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Abstract. A new method is presented for factorization of bivari-
ate polynomials over any field of characteristic zero or of relatively
large characteristic. It is based on a simple partial differential
equation that gives a system of linear equations. Like Berlekamp’s
and Niederreiter’s algorithms for factoring univariate polynomials,
the dimension of the solution space of the linear system is equal to
the number of absolutely irreducible factors of the polynomial to
be factored and any basis for the solution space gives a complete
factorization by computing gcd’s and by factoring univariate poly-
nomials over the ground field. The new method finds absolute and
rational factorizations simultaneously and is easy to implement for
finite fields, local fields, number fields, and the complex number
field. The theory of the new method allows an effective Hilbert
irreducibility theorem, thus an efficient reduction of polynomials
from multivariate to bivariate.

1. Introduction

The past few decades have witnessed dramatic progresses on fac-
toring polynomials. A spectacular success is the LLL lattice basis re-
duction algorithm of Lenstra, Lenstra and Lovász (1982) which gives
for the first time a polynomial time algorithm for factoring univari-
ate polynomials over rational numbers and since then it has become
a ubiquitous tool in solving scientific problems in many areas includ-
ing cryptography. Soon after that paper, A. K. Lenstra (1984, 1985,
1987), Chistov (1984, 1987, 1991), Grigoryev (1984), and Chistov and
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Grigoryev (1984) apply the LLL lattice basis reduction technique to ob-
tain polynomial time algorithms for multivariate polynomials over var-
ious fields including finite fields, local fields, number fields, and fields
finitely generated over any prime field. At approximately the same
time, Kaltofen (1985, 1990, 1995), and von zur Gathen and Kaltofen
(1985) give a different polynomial time algorithm using Newton ap-
proximation for multivariate polynomials over rational numbers and
over finite fields. By the mid 1980’s, polynomial time algorithms for
factoring multivariate polynomials over many fields have been firmly
established.1

There are also several other approaches to factoring polynomials.
Kaltofen and Trager (1990) and Rubinfeld and Zippel (1994) use mod-
ular interpolation to reduce the problem to univariate factorization;
their algorithm relies on a conjectured effective version of Hilbert irre-
ducibility theorem. Duval (1991) uses special function spaces based on
algebraic geometry. Bajaj, Canny, Garrity and Warren (1993) employ
topological method to factor polynomials over complex numbers. The
last two papers and Kaltofen (1990, 1995) deal with so-called absolute
factorization, that is, factoring over the algebraic closure of the ground
field, which is desirable in several applications. In contrast, other algo-
rithms mentioned above deal mainly with rational factorization, that
is, factoring over the ground field.
All the above algorithms run in polynomial time or are conjectured

so (using randomization and for dense polynomials). Their running
time bounds, however, seem to have high exponents. For example,
for rational factorization of a bivariate polynomial of total degree n
over a fixed finite field Fq, Lenstra’s algorithm based on lattice basis
reduction needs O(N4) operations [39, Theorem 2.18] while von zur
Gathen and Kaltofen’s based on Newton approximation seems to need
O(N6) operations [23, Theorem 3.2]2 where N = O(n2) is the input
size (the factor log q is not counted as it is viewed as a constant here)
and for simplicity we ignore the logarithmic factors of n in the running
times. In contrast, the work of Berlekamp (1967,1970), Cantor and
Zassenhaus (1981), von zur Gathen and Shoup (1992), Kaltofen and
Shoup (1998) shows that univariate polynomials over finite fields can

1Professor Kaltofen told the author that his algorithm (A polynomial-time re-
duction from bivariate to univariate integral polynomial factorization, Proc. 23rd
FOCS, 1982, 57–64) came out a few months earlier than Lenstra’s and Chistov and
Grigoryev’s.
2Through an e-mail communication (March 6, 2000), Professor Kaltofen pointed

out that the time O(N6) can be reduced to O(N3) by using some nontrivial
technique.
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be factored in quadratic or even subquadratic times. In this paper, we
present a new method for factoring bivariate polynomials with a near
quadratic running time for both rational and absolute factorizations.
Our method was inspired by the recent work of Niederreiter (1993)

and Ruppert (1986, 1999). Niederreiter’s algorithm is based on an or-
dinary differential equation for factoring univariate polynomials over
finite fields. Our method is based on a partial differential equation
used by Ruppert in his study of irreducibility of bivariate polynomi-
als. The partial differential equation gives a system of linear equations.
Like Berlekamp’s and Niederreiter’s algorithms for factoring univariate
polynomials, the dimension of the solution space of the linear system is
equal to the number of absolutely irreducible factors of the polynomial
to be factored and any basis for the solution space yields a complete
factorization by computing gcd’s and by factoring univariate polyno-
mials over the ground field. Our method may be viewed in some sense
as a parallel theory for bivariate polynomials to those of Berlekamp
and Niederreiter for univariate polynomials. Here we find rational and
absolute factorizations simultaneously. The major advantage of our
linear system is that it is simple and can be solved by the fast methods
of Lanczos or Wiedemann via a black box for fast multiplication of
polynomials. Our theory for factoring bivariate polynomials also gives
a new effective Hilbert irreducibility theorem, thus allows an efficient
reduction of polynomials from multivariate to bivariate.
In practice rational factorization of most polynomials can be com-

