (deterministic) public-key cryptosystem
consists of the following components:

1. A set K called the key space whose elements are called keys.

2. A rule by which each k ∈ K is associated with a trap-door one-way
function Ek with domain Mk (the plaintext space) and range Ck
(the ciphertext space).

3. A procedure for generating a random key k ∈ K together with a
trap-door d for Ek and the inverse map Dk : Ck −→Mk such that

Dk(Ek(m)) = m, for all m ∈Mk.

The key space K is also called the public-key space, and the set of
trap-doors d is called the private-key space. Relative to (3), it is also
required that random keys k ∈ K and their corresponding trapdoors d
be easy to generate.

In practice, the complete description of all the components (1)–(3)
of a cryptosystem is public knowledge. A person (user) who wants to
become a part of the communication network can proceed as follows:

• Use (3) to generate a random key k ∈ K and the corresponding
trap-door d.

• Place the encryption function Ek (or equivalently the key k) in a
public directory (say in the user’s directory or home page), keeping
d and the decryption function Dk secret.

Now suppose that Bob wants to send a message m to a user Alice.
To do this, he simply looks up her public enciphering function EkA and
computes c = EkA(m) which he sends to Alice. On receiving c, Alice
computes

DkA(c) = DkA(EkA(m)) = m,

thereby recovering the message. An eavesdropper might intercept c and
can obtain EkA from public files, but cannot find m from c without
knowledge of dA (or equivalently DkA).

Actually, it is currently unknown as to whether one-way functions
truly exist; indeed, a proof of the existence of such functions would set-
tle the famous P=NP problem of computer science. However, there are
a number of functions that are believed to be one-way. For example, it is
assumed by experts that integer multiplication is a one-way function be-
cause it is very easy to multiply large integers, but it seems very hard to
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factor large numbers using the current knowledge and technology. This
assumption is the basis for several public-key cryptosystems including
the RSA and Rabin cryptosystems, discussed in Section 9.2.

In the above model of public-key cryptography, two identical plaintext
messages m are always encrypted into the same ciphertext c = Ek(m),
and in the ECB mode, this feature can cause some leaking of information.
For example, if the cryptosystem were used to encrypt personnel data
and the salary fields were encrypted separately, then by simply looking
at the ciphertexts one could identify people with the same salary. A
natural question arises: Is it possible to design a public-key system in
which such identical plaintexts are encrypted to different ciphertexts?
Surprisingly, the answer is yes! The idea is to use random numbers (also
referred to as redundant information or nonces).

To explain this idea more fully, suppose with each k ∈ K there is also
associated a large set Rk, called a randomization set , and a map

Ek :Mk ×Rk −→ Ck.

In order to encrypt a plaintext m ∈ Mk with such a map, one picks a
random number r ∈ Rk and computes the ciphertext

c = Ek(m, r).

Consequently, in the ECB mode of operation, a sequence of plaintext
blocks m1, . . . ,mt will be encrypted to a sequence c1, . . . , ct, where ci =
Ek(mi, ri) and each ri is chosen independently and randomly from Rk
for i = 1, . . . , t. The set Rk is usually large, so the chance of picking the
same r is small and the ciphertext values ci will generally be different
even when the corresponding plaintext blocks are identical.

Here again, just as in our first model of public-key cryptography, each
Ek is required to be a one-way function with a trap door, but it need not
be fully invertible since the recipient does not need to recover r. What is
needed for decryption is that Ek be partially invertible; i.e., there needs
to exist a function Dk : Ck −→ Mk such that Dk(Ek(m, r)) = m, for
all m ∈ Mk and all r ∈ Rk. The function Dk is called a partial inverse
of Ek since it recovers only part of the input to Ek. We call a one-way
function Ek with this property a partial-trap-door one-way function, and
we give our second model of public-key cryptography.

DEFINITION 9.2 A probabilistic public-key cryptosystem
consists of the following:

1. A set K called the key space whose elements are called keys.
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2. A rule by which each k ∈ K is associated with a partial-trap-door
one-way function Ek with domainMk ×Rk and range Ck. (Here,
Mk is called the plaintext space, Rk the randomization set, and
Ck the ciphertext space.)

3. A procedure for generating a random key k ∈ K together with a
partial-trap-door d for Ek and the map Dk : Ck −→Mk such that

Dk(Ek(m, r)) = m, for all m ∈ Mk, r ∈ Rk.

Again, the elements k ∈ K are called the public keys and the partial-
trap-doors d the private keys. Obviously, the deterministic model is a
special case of the probabilistic model in whichRk has only one element.
In order for the probabilistic model to be useful and secure, the following
properties are needed.

P1. Given a public key k it is easy to compute Ek(m, r) for m ∈ Mk

and r ∈ Rk.

P2. Given a private key d, it is easy to compute Dk(c) for c ∈ Ck.

P3. Knowing k and c ∈ Ck it is infeasible to decide for any m ∈ Mk

whether m can be encrypted to c under Ek. Thus, it is infeasi-
ble to determine Dk or d from the general information about the
cryptosystem.

P4. It is easy to generate a random key k ∈ K and the corresponding
private key d.

In the deterministic model it was required that it be infeasible to
determine m from a knowledge of only Ek and c (as Ek is one-way).
The corresponding requirement P3 for the probabilistic model is much
stronger because if one can not even decide whether a plaintext m can
be encrypted to a given c, then certainly one can not find a plaintext
that can be encrypted to c. In this connection we note that in the
deterministic model, it is trivial to decide if a plaintext m ∈ Mk can
be encrypted to a given ciphertext c ∈ Ck, as one can simply compute
Ek(m) and check whether or not it is c. Requirement P3 also implies
that even when an adversary has a potentially matched pair (m, c) of
plaintext and ciphertext, he or she can not even verify that there exists
r ∈ Rk such that Ek(m, r) = c. Therefore, a probabilistic cryptosystem
can provide a higher level of security than a deterministic one.

The first probabilistic public-key cryptosystem was given by McEliece
in 1978 (see [24]). In this system, the trap-door is based on the fact
that the encoding process for error-correcting codes can be easy whereas
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decoding can be hard. In 1985 ElGamal [8] proposed a probabilistic sys-
tem whose trap-door is based on the fact that exponentiation in a finite
field (to be described later) is easy, but the inverse process, the so-called
discrete logarithm problem, can be hard. The ElGamal system is a mod-
ification of the Diffie-Hellman key exchange scheme [7], whose security
is also based on the discrete logarithm problem. Both the ElGamal and
the Diffie-Hellman systems will be discussed in Section 9.3.

We close our general discussion of cryptographic models with a few re-
marks concerning a further generalization of property P3 which required
that it be hard to decide whether a given plaintext m can be encrypted
to a given ciphertext c. Even under this condition, there can still be leak-
ing of information. More specifically, it can happen that the probability
that m is encrypted to a given c is significantly different for different
values of m; consequently, for a given c it is possible to infer some par-
tial probabilistic information about the plaintext space. To avoid such
leaking, one can replace P3 by the following stronger condition.

P3′. Given k and c = Ek(m, r) ∈ Ck, it is infeasible to infer any partial
information about m.

While we shall not describe any systems with property P3′, we do give a
few references. The first probabilistic cryptosystem proven to satisfy P3′

was given by Goldwasser and Micali [10], and later Blum and Goldwasser
[4] gave a more efficient system.

In the discussions above we have tacitly assumed that the adversary
was passive in that he or she could only eavesdrop on a communica-
tion. However, if the adversary were active and could inject or alter
messages, then some systems (e.g., the Rabin and ElGamal systems,
discussed later) are vulnerable to an adaptive chosen ciphertext attack ,
in which the adversary is assumed so powerful that he or she can obtain
the decryptions of many ciphertexts of his or her own making, though
not the target ciphertext. Recently, Cramer and Shoup [6] proposed a
cryptosystem that is secure against such an attack and is believed to be
practical as well.

9.2 Cryptosystems Based on Integer Factorization

Given two primes, say p = 863 and q = 877, it is an easy process to
multiply them by hand to get the product n = 756851. However, it is
not nearly so easy to determine by hand the factors p and q from only
a knowledge of the product 756851. In a similar fashion, if p and q are
large, say 1,000 digits each, then a computer can readily find the 2,000
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digit product (since multiplying two k-digit numbers requires at most
O(k2) operations), but even the fastest of today’s computers cannot
generally determine the factors from only the product. This leads us to
consider two central problems in the history of mathematics, namely the
problems of (a) determining whether a given integer is a prime, and (b)
determining the factorization into primes of a given integer. These two
problems have been attacked by some of the best mathematicians of all
time, including the great C. F. Gauss (1777–1855) who wrote [9]:

The problem of distinguishing prime numbers from compos-
ite numbers and of resolving the latter into their prime fac-
tors is known to be one of the most important and useful in
arithmetic. It has engaged the industry and wisdom of an-
cient and modern geometers to such an extent that it would
be superfluous to discuss the problem at length . . . Further,
the dignity of the science itself seems to require solution of
a problem so elegant and so celebrated.

Gauss wrote these words some 175 years before primality testing and the
integer factorization problem were applied to modern day cryptography,
so as important as they were in Gauss’ day, they are even more important
today.

It is clear from his words that Gauss realized that primality testing
was a different problem from that of integer factorization, and since his
time, significant progress has been made on both of these problems. For
example, there is an efficient probabilistic algorithm called the Rabin-
Miller test (see [3, 5]) which can recognize a composite number of say
1,000 digits without ever factoring that number, and the primality of a
number can also be determined efficiently [1, 2]. There have also been
developed over the years much improved factoring algorithms [13], but
despite this progress, factoring a general composite number with as few
as say 200 digits is still out of reach of the fastest computers using the
best algorithms known today.