puted efficiently using Hensel lifting; see Musser (1975), and Wang
(1978) for more information. In fact, Lauder and the author [19] re-
cently proved that the average running time of a Hensel lifting based
algorithm for factoring bivariate polynomials over finite fields is almost
linear. There are, however, infinitely many polynomials that need ex-
ponential time via Hensel lifting. For those polynomials, the algorithm
presented in this paper should be applied. So a hybrid method com-
bining Hensel lifting and our algorithm gives an efficient practical algo-
rithm for all polynomials. It should also be noted that there is another
emerging new method based on Newton polytopes [15, 16, 17, 18],
which may outperform Hensel lifting technique.
Absolute factorization is fundamental in computation in commuta-

tive algebra, algebraic geometry and number theory. Here Hensel lift-
ing technique seems no longer applicable. Duval’s algorithm mentioned
above first computes a linear space of funtions which has the nice prop-
erty that its dimension equals the number of absolutely irreducible
factors. The description of her linear space, however, is much more
complicated than ours and is only conjectured to be computable in



4 SHUHONG GAO

polynomial time. Kaltofen’s method based on Newton approximation
runs in polynomial time but needs to identify factors computed over
different extensions of the ground field. The latter presents a nontrivial
problem in implementation for many fields (see Kaltofen (1990) over
real numbers). The new method presented in this paper avoids both
Duval’s and Kaltofen’s problems. Another advantage of our method is
that it finds for each factor the smallest extension field that contains
the coefficients of the factor. Our method is not only simple but also
practical for absolute factorization.
The remainder of the paper is organized as follows. In the next sec-

tion, we present the basic theory over an arbitrary field. In particular,
we characterize the solution space of the linear system from the PDE
and relate it to the irreducible factors of the polynomial to be factored.
We show how to extract factors from a given basis for the linear sys-
tem. In Section 3, we present our algorithm for factoring bivariate
polynomials and demonstrate it by factoring an integral polynomial
over rational, real and complex numbers and finite fields. In Section
4, we give a running time analysis of our algorithm for finite fields and
make some brief comments over complex numbers. In Section 5, we
give a new effective Hilbert irreducibility theorem.

2. Theory

Let F be any field and F its algebraic closure. Given a polynomial
f ∈ F[x, y], we want to find its irreducible factors over F and over F.
An irreducible factor of f over F is called a rational irreducible factor,
while an irreducible factor over F is called an absolutely irreducible
factor. By computing f/ gcd(f, ∂f

∂x
), we may reduce f to the case where

gcd(f, ∂f
∂x
) = 1. Henceforth, we assume that f is nonconstant and

gcd(f, ∂f
∂x
) = 1. For a polynomial g ∈ F[x, y], we identify it with its

associates αg where α ∈ F and α 6= 0. In particular, we may assume
that g has at least one term with coefficient 1, thus its coefficients are
contained in an extension of F with the smallest degree.
Denote fx =

∂f
∂x
. Since gcd(f, fx) = 1 in F[x, y], f is squarefree and

each factor has degree at least 1 in x. Suppose

f = f1f2 · · · fr (1)

where fi ∈ F[x, y] are distinct and irreducible over F. Note that fx =∑r
i=1

f
fi

∂fi
∂x
. Define

Ei =
f

fi

∂fi

∂x
∈ F[x, y], 1 ≤ i ≤ r. (2)
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Then

fx = E1 + E2 + · · ·+ Er and EiEj ≡ 0 mod f for all i 6= j.

Factoring f is equivalent to computing Ei, 1 ≤ i ≤ r. For univariate
polynomials f , Berlekamp’s and Niederreiter’s algorithms first solve
a system of linear equations to obtain polynomials of the form g =∑
λiEi where λi ∈ F, then use g to split f . We develop below a

parallel theory for bivariate polynomials.
In his study of irreducibility of polynomials, Ruppert (1986, 1999)

considers the following partial differential equation

∂

∂y

(
g

f

)
=
∂

∂x

(
h

f

)
(3)

where g, h ∈ F[x, y]. In fact, the equation (3) comes from analysis and
gives a condition for the differential 1-form g

f
dx+ h

f
dx to be closed.

Theorem 2.1 (Ruppert 1999). Let F be any field of characteristic
zero. Then f ∈ F[x, y] is absolutely irreducible iff (3) has no nonzero
solution g, h ∈ F[x, y] with deg g ≤ (m− 1, n) and deg h ≤ (m,n− 2).

Here deg g ≤ (m− 1, n) means that degx g ≤ m− 1 and degy g ≤ n
and similarly for h. In the following, we say that g ∈ F[x, y] has
bidegree (m,n) if degx g = m and degy g = n, or bidegree at most
(m,n) if degx g ≤ m and degy g ≤ n. Also, we make the convention
that if deg g ≤ (m,n) and m or n is negative then g = 0.
Since (3) is just a linear system (see (5) below), Theorem 2.1 shows

that absolute irreducibility of polynomials over a field of characteristic
zero can be decided in deterministic polynomial time. Also, the next
result follows easily from Theorem 2.1.

Corollary 2.2 (Ruppert 1999). Let f ∈ Z[x, y] be an absolutely irre-
ducible polynomial with bidegree (m,n) and height h (the maximum of
the absolute values of the coefficients of f). There is a positive integer
M with

M ≤ [m(n+ 1)n2 + (m+ 1)(n− 1)m2]mn+(n−2)/2 · h2mn+n−1

such that for all primes p not dividing M the polynomial f remains
absolutely irreducible modulo p.