It is not our purpose here to delve into the theory of primality testing
and integer factorization (for which we refer the reader to [13, 20] for
recent developments). Instead, we simply wish to emphasize that it is
easy to generate and multiply large prime numbers but it is not generally
possible to factor the resulting answer in reasonable time; that is, integer
multiplication appears to be a one-way function. This belief forms the
basis for several public-key cryptosystems. We will discuss two of these
after reviewing several ideas from modular arithmetic.

Let n be a positive integer and let Zn = {0, 1, . . . , n− 1} denote the
ring of integers modulo n. It turns out that exponentiation in this ring
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is easy; i.e., for any α ∈ Zn and positive integer e, the computation of
αe mod n can be done efficiently. We demonstrate how this is done with
an example.

Example 9.1

In order to compute α29, first write 29 in binary form

29 = 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1.

It then follows that

α29 = α1·24

· α1·23

· α1·22

· α0·21

· α1 =

(((
(α2 · α)2 · α

)2)
α0

)2

· α.

Thus, only four squarings and three multiplications are needed to com-
pute α29 mod n. (Here, it is important that the reductions modulo n
be done at each squaring or multiplication to avoid large intermediate
integers.)

The above idea can be generalized to show that αe can be computed
with log2(e)−1 squarings and at most log2(e)−1 multiplications, where
log2(e) is the length of e in its binary representation. So, for any α ∈ Zn
and e > 0, αe mod n can be computed efficiently.

Now consider the reverse of the operation of exponentiation modulo
n. Assuming n is specified, two different problems arise: (a) given α and
y ∈ Zn, find an integer x (if one exists) such that αx ≡ y mod n; and
(b) given e and y ∈ Zn, find x (if one exists) such that xe ≡ y mod n.
These two problems are intrinsically different and each of them leads to
a public-key cryptosystem.

Problem (a) is called the discrete logarithm problem modulo n and is
believed hard for almost all n. (For certain values of n it is easy; e.g.,
when n has only small prime factors or when n is a prime but n− 1 has
only small prime factors.) We will discuss this problem and its relation
to the ElGamal system in the next section.

Problem (b) asks for the computation of an eth root of an integer y
modulo n. This is easy when the complete factorization of n is known
but believed hard otherwise. For cryptographic purposes, the most im-
portant case is when n is the product of two large (distinct) primes and
this is the case we shall develop here. (Our discussion can be readily
generalized to the situation where n is square-free.) The RSA system
arises when we examine this situation with gcd(e, φ(n)) = 1 and the
Rabin system comes from considering the case in which e divides φ(n).
Here φ(n) is the familiar Euler φ-function which equals the number of
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integers in Zn that are relatively prime to n. When n = pq with p and
q distinct primes, it is given by φ(n) = (p− 1)(q − 1).

Assume then that n = pq and let e be an integer with gcd(e, φ(n)) =
1. Then there exists an integer d such that ed ≡ 1 mod φ(n). Using
Fermat’s little theorem, it is straightforward to show that

xed ≡ x mod n, for all x ∈ Zn. (9.1)

This means that for any x ∈ Zn, xd mod n is an eth root of x modulo n;
hence an eth root of x can be computed efficiently provided d is known.
Thus an important question is whether d be computed efficiently.

The answer is yes if n can be factored but no otherwise. To explain
this statement, first assume that the complete factorization of n into
primes is known. Then φ(n) can be computed quickly. By applying the
extended Euclidean algorithm [3] to e and φ(n), it is easy to find d such
that ed ≡ 1 mod φ(n). Conversely, assume that a number d is known
with ed ≡ 1 mod φ(n). Then Φ = ed − 1 is a multiple of φ(n). By
Exercise 9.3, n can be easily factored using Φ. Hence computing d from
e and n is equivalent to factoring n. Therefore, the factors of n provide
a trap-door for inverting the function Pe,n : Zn −→ Zn defined as

Pe,n(x) = xe mod n,

where xe mod n denotes the smallest nonnegative integer congruent to
xe modulo n.

We can now describe the RSA cryptosystem, which bases its secu-
rity on the belief that the class of functions Pe,n are trap-door one-way
functions.

DEFINITION 9.3 RSA Cryptosystem

• The public-key space K is the set of integer pairs (e, n) where
n is a product of two large distinct primes, 1 < e < φ(n) and
gcd(e, φ(n)) = 1.

• For each k = (e, n) ∈ K, the plaintext and ciphertext spaces are
Mk = Ck = Zn.

• For each k = (e, n) ∈ K, the encryption function is Ek = Pe,n.

• For each k = (e, n) ∈ K, the corresponding private key is (d, n)
where ed ≡ 1 mod φ(n), and the decryption function is Dk = Pd,n.
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We also need a rule for generating a random pair of public and pri-
vate keys (e, n) and (d, n), but this is not difficult. We have mentioned
that primality testing can be done efficiently and further there are many
primes with a given number say of t digits (by the prime number the-
orem). This means that one can generate a t-digit prime as follows.
Choose a random number of t digits and test it for primality. If it is
not prime, repeat the procedure until a prime is obtained. In this way
one can get a pair of primes p and q of any desired size. Then defin-
ing n = pq and N = (p − 1)(q − 1), one may choose a random integer
e ∈ ZN such that gcd(e,N) = 1. For this e, it is a simple matter to
compute d with ed ≡ 1 mod N . Then (e, n) is a public key and (d, n) is
the corresponding private key.

We should point out that, even though computing d from e and n
is equivalent to factoring n, it has not been proven that inverting Pe,n
is equivalent to computing d or factoring n, as there may exist some
other method to compute eth roots modulo n without factoring n or
computing d. This raises the following research question.

Open Problem. Given a composite integer n and a positive integer e
with gcd(e, φ(n)) = 1, prove or disprove that computing eth roots modulo
n is equivalent to factoring n.

We next consider the case in which e divides φ(n), used in the Rabin
system. Here, the function Pe,n is no longer a permutation on Zn since
for a given e and y, there can be several x that map to the same y under
Pe,n. However, if e is small relative to n, say e ≤ (logn)c for some con-
stant c, then it can be proved that finding the inverse images of y under
Pe,n is equivalent to factoring n. Thus, if e is (say) one of 2, 3, 5, 6, 7,
then Pe,n is a candidate trap-door one-way function where the factors of
n again provide the trap-door for inverting Pe,n. Such trap-door one-way
functions can be used to build up public-key cryptosystems; indeed, the
Rabin system uses only the function P2,n and is described as follows.

DEFINITION 9.4 Rabin cryptosystem

• The public-key space is K = {n : n = pq, where p and q are large
distinct primes}.

• For each n ∈ K, the plaintext space is a subsetMn ⊂ Zn such that
x2

1 6≡ x2
2 mod n for all different x1, x2 ∈ Mn, and the ciphertext

space Cn = {x2 mod n : x ∈Mn}.

• For each n ∈ K, the encryption function is En = P2,n, the private-
key is the pair (p, q) such that n = pq, and the decryption function
is described below.
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To decrypt a ciphertext under the Rabin system, we need to describe
how to compute square roots modulo n given the factors of n. The idea
is to compute square roots modulo each prime factor of n separately
and then use the Chinese remainder theorem to combine them to get a
square root modulo n. Suppose that c ∈ Zn has a square root modulo
n. Then c also has square roots modulo p and q. Moreover, if r and s
are some square roots of c modulo p and q, respectively, and if a and b
are integers such that ap+ bq = 1, then it is easy to check that

±aps± bqr

is a square root of c modulo n for any choice of + and − signs. This
gives four square roots of c. It can be shown that c has exactly four
square roots if and only if gcd(c, n) = 1 and c has at least one square
root modulo n. To get the correct plaintext one just needs to check
which of the roots is in Mk.

It remains to show how to compute square roots modulo a prime
p. But this is also easy, especially when p ≡ 3 mod 4, for then r =
c(p+1)/4 mod p is a square root of c whenever c is a quadratic residue in
Zp: that is, c ≡ x2 mod p for some x ∈ Zp. If p is congruent to 1 modulo
4, square roots modulo p can also be computed efficiently but will not
be described here (see [3, 5] for details). Hence computing square roots
modulo n = pq is easy when p and q are known.

We conclude this section by showing that if one can compute square
roots modulo n then one can actually factor n; that is, we show that
computing square roots modulo n is equivalent to factoring n. This
also provides a nice example illustrating the power of randomness in
computing. Suppose that there is an algorithm σ which, when presented
a quadratic residue x ∈ Zn, outputs a square root of x in Zn, denoted by
σ(x). (One may think of σ as an algorithm, a black box, or an oracle.)
Then n can be factored by the following simple algorithm. First, pick a
nonzero element a ∈ Zn uniform randomly and compute x = a2 mod n.
Next, input x to σ and get b = σ(x). Then compute h = gcd(a−b, n). It
can be shown that for each run of the algorithm, the computed number
h is a proper factor of n with probability at least 1/2. If the algorithm
is run t times, then the probability of getting a factor of n is at least
1 − (1/2)t. Thus for t = 10, the chance of finding a factor of n is over
99.9%! Therefore n can be factored quickly.

As we have indicated, breaking the Rabin system is equivalent to fac-
toring integers. This is the first example of a public-key cryptosystem
with provable security against a passive adversary who can only eaves-
drop. Compared to the RSA system, the encryption in Rabin system
is more efficient (only one square), and the decryption costs approxi-
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mately the same as in RSA. However, the same proof above shows that
the Rabin system is totally insecure against an active adversary who
can mount a chosen ciphertext attack. Under this attack, an adversary
chooses some (possibly many) ciphertexts and asks for the corresponding
plaintexts, then deduces from them the secret key. The reader should
be able to see why this attack works against the Rabin system. Because
of this, the Rabin system is not used in practice.