If f is reducible over F then the equation (3) has nonzero solutions.
In this paper, we show how to use these solutions to actually factor
f . To obtain a nice characterization of the solution space, we need to
relax Ruppert’s condition on the degrees of g and h. We require that

deg g ≤ (m− 1, n), deg h ≤ (m,n− 1). (4)
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Note that (3) can be rewritten as

f ·

(
∂g

∂y
−
∂h

∂x

)
+ h ·

∂f

∂x
− g ·

∂f

∂y
= 0. (5)

Since differentiation is linear over F, the equation (5), and thus (3), is
a system of linear equations for the coefficients of g and h. Hence all
the solutions g, h to (3) form a linear space over F and over F as well.
As gcd(f, fx) = 1, it is easy to check that for any g ∈ F[x, y] there is
at most one h ∈ F[x, y] satisfying (3) and (4). Define

G = {g ∈ F[x, y] : (3) and (4) hold for some h ∈ F[x, y]}, (6)

G = {g ∈ F[x, y] : (3) and (4) hold for some h ∈ F[x, y]}. (7)

Then G ⊆ G. It is straightforward to check that g = fx and h = fy
satisfy (3) and (4), so fx ∈ G ⊆ G. Certainly, G is a finite dimensional
vector space over F and G finite dimensional over F. The next theorem
determines their dimensions and structures.

Theorem 2.3. Let F be any field of characteristic p and f ∈ F[x, y]
with gcd(f, fx) = 1 and bidegree (m,n). Suppose f has r distinct irre-
ducible factors in F[x, y] as in (1) and let G and G be defined as in (6)
and (7). If p = 0 or p > (2m− 1)n then

dimF(G) = dimF(G) = r, (8)

and each g ∈ G is of the form

g =
r∑
i=1

λiEi, λi ∈ F, (9)

where Ei are defined in (2).

To prove Theorem 2.3, we need a result on derivatives of algebraic
functions. We view a polynomial in F[x, y] as a univariate polynomial
in x with coefficients in F(y), the field of rational functions in y. Hence
we can talk about roots of f in the algebraic closure of F(y) and they
are algebraic functions in y. Derivatives of algebraic functions with
respect to y can be defined uniquely. To be precise, let α be algebraic
over F(y). Suppose α is separable over F(y), as in our case below, and
let T (x, y) ∈ F[x, y] be the minimal polynomial of α over F(y). Since
T (α, y) = 0, we have

∂

∂y
α = −

∂

∂y
T (α, y)/

∂

∂x
T (α, y),

where ∂
∂x
T (α, y) 6= 0 as α is separable.
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Lemma 2.4. Let f ∈ F[x, y] with gcd(f, fx) = 1 and bidegree (m,n).
Let β be a root of f in the algebraic closure of F(y). Let

α =
g(β, y)

fx(β, y)

where g ∈ F[x, y] with bidegree at most (m − 1, n). Suppose the char-
acteristic of F is either zero or larger than (2m − 1)n. Then ∂

∂y
α = 0

implies that α is algebraic over F.

Proof. We may assume that α 6= 0. The minimal polynomial of α
over F(y) can be written uniquely as

T (x, y) = v0(y) + v1(y)x+ · · ·+ v`(y)x
` ∈ F[x, y]

where ` ≥ 1, v0(y)v`(y) 6= 0 and gcd(v0(y), . . . , v`(y)) = 1 in F[y].
Since T (α, y) = 0, we have

∂

∂x
T (α, y)

∂α

∂y
+
∂

∂y
T (α, y) = 0.

As ∂α
∂y
= 0, it follows that ∂

∂y
T (α, y) = 0, i.e.,

∂

∂y
v0(y) +

∂

∂y
v1(y) · α+ · · ·+

∂

∂y
v`(y) · α

` = 0.

Since T (x, y) is the minimal polynomial of α, we see that

∂

∂y
vi(y) = 0, i = 0, 1, . . . , `. (10)

If F has characteristic zero then (10) implies that vi(y) ∈ F, hence α is
algebraic over F.
Assume that F has characteristic p > 0. Then each vi(y) is of the
form vi(y) = ui(y

p) where ui(y) ∈ F[y] for i = 0, 1, . . . , `. Suppose
α 6∈ F. Then at least one of the vi(y) has degree ≥ 1, hence at least p.
This means that the degree of T (x, y) in y is at least p. Define M(x, y)
to be the following resultant in z:

Resz (f(z, y), xfx(z, y)− g(z, y)) ∈ F[x, y].

Then M(α, y) = 0, thus T (x, y) divides M(x, y) in F[x, y]. This is
impossible as the degree of M(x, y) in y is at most (2m− 1)n < p. �
Proof of Theorem 2.3. One checks that E1, . . . , Er ∈ G and are

linearly independent over F. Hence dimFG ≥ r. Let g ∈ G with some
h ∈ F[x, y] satisfying (3) and (4). We need to show that g is a linear
combination of E1, . . . , Er over F.
We view f, g, h as polynomials in x with coefficients in F(y), the field

of rational functions in y over F. Write f = umx
m + · · · + u1x + u0

where ui ∈ F[y] and um 6= 0. Since gcd(f, fx) = 1 in F[x, y], we have
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gcd(f, fx) = 1 in F(y)[x], so f has no repeated roots in the algebraic
closure of F(y). Let L be a splitting field of f over F(y). Then there
exist distinct ci ∈ L such that

f = um

m∏
i=1

(x− ci).

Here ci’s are algebraic functions in y. Since degx g < degx f , we have
the partial fraction decompositions

g

f
=

m∑
i=1

ai

x− ci
,
h

f
=

m∑
i=1

bi

x− ci
+ h1 (11)

where ai = g(ci, y)/fx(ci, y) ∈ L, bi ∈ L and h1 ∈ F(y) ⊆ L.
Note that L is separable over F(y), the differential operators ∂

∂x
and

∂
∂y
extend uniquely to L[x]. We have ∂

∂x
L = {0} and ∂

∂y
L ⊆ L. Since

∂

∂y

(
g

f

)
=

m∑
i=1

(
1

x− ci

∂ai

∂y
+

ai

(x− ci)2
∂ci

∂y

)
,

∂

∂x

(
h

f

)
=

m∑
i=1

−bi
(x− ci)2

,

the equation (3) implies that ∂ai
∂y
= 0. By Lemma 2.4, it follows that

ai ∈ F. If ci and cj are algebraic conjugate over F(y) then so are ai
and aj, hence ai = aj as they are in F. Therefore ai is constant for ci
in the same conjugacy class. Now we group the terms of g/f in (11)
by conjugacy of ci’s and combine the terms in each group. Since each
conjugacy class of ci’s corresponds to an irreducible factor of f over
F(y), i.e., one of f1, . . . , fr, we have that

g

f
=

r∑
i=1

λi
1

fi

∂fi

∂x

where λi ∈ F. Therefore, each g ∈ G is of the form (9). Hence
dimFG = r.
To show that dimFG = r, it suffices to construct r polynomials in G
that are linearly independent over F. If all Ei ∈ G (i.e. fi ∈ F[x, y]) then
we are done. Assume that some Ei, say E1 6∈ G. For any automorphism
σ of F/F, σ(f1) is also an absolutely irreducible factor of f and σ(E1)
corresponds to σ(f1). We say that σ(f1) is an algebraic conjugate of
f1. (Note that for any h =

∑
hijx

iyj ∈ F[x, y], σ(h) =
∑
σ(hij)x

iyj.)
We construct elements of G from algebraic conjugates of E1.
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Since E1 and f1 determine each other, the coefficients of E1 generate
the same extension of F as that of f1 (now f1, E1 and f are viewed
as bivariate polynomials in F[x, y]). Let K be this extension field of
F. Then the degree of K over F is equal to the number of algebraic
conjugates of f1 (with repetition ifK is not separable over F). Since f is
divisible by all algebraic conjugates of f1 and f has no repeated factors
over F, K must be separable over F. Let ` = [K : F], the dimension
of K over F. Then there are ` distinct embeddings σ1, . . . , σ` of K in
F such that σ1E1, . . . , σ`E1 are all the algebraic conjugates of E1 over
F. By the primitive element theorem for algebraic extensions of fields,
there exists α ∈ K such that K = F[α], and so 1, α, . . . , α`−1 form a
basis for K over F. For 1 ≤ i ≤ `, define

ei =
∑̀
j=1

σj(α
iE1) =

∑̀
j=1

σj(α
i)σjE1.

Then ei ∈ F[x, y] and ei ∈ G. Since σ1E1, . . . , σ`E1 are linearly in-
depent over F and the ` × ` matrix (σj(αi)), where 0 ≤ i ≤ ` − 1
and 1 ≤ j ≤ `, is nonsingular, the polynomials e1, . . . , e` are linearly
independent over F and so over F. Applying this process to all other
Ei 6∈ G ∪ {σ1E1, . . . , σ`E1}, we get r elements e1, . . . , er ∈ G that are
linearly independent over F and so over F. Therefore dimFG = r as
desired. �
Remark. If the characteristic of F is small (say smaller than the degree
n) then one can easily find polynomials f such that dimFG > r, so the
theorem does not hold in general. But it might be possible to improve
the condition p > (2m− 1)n to a smaller bound, say p > n.

Corollary 2.5. f is absolutely irreducible over F iff dimFG = 1.

A solution g in G is called nontrivial if it is not a scalar multiple of
fx. There is a nontrivial solution iff r > 1, i.e., f is reducible over F.

Corollary 2.6. For any nontrivial g ∈ G,

f =
∏
λ∈F

gcd(f, g − λfx) (12)

is a proper factorization of f over F.

Proof. Note that fx =
∑r
i=1Ei. By Theorem 2.3, g is of the form

(9). Since g is nontrivial, not all λi are equal. Note that fi|(g − λifx)
but fi - (g − λfx) if λ 6= λi. Hence (12) gives a proper factorization of
f . �
For any two distinct irreducible factors fi and fj of f , we say that
they are split by g if they are in different factors in (12). A set of
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elements g1, . . . , g` ∈ G is called a splitting set for f if every pair of
irreducible factors of f is split by some gi, 1 ≤ i ≤ `. A complete
factorization of f can be obtained via (12) from any splitting set.

Corollary 2.7. Every basis of G over F is a splitting set of f .