9.3 Cryptosystems Based on Discrete Logarithms

Let Fq be a finite field of q elements so that q = pn for some prime p
and integer n. It is well known that the multiplicative group of nonzero
elements of Fq, denoted by F∗q , is a cyclic group of order q − 1. Thus if
α is a generator of this multiplicative group, then every nonzero element
β in Fq is given by β = αx for some integer x; in fact for each β there
is a unique integer in the range 0 ≤ x < q − 1 with this property. For a
given x and α, the power αx can be quickly computed by the square-and-
multiply method as demonstrated in Example 9.1. The inverse problem,
i.e., the problem of finding, for a given α and β, the x in the range
0 < x < q − 1 satisfying β = αx, is the discrete logarithm problem; it is
believed to be hard for many fields. Thus, exponentiation in finite fields
is a candidate for a one-way function.

Example 9.2

For the prime p = 1999, the ring Zp is a finite field and the nonzero
elements Z∗p of Zp form a group G under multiplication modulo p:

G = Z
∗
p = {1, 2, . . . , p− 1}.

Furthermore, the element α = 3 is a generator of G, and is also known
as a primitive element modulo p:

G = {1, α, α2, . . . , αp−2} mod p.

It is easy to compute that

3789 ≡ 1452 mod p.

However, it is not nearly so easy to determine that x = 789, given
only that x is in the range from 0 to 1997 and satisfies the equation

3x ≡ 1452 mod 1999.

A more realistic challenge is to find an integer x such that

3x ≡ 2 mod p, where p = 142 · (10301 + 531) + 1.



9.3 Cryptosystems Based on Discrete Logarithms 13

We know a solution exists but we don’t know its value.

The above discussion can be generalized to any group G (whose op-
eration is written multiplicatively). The discrete logarithm problem for
G is to find, for given α, β ∈ G, a nonnegative integer x (if it exists)
such that β = αx. The smallest such integer x is called the discrete
logarithm of β to the base α, and is written x = logα β. In Example 9.2,
log3 1452 = 789. Clearly, the discrete logarithm problem for a general
group G is exactly the problem of inverting the exponentiation function
exp : ZN −→ G defined by exp(x) = αx where N is the order of α.

The difficulty of this general discrete logarithm problem depends on
the representation of the group. For example, considerG to be the cyclic
group of order N . If G is represented as the additive group of ZN , then
computing discrete logarithms in G is equivalent to solving the linear
equation ax ≡ b mod N , where a, b are given integers; this can be easily
done by using the extended Euclidean algorithm. If G is represented as
a subgroup of the multiplicative group of a finite field as above or as a
multiplicative group of elements from Zm (where m may be composite
or prime), then the problem can be “hard.” For an elliptic curve group
[14], the discrete logarithm problem seems to be harder. (As we have
indicated, no one has been able to prove that these discrete logarithm
problems are really hard, but they have been studied by number theorists
for considerable time with only limited success.) For recent surveys and
a more detailed study of the discrete logarithm problem, we refer the
reader to [15, 18, 19]. We now describe two cryptosystems whose security
is based on the assumption that the discrete logarithm problem is hard.

The Diffie-Hellman key exchange scheme is a protocol for establishing
a common key between two users of a classical cryptosystem. As we
mentioned earlier, for a large network of users of a conventional cryp-
tosystem, the secure distribution of keys can be complicated and logistic.
In 1976, Diffie and Hellman [7] gave the following simple and elegant so-
lution for this problem.

DEFINITION 9.5 Diffie-Hellman key exchange scheme. Given
the public group G and an element α ∈ G of order N , two parties, say
Bob and Alice, establish a common key using the following steps:

• Alice picks a random integer a ∈ ZN , computes A = αa, and sends
it to Bob.

• Bob picks a random integer b ∈ ZN , computes B = αb, and sends
it to Alice.
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• Alice computes Ba = αba, and Bob computes Ab = αab. Their
common key is k = αab = αba.

An eavesdropper, who knows G and α from the public directory, after
intercepting A and B, is then faced with the following problem.

DEFINITION 9.6 Diffie-Hellman problem. Let G be a group
and let α ∈ G. Given A = αa and B = αb, compute k = αab.

If one can solve the discrete logarithm problem, then it is clear that
one can solve the Diffie-Hellman problem; hence the latter problem is
no harder than the former. It is believed that the two problems are
equivalent, and in fact this equivalence has been established for some
special cases. In any event, the Diffie-Hellman key exchange scheme is
secure provided the Diffie-Hellman problem is hard.