Proof. For any g =
∑r
i=1 λiEi where λi ∈ F, we see from the proof

of Corollary 2.6 that g splits fi and fj iff λi 6= λj. Note that the basis
{E1, . . . , Er} is obviously a splitting set of f . Let {g1, . . . , gr} be any
basis of G over F . Suppose that gi =

∑r
j=1 λijEj where λij ∈ F. Then

the r × r matrix (λij) is nonsingular. So for any pair 1 ≤ i < j ≤ r,
there is an index 1 ≤ k ≤ r such that λki 6= λkj, hence gk splits fi
and fj. That is, every pair of irreducible factors of f is split by some
gk. �
It is interesting to note the similarity of the statements of our results

so far to those of Niederreiter’s algorithm [45, 20]. In fact, our approach
was greatly influenced by Niederreiter’s method, even though the proofs
are quite different. Next we show how to extract factors from the
solutions of (5).
Since F is infinite, it is impossible to factor f via (12) by computing
gcd(f, g−λfx) for all λ ∈ F. The next result characterizes those λ ∈ F
that give a proper factor of f in (12).

Theorem 2.8. Suppose that g1, . . . , gr form a basis for G over F. For
any g ∈ G, there is a unique r × r matrix A = (aij) over F such that

ggi ≡
r∑
j=1

aijgjfx (mod f). (13)

Furthermore let Eg(x) = det(Ix−A), the characteristic polynomial of
A. Then the number of distinct irreducible factors of gcd(f, g − λfx)
in F[x, y] is equal to the multiplicity of λ as a root of Eg(x).

Proof. Since E1, . . . , Er form a basis for G, there is an r × r matrix
B over F such that 

g1...
gr


 = B


E1...
Er


 .

By Theorem 2.3, each g ∈ G ⊆ G is of the form g =
∑r
i=1 λiEi where

λi ∈ F. Since fi| gcd(f, g − λfx) iff λ = λi, the second part of the
theorem follows immediately if we can show that Eg(x) =

∏r
i=1(x−λi).
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As EiEj ≡ 0 (modf) for i 6= j, we have

g


g1...
gr


 ≡ B


gE1...
gEr


 ≡ B


λ1E

2
1
...
λrE

2
r


 ≡ B


λ1 0

. . .
0 λr




E

2
1
...
E2r


 (mod f)

and

fx


g1...
gr


 ≡ B


fxE1...
fxEr


 ≡ B


E

2
1
...
E2r


 (mod f).

It is straightforward to show that E21 , . . . , E
2
r (modf) are linearly in-

dependent over F. Hence the matrix A is uniquely determined, namely

A = B


λ1 0

. . .
0 λr


B−1.

Therefore Eg(x) = det(Ix− A) =
∏r
i=1(x− λi) as desired. �

By Theorem 2.8, we see that whenever Eg(x) has no repeated roots,
i.e., Eg(x) is separable, (12) gives a complete factorization of f over

F. We next determine the likelihood of a complete factorization for a
random g ∈ G. We need the following lemma, which is nothing but
the well-known birthday paradox when A is an identity matrix.

Lemma 2.9 (Separation Probability). Let A be an n×m matrix over
a field with no repeated columns. Suppose that Si is any subset of
cardinality k of the field for 1 ≤ i ≤ n. Pick ai ∈ Si uniform randomly
and independently, 1 ≤ i ≤ n, and let

(v1, · · · , vm) = (a1, · · · , an)A.

Then the probability that v1, . . . , vm are distinct is at least 1−
m(m−1)
2k
.

Proof. We say that a vector is distinct if its entries are distinct, and
a vector is constant if its entries are all equal. We prove the lemma by
induction onm. Whenm = 1, the lemma is trivial. Letm > 1. Assume
that the lemma holds for all matrices with fewer thanm columns. Since
m > 1, not all the rows of A are constant. Also, constant rows can
be discarded. So the first row of A may be assumed not constant. We
partition the columns of A by its values of the entries in the first row.
By permuting the columns of A, we may assume that A is of the form

A =

(
u1 · · ·u1 · · · ut · · ·ut
A1 · · · At

)
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where t ≥ 2, Ai has `i ≥ 1 columns with `1 + · · · + `t = m, and
(u1, · · · , ut) is distinct. Since A has no repeated columns, so does Ai
for 1 ≤ i ≤ t. Observe that (v1, · · · , vm) is distinct iff

(a) for each 1 ≤ i ≤ t, (a2, · · · , an)Ai is distinct; and
(b) for each pair 1 ≤ i < j ≤ t, each entry of a1(ui, · · · , ui) +
(a2, · · · , an)Ai is distinct from every entry of a1(uj, · · · , uj) +
(a2, · · · , an)Aj.

By induction hypothesis, we have

Prob
(
(a2, · · · , an)Ai is distinct

)
≥ 1−

`i(`i − 1)

2k
, 1 ≤ i ≤ t,

where Prob stands for “Probability”, and similarly below. So

Prob
(
(a) holds

)
≥ 1−

t∑
i=1

`i(`i − 1)

2k
.

Next we compute the probability that (b) holds on the condition
that (a) holds. That is, we need to find the probability that (b) holds
given any choice of a2, · · · , an. For any pair 1 ≤ i < j ≤ t, any column
w1 of Ai and any column w2 of Aj, if

a1ui + (a2, · · · , an)w1 = a1uj + (a2, · · · , an)w2,

then

a1 = (a2, · · · , an)(w2 − w1)/(ui − uj),

as ui 6= uj. So a1 has to avoid these values whenever they belong to
S1. The number of all possible such values is at most

` =
∑

1≤i<j≤t

`i`j.

Hence, for any choice of a2, · · · , an, the probability that (b) holds is at
least 1− `/k, i.e.,

Prob
(
(b) holds | (a) holds

)
≥ 1−

`

k
.
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Therefore

Prob
(
(v1, · · · , vm) is distinct

)
= Prob

(
both (a) and (b) hold

)
= Prob

(
(a) holds

)
· Prob

(
(b) holds | (a) holds

)
≥

(
1−

t∑
i=1

`i(`i − 1)

2k

)(
1−
`

k

)

≥ 1−
t∑
i=1

`i(`i − 1)

2k
−
`

k
= 1−

m(m− 1)

2k

as `1 + · · ·+ `t = m. This completes the proof. �
Theorem 2.10. Let f ∈ F[x, y] with r distinct absolutely irreducible
factors and gcd(f, fx) = 1. Let S be any finite subset of F and {g1, . . . , gr}
any basis of G over F. Pick ai ∈ S uniform randomly and indepen-
dently, 1 ≤ i ≤ r, and let g =

∑r
i=1 aigi. Then the probability that (12)

gives a complete factorization of f over F, or equivalently that Eg(x)
is separable, is at least 1− r(r − 1)/(2|S|).

Proof. There exists an r × r matrix A over F such that
g1...
gr


 = A


E1...
Er


 .

Hence

g =
r∑
i=1

aigi = (a1, · · · , ar)A


E1...
Er


 .

Let (λ1, · · · , λr) = (a1, · · · , ar)A. Then g =
∑r
i=1 λiEi and Eg(x) =∏t

i=1(x − λi). By Theorem 2.8, (12) gives a complete factorization of
f over F iff Eg(x) has no repeated roots, which is true iff (λ1, · · · , λr)
is distinct. The theorem follows from Lemma 2.9. �
Since r ≤ n, if |S| > n2 then the probability in the theorem is at

least 1/2. Certainly, one can make this probability arbitrarily close to
1 by using a larger set S.
Remark. The separation probability lemma may be useful in several
other applications, see for example [17] for polytope decomposition.
Another application is for a method for solving a system of nonlinear
equations via eigenvalues as described in [13, Chapter 2, Section 4],
where one needs to know how likely a random projection c1x1 + · · · +
cnxn of unknown solutions (x1, · · · , xn) is distinct.
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3. Algorithm

We give a generic algorithm for factoring bivariate polynomials over
an arbitrary field F for which Theorem 2.3 holds. To implement the
algorithm, F certainly has to be computable and univariate polynomials
over F can be factored efficiently. Let f ∈ F[x, y] with gcd(f, fx) = 1.
Each automorphism of F over F extends uniquely to F[x, y] with x
and y fixed. As we mentioned earlier, two polynomials g, h ∈ F[x, y]
are algebraic conjugate of each other if there is an automorphism σ of
F over F such that g = σ(h). To describe an irreducible factor g of
f in F, we need to specify a finite extension of F that contains the
coefficients of g. Such an extension can be represented as F[x]/(φ(x))
where φ(x) ∈ F[x] is irreducible. We write [g, φ(x)] to denote such a
factor and the associated extension. Our algorithm below computes
a list of absolutely irreducible factors no two of which are algebraic
conjugate of each other. In fact, our algorithm finds all the rational
irreducible factors of f , and for each of them an absolutely irreducible
factor. To obtain the complete factorization of f over F, one just
needs to compute the algebraic conjugates of them. When F is a finite
field, algebraic conjugates can be easily computed via the Frobenius
map. When F is a number field, one can use any of the efficient root
finding algorithms (see [4, 46]) for univariate polynomials over complex
numbers to compute the algebraic conjugates and thus the coefficients
of the absolutely irreducible factors of f to any required accuracy.
Keep the notation in the previous section. By Corollary 2.7, any

basis {g1, · · · , gr} for G over F will yield a complete factorization of f
over F. The obvious approach is to split f recursively by using the roots
of Egk(x) for 1 ≤ k ≤ r. Since (13) is a system of linear equations for
the aij’s, Egk(x) can be computed efficiently. The problem, however,
is that the dimension of extension fields may grow exponentially and
different factors computed this way might correspond to the same factor
of f so one needs an efficient method to identify them. The same
problem arises in Duval’s and Kaltofen’s algorithms (see [31] for more
details).
Fortunately, the second part of Theorem 2.8 gives us an elegant so-

lution that avoids the above problems of exponential dimension and
identifying factors. By Theorem 2.8, gcd(f, g − λfx) is absolutely ir-
reducible over F iff λ is a simple root of Eg(x). If Eg(x) has a simple

root in F then Eg(x) has an irreducible factor φ(x) over F such that
φ(x)2 - Eg(x). Such a factor φ(x) is called a simple factor of Eg(x).
For a random g in G, by Theorem 2.10, it is with high probability that
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Eg(x) is separable. So with high probability all the irreducible factors
of Eg(x) are simple.
It remains to show how to compute, from any simple irreducible

factor of Eg(x), a rational irreducible factor of f and an absolutely
irreducible factor of the rational factor. Suppose φ(x) is any simple
irreducible factor of Eg(x) over F. Let λ1, . . . , λt be all the distinct

roots of φ(x) in F, and let

gi = gcd(f, g − λifx), 1 ≤ i ≤ t.