The Diffie-Hellman key exchange scheme is widely used (with some
variants) in practice to generate “session keys,” for example in secure in-
ternet transactions. This scheme itself is not a public-key cryptosystem;
however, ElGamal [8] showed that it could easily be converted into one.
Note that if Alice publishes kA = αa but keeps a secret, then anyone, say
Charlie, can share a common key with Alice in the same way that Bob
did; i.e., Charlie can pick a random integer c, and compute r = αc and
kcA = αac. Before sending r to Alice, Charlie can encrypt any message
m he wishes by simply computing the product r1 = m · kcA. Then he
sends the pair (r, r1) to Alice. Alice can compute kcA = ra from r and
her private key a, and so decrypt m.

DEFINITION 9.7 ElGamal cryptosystem. Given the public
group G (written multiplicatively) and an element α ∈ G of order N ,
let G1 =<α>, the subgroup of G generated by α.

• The key space is K = G1.

• For each k ∈ K, the plaintext and ciphertext spaces are

Mk = G, Ck = G1 ×G = {(β1, β2) : β1 ∈ G1, β2 ∈ G}.

The randomization set is Rk = ZN .

• For each k ∈ K, the encryption function Ek :Mk ×Rk −→ Ck is
given by Ek(m, r) = (αr , kr ·m).
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• For each k ∈ K, the corresponding private key is the integer d ∈ ZN
such that k = αd, and the decryption function Dk : Ck −→Mk is
given by Dk(c1, c2) = c2 · (cd1)−1.

It is easy to check that if k = αd, then Dk(Ek(m, r)) = m for all m ∈
Mk and r ∈ Rk. To obtain a random key, one just chooses d ∈ ZN
at random and computes k = αd. In practice, one has to be extremely
careful in choosing the group G so that the discrete logarithm problem is
hard. Originally, Diffie and Hellman (1976) and ElGamal (1985) used the
multiplicative group of Zp for a large prime p. The above description of
their systems is actually a natural generalization to an arbitrary group.
The most studied groups for cryptographic purposes are multiplicative
subgroups of Zp, Zm (where m is a product of two large primes), F2n ,
and elliptic curve groups over finite fields. While Zp is currently the
most popular choice, there is increasing interest in using elliptic curves
over finite fields, particularly the fields F2n [14].

Note that breaking the ElGamal cryptosystem by a ciphertext-only
attack is equivalent to solving the Diffie-Hellman problem. Thus the
ElGamal cryptosystem is another example with provable security if the
Diffie-Hellman problem is indeed hard. The major disadvantage of the
system is the message expansion by a factor of two, but there are ways
to improve it in both efficiency and security as we discuss next.

Observe that the multiplicative operation kr · m in the encryption
function Ek could be replaced by other operations. For example, if the
elements in G are represented as binary strings of 0’s and 1’s, then we
can let

Ek(m, r) = (αr , kr ⊕m)

where m is any binary string and ⊕ is the bitwise “exclusive or” oper-
ation (XOR); e.g., (1100) ⊕ (0101) = 1001. In this case, m does not
have to be in G. If the elements in G are represented as binary strings
of length `, then the plaintext space Mk can be any subset of binary
strings of length `. Note that in the ElGamal cryptosystem, it is re-
quired that a plaintext be in the group. This is not trivial to achieve for
some groups (e.g., elliptic curves), but the above approach solves this
problem. Also, ⊕ is computationally cheaper than multiplication in a
group.

However, the above alternative does not solve the problem of message
expansion. One way around this is to use kr as a key in a conventional
cryptosystem, say DES or IDEA [12]. That is, define

Ek(m, r) = (αr , Ẽkr (m)),
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where Ẽ is any encryption function in a conventional cryptosystem. Here
m can be a message of arbitrary length and Ẽ operates on m, say, with
cipher block chaining (CBC) mode. With this modification, the cryp-
tosystem is sometimes called a hybrid cryptosystem, which combines the
advantages of both public-key and conventional cryptosystems. Such
cryptosystems are practical but do not have provable security (a typi-
cal phenomenon for conventional cryptosystems). To improve security,
one can use a cryptographically strong pseudo-random bit generator to
expand kr to a much longer string and then XOR it with m.

It should be noted that the ElGamal cryptosystem is completely in-
secure against an adaptive chosen ciphertext attack, mentioned earlier.
Indeed, given an encryption (c1, c2) of a message m, one can ask for the
decryption of (c1, c2·α), which is α·m, som can be deduced immediately.

9.4 Digital Signatures

Suppose that you wish to transmit an electronic file. A natural question
is how one can put a piece of information at the end of the file that serves
the same role as a handwritten signature on a document. It turns out
that the digital signature is one of the main applications of public-key
cryptography.

Handwritten signatures have the following main features:

• The signature is unique and unforgeable. It is proof that the signer
deliberately signed the document. It convinces the recipient of the
document and any third party, say a judge, that it has been signed
by the claimed signer.

• The signature is not reusable. It is part of the document and can
not be moved to another document. If the document is altered or
the signature is moved to another document then the signature is
no longer valid.

How do we realize a signature digitally? Since it is easy to copy, al-
ter, or move a file on computers without leaving any trail, one needs
to be very careful in designing a signature scheme. In keeping with the
above properties of a handwritten signature, a digital signature should
be a number that depends on some secret known only to the signer and
on the content of the message being signed. It must also be verifiable:
i.e., the recipient of the message (or any unbiased third party) should
be able to distinguish between a forgery and a valid signature without
requiring the signer to reveal any secret information (private key). Thus
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in a signature scheme, we need two algorithms: one used by the per-
son signing the message and the other used by the recipient verifying
the signature. In the following, we describe two methods based on the
RSA and the ElGamal cryptosystems [8, 21]. Incidentally, the recently
adopted Digital Signature Algorithm (DSA) in the US Digital Signature
Standard (DSS) [17] is a variation of ElGamal signature scheme, and we
will describe it as well.

To describe the RSA digital signature scheme, note that the encryp-
tion function Ek = Pe,n and the decryption function Dk = Pd,n in the
RSA system are commutative: that is,

Dk(Ek(x)) = Ek(Dk(x)) ≡ xed ≡ x mod n, for all x ∈ Zn.

Suppose that a user Alice has public key k = (e, n) and private key
(d, n) for the RSA cryptosystem. Then Alice can use her private key
to encrypt a message (or a file) m ∈ Zn and use the ciphertext s =
Dk(m) = md mod n as her signature for the message m. Anyone, seeing
the message m and the signature s, can compute m1 = Ek(s) and accept
the signature if and only ifm1 = m. This proves that Alice indeed signed
the message m, since an adversary trying to forge a signature for Alice
on a message m would have to solve the equation se ≡ m mod n for
s ∈ Zn (which is presumably hard). So if Bob shows m and s to a judge
and if Ek(s) = m, the judge should be convinced that no one but Alice
could have signed the statement.

There is one catch though — and this occurs when all or a significant
fraction of the elements in Zn represent valid messages. In this case,
one could easily forge a signature as follows. Pick s ∈ Zn at random
and compute m = Ek(s) where k is Alice’s public key. Then with high
probability, m is a valid message and in this case, since Ek(s) = m
holds, s is a valid signature of Alice for m. To avoid this possibility in
practice, one adds some redundant information to the message. Namely,
we require the message to have some additional structure (e.g., it should
be in some standard format). Thus, a random element in Zn will be
a valid message with only vanishing probability. This comment also
applies to the DSA and the ElGamal signature schemes discussed below.

The ElGamal cryptosystem cannot, as it stands, be used to generate
signatures, but it can be modified to suit signature purposes. In this
case, the signature scheme is probabilistic in that there are many possible
valid signatures for every message and the verification algorithm accepts
any of the valid signatures as authentic. Suppose that p is a large prime
for which computing discrete logarithms in Zp is infeasible, and α ∈ Zp
is a primitive element. Also suppose that Alice chooses a random integer
a ∈ Zp−1 as her private key and β = αa mod p as her public key. To
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sign a message m ∈ Zp−1, Alice can

• Pick a random k ∈ Zp−1, with gcd(k, p− 1) = 1.

• Compute γ and δ where

γ = αk mod p, δ = (m− aγ)k−1 mod (p− 1).

• Sign the message m with (γ, δ).

Since βγγδ ≡ αaγ+kδ ≡ αm mod p, anyone can verify Alice’s signature:

• Get Alice’s public key β (α and p are public).

• Compute e1 = βγγδ mod p and e2 = αm mod p.

• Accept the signature as valid only if e1 = e2.

The US Digital Signature Standard (DSS) was adopted on December
1, 1994. In DSS, a digital signature algorithm (DSA) is proposed and
it is a variation of the ElGamal signature scheme. We describe DSA
briefly as follows. Choose primes p and q with q|(p− 1) and

2159 < q < 2160, 2L−1 < p < 2L.

That is, q has 160 bits and p has L bits where 512 ≤ L ≤ 1024 and
L is a multiple of 64. Suppose α ∈ Zp has order q: i.e., α 6≡ 1 mod p
but αq ≡ 1 mod p. A user, say Alice, has a random nonzero integer
a ∈ Zq as her private key and β = αa mod p as her public key. To sign
a message m ∈ Zq, Alice can

• Pick a random nonzero k ∈ Zq.

• Compute γ = (αk mod p) mod q, δ = (m+ aγ)k−1 mod q.

• Sign the message m with (γ, δ).

To verify Alice’s signature (γ, δ) for the message m, the receiver can

• Get Alice’s public key β.

• Compute

e1 = mδ−1 mod q, e2 = γδ−1 mod q, γ1 = (αe1βe2 mod p) mod q.

• Accept the signature as valid only if γ1 = γ.
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To see why this works, note that

kδ ≡ m+ aγ mod q.

Thus

αkδ ≡ αm+aγ mod p ≡ αmβγ mod p.

Since q is prime and δ 6≡ 0 mod q, we see that the map x 7→ xδ in the
multiplicative group generated by α is a permutation. Thus

αk ≡ αmδ
−1

βγδ
−1

mod p.