Then each gi, 1 ≤ i ≤ t, is an absolutely irreducible factor of f .
Furthermore, h = g1 · · · gt ∈ F[x, y] and is irreducible over F. Note
that

h = gcd

(
f,

t∏
i=1

(g − λifx)

)
= gcd

(
f, f txφ(g/fx)

)
,

so h, a rational factor of f , can be computed efficiently without knowing
the roots of φ(x). To find an absolutely irreducible factor of h, let

L = F[x]/(φ(x)),

and α ∈ L be the congruence class of x modulo φ(x). Then α is a root
of φ(x) in L, and

g0 = gcd(f, g − αfx)

is an absolutely irreducible factor of f over L. This factor g0 serves
as a generic factor of h in the sense that all the absolutely irreducible
factors g1, . . . , gt of h can be obtained from g0 by substituting α by the
roots of φ(x) in F.

FBP: Factoring Bivariate Polynomials
Input. A field F, f ∈ F[x, y] with gcd(f, fx) = 1, and a

subset S of F with |S| ≥ mn where (m,n) = deg(f)
and mn ≥ 1. (Assume the characteristic of F is
either zero or larger than (2m− 1)n.)

Output. Two lists: RL for a list of all rational irreducible
factors of f ; AL for a list of absolutely irreducible
factors of f with no two being algebraic conjugate
over F;

Step 0. Set RL := {} and AL := {}.
Step 1. Form the system of linear equations (4) and (5),

and find a basis {g1, . . . , gr} for its solution space
G over F as defined in (7).
If r = 1 then outputRL := {f} andAL := {[f, x]},
and stop (so f is absolutely irreducible over F).
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Step 2. Pick ai ∈ S uniform randomly and independently,
1 ≤ i ≤ r, and set g :=

∑r
i=1 aigi.

Step 3. Compute Eg(x) as in Theorem 2.8. If Eg(x) is in-
separable then go to Step 2.

Step 4. Factor Eg(x) over F.
Set f0 := f , the remaining part of f to be factored.

Step 5. For each simple irreducible factor φ(x) of Eg(x),
• compute f1 := gcd(f0, g−λfx) in L[x, y] where
L = F[x]/(φ(x) and λ is the congruence class
of x, so a root of φ(x) in L; add [f1, φ(x)] to
AL;
• compute h1 := gcd(f0, f txφ(g/fx)) ∈ F[x, y]
where t = deg φ(x), and add h1 to RL.
• Set f0 := f0/h1.

Step 6. Output the lists AL and RL.

Remark. In Step 5 above, the rational irreducible factors h1 are com-
puted without knowing f1 (absolutely irreducible). If one only wants
rational factors then the computation of f1 can be omitted. On the
other hand, if f1 is already computed then one can compute h1 from
f1 more efficiently as follows. Write f1 as

f1(x, y, λ) =
∑
i,j

cij(λ)x
iyj,

where cij(λ) ∈ L are polynomials in λ with coefficients in F. Then it
is easy to see that

h1 = Resz(φ(z), f1(x, y, z)),

where Resz stands for the resultant of polynomials with respect to the
variable z. The resultant of polynomials can be computed efficiently,
say by the algorithms in [26, Chapter 7].

Theorem 3.1. The algorithm FBP correctly computes the rational fac-
torization

f = h1 · · ·h`

where hi ∈ F[x, y] are distinct and irreducible, and a list f1, . . . , f` ∈
F[x, y] of absolutely irreducible factors of f such that fi|hi, 1 ≤ i ≤ `.
The steps 2–3 are expected to be executed twice only.

Proof. The correctness of the algorithm follows from the above dis-
cussion and Theorems 2.3 and 2.8. Note that the steps 2–3 are expected
to run only twice since for a random g chosen at Step 2, by Theorem
2.10, the probability that Eg(x) has no multiple roots is at least 1/2,
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as |S| ≥ mn ≥ r(r − 1). The time complexity of the algorithm will be
analyzed in the next section. �
Example (over Q, R and C). We illustrate our algorithm by

factoring the following polynomial

f = 9 + 23 y2 + 13 yx2 + 6 y + 7 y3 + 13 y2x2 + x4 + 6 yx4 + x6.

We first factor f overQ, the field of rational numbers. As gcd(f, fx) =
1, our algorithm applies directly. Since deg(f) = (m,n) = (6, 3), the
linear system has 45 unknowns and 60 equations. A general solution
in G is of the form

(−12 t1 + 12 t2 − 18 t3)x+ (−8 t1 + 10 t2 − 12 t3)xy + t1x
3

+(−19 t1 + 18 t2 − 22 t3)xy
2 + (−14 t3 − 12 t1 + 12 t2)x

3y

+(−2 t1 − 2 t3 + 2 t2)x
5,

where t1, t2, t3 are parameters. So dimQG = 3 and f has three abso-
lutely irreducible factors over C. A basis for G consists of

g1 = −12x− 8xy − 19xy2 − 12x3y − 2x5 + x3,

g2 = 12x+ 10xy + 18xy2 + 12x3y + 2x5,

g3 = −18x− 12xy − 22xy2 − 14x3y − 2x5.