Reducing both sides modulo q (after they are reduced modulo p), we
have γ = γ1.

Note that in the above signature scheme, the size of a signature equals
(in RSA) or doubles (in both ElGamal and DSA) the size of the message
being signed. This can be awkward in practice, especially if the message
being signed is long. One way to overcome this problem is to first hash
the message to a string of fixed size and then sign the hashed value of the
message. Together with DSS, the National Institute of Standards and
Technology (NIST) has also published a Secure Hash Standard (SHS)
[17]. In SHS, a Secure Hash Algorithm (SHA) is proposed, which maps
a message of arbitrary length to a binary string of length 160. We will
not describe the details here, and the interested reader is referred to the
references.

Public-key cryptography has many other applications, including iden-
tification, authentication, authorization, data integrity, and smart cards.
In fact, NIST proposed in February 1997 a standard for entity authenti-
cation using public-key cryptography; the reader can consult the website
<http://csrc.ncsl.nist.gov/fips/>. For further study we recom-
mend the books [16, 22, 23, 24], and for the early history of cryptogra-
phy, we suggest [11]. Computational number theory is nicely covered in
[3, 5, 20]. Additional information on cryptographic methods, algorithms,
and protocols can be found at <http://www.ssh.fi/tech/crypto/>.

9.5 Exercises and Projects

1. Develop an algorithm for computing αe mod n using the square-and-
multiply method indicated in Example 9.1. Implement your algorithm
and test it for n = 12345; α = 123; and e = 0, 111, 12344, 54321.

2. Let n = 863 · 877 = 756851 and let e = 5. Given that 863 and 877
are primes, find φ(n) and compute d such that ed ≡ 1 mod φ(n).

3. The following problems relate to the discussion of the RSA system.
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a. Given n = pq = 591037 and φ(n) = 589500, determine p and q
by first determining a quadratic equation that p satisfies and then
solving it using the quadratic formula.

b. Let M be a given multiple of φ(n). Write M = 2em where m
is odd. Prove that for random a, b ∈ Zn, the probability that
gcd(n, am2i − bm2i) is a proper factor of n for some 0 ≤ i ≤ e
is at least 1/2. As a consequence, show that n can be factored
efficiently when a multiple of φ(n) is given.

4. You are an RSA cryptosystem user with public key n = 756851 and
e = 5. Suppose that a number in Zn is always written as a 6 digit
number (padding zeros in front if necessary). Then the numbers in Zn
represent a triple of letters under the correspondence 00↔ A, 01↔ B,
. . ., 25 ↔ Z; e.g., 1719 = 001719 ↔ ART . Your private key is the
number d computed in Exercise 9.2. Decrypt the following ciphertext:

375365 752560 389138 193982 283519 350016 92892 86995
604644 125895 706746 323635 574615 226430 533566 419464

5. Suppose that p is a prime congruent to 3 modulo 4 and c is a quadratic
residue modulo p. Prove that x = c(p+1)/4 mod p is a square root of c
modulo p.

6. Suppose Bob is a Rabin cryptosystem user with public key n = 5609
and private key (p, q) = (71, 79). With each number in Zn representing
two letters as in Exercise 9.4, decrypt the following ciphertext:

924 642 2299 223 5374 121 2217 4474 719 839 5060
1474 3607 3763 2015 3586 3204 5060 10 2017 169 5101
446 4837 288 2217 4474 719 839 5060 1474 3988

7. Investigate how to choose a convenient plaintext space for Rabin’s
cryptosystem. That is, for n = pq, find a subset Mn of Zn such that (a)
x2

1 6≡ x2
2 mod n for all different x1, x2 ∈ Mn; (b) for any x ∈ Zn, it is

easy to decide whether x ∈Mn; and (c) Mn should be large, say of size
O(n).

8. Decrypt the following ElGamal ciphertexts. The parameters are
p = 3119, α = 7, β = 1492, and d = 799. Each number in Zp represents
two letters as in Exercise 9.4.
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(1139, 1035) (79, 1438) (1489, 2725) (2928, 87) (691, 888)
(3010, 1012) (1316, 1734) (1790, 1385) (2775, 1267) (1807, 2319)
(2910, 2668) (142, 238) (123, 1994) (916, 2055) (3053, 2491)

(810, 247) (1674, 2521) (617, 1798) (2705, 144) (776, 650)
(1440, 311) (1620, 713) (938, 572) (2209, 968) (1037, 45)

9. Let p = 877 and α = 2. Alice uses the ElGamal signature scheme,
and her public key is β = 253.

a. Verify that (137, 217) is a valid signature of Alice for the message
m = 710.

b. Suppose your secret key is a = 133. Sign the message m = 606.

10. Suppose that Bob uses the DSA with q = 103, p = 10 · q+ 1 = 1031,
α = 14, a = 75, and β = 742. Determine Bob’s signature on the message
x = 1001 using the random value k = 49, and verify the resulting
signature.
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