Take a random linear combination of g1, g2 and g3, say g = g1 + g2 =
2xy − xy2 + x3. Then the matrix in (13) is

A =



− 62
247

63
988

189
988

63
247

− 17
247
− 51
247

− 54
247

135
494

79
247




and

Eg(x) = x
3 −

3

988
x+

1

1976
.

Now factor Eg(x) over Q, but it turns out to be irreducible. Hence f
is irreducible over Q.
To factor f over complex numbers, let α be a root of Eg(x). Then

f0 := gcd(f, g−α ·fx) = −
1

3
+
988

3
α2+

(
1976

27
+
494

27
α+
50

27
α2
)
y+x2

is an absolutely irreducible factor of f . The complex roots of Eg(x) are
(up to 20 digits):

α1 = −.092300247114462739909,

α2 = .046150123557231369955− .057905651417453225605 ∗ I,

α3 = .046150123557231369955 + .057905651417453225605 ∗ I
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where I =
√
−1. Plugging them in f0, we obtain the three absolutely

irreducible factors of f :

f1 = 2.4723678633273988989 + .78658833723777036591y + x2,

f2 = −.73618393166369944945− 1.7601898213110046278I

+(2.6067058313811148171− 1.4506122491884415265I)y + x2,

f3 = −.73618393166369944945 + 1.7601898213110046278I

+(2.6067058313811148171 + 1.4506122491884415265I)y + x2.

To verify the factors, we expand f1 · f2 · f3 to get

8.9999999999999999994 + 1.0× 10−19 I + 6.0000000000000000005 y

+23.000000000000000001 y2 + 7.0000000000000000004 y3 + 13.0 y2x2

+6.0000000000000000001 yx4 + 1.0000000000000000001x4

+13.0 yx2 + x6 + 1.0× 10−19 I x2,

which is exactly f if we round the coefficients to 3 digits.
Now we can see that f has two real irreducible factors: one is f1 and
the other is

f2 · f3 = 1.2686759361074318360 y + 8.8991911888518581674 y2

+5.2134116627622296342 yx2 − 1.4723678633273988989x2

+3.6402349882866889022 + x4.

In general, real factors of f can always be obtained by combining con-
jugate pairs of the factors of f over C. Certainly, the coefficients of
the factors can be computed to any precision by computing the roots
of Eg(x) up to an appropriate accuracy.
Example (over F5). We next factor the above f modulo 5; in this
case it becomes

f = 4 + 3 y2 + 3 yx2 + y + 2 y3 + 3 y2x2 + x4 + yx4 + x6.

Note that gcd(f, fx) = 1 and gcd(f, fy) = 1 in F5[x, y]. For this poly-
nomial, Theorem 2.3 requires that p > (2 · 6 − 1) · 3 = 33. The
computation below shows, however, that our method may still work
when this condition is not satisfied.
A basis for G consists of

g1 = 2 yx+ 4xy2 + x3,

g2 = x+ 4xy2 + yx3 + x5,

g3 = x+ 3 yx+ 4xy2 + 2x5.

Thus f has at most three absolutely irreducible factors over F5. Take
a random linear combination of g1, g2 and g3, say g = g1 + 3g3 =
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3x+ 4xy2 + 3x3 + x5. Then the matrix in (13) is

A =



2 −3 −2

3 −4 −1

3 −2 0




and

Eg(x) = x
3 + 2x2 + 2 ≡ (x− 1)(x2 + 3x+ 3) mod 5.

So one factor of f is

f1 = gcd(f, g − 1 · fx) = 2 + 3y + x
2.

The other two factors have coefficients in the quadratic extension of
F5. Let α be a root of x

2 + 3x+ 3. Then

f2 := gcd(f, g − α · fx) = 4 + 3α +
(
2α2 + 2

)
y + x2

is an factor of f . The conjugate of α is α5 = 2 − α. Replacing α by
2− α gives the third factor f3 = 4+ 2α+ (3α2 + 1) y + x2. Therefore

f = (2 + 3y + x2)(4 + 3α+ (2α2 + 2)y + x2)(4 + 2α+ (3α2 + 1)y + x2)

where α is a root of x2 + 3x + 3 in F52 . The factors are easily seen
absolutely irreducible over F5 as they are linear in y.

4. Implementation and Analysis

We discuss in this section the time complexity of the algorithm over
finite fields and briefly over complex numbers.
Let F = Fq be a finite field of q elements. Our algorithm uses basic

polynomial arithmetic such as multiplication, gcd and factorization of
univariate polynomials. We measure the complexity of an algorithm by
the number of operations used in Fq, which is easily transformed into
the number of bit operations. A product of two polynomials of degrees
at most n over Fq can be computed in O(n

2) operations in Fq using
“classical” arithmetic, or in O(n log2 n) operations in Fq using fast algo-
rithms (Schönhage and Strassen 1971, Cantor and Kaltofen 1991). So a
product of two polynomials in Fq[x, y] of bidegree at most (m,n) can be
computed via Kronecker’s substitution in O(mn log2(mn)) operations
in Fq. To compute gcd of bivariate polynomials, we use a modular
approach (Brown 1971, Geddes et al 1992, and von zur Gathen and
Gerhard 1999): for any two polynomials g, h ∈ Fq[x, y] of bidegrees at
most (m,n), gcd(g, h) can be computed in O(mn log2(mn)) operations
in Fq. Factoring a univariate polynomial of degree n over Fq can be
done in O(n3 + n2 log q) operations in Fq (Berlekamp 1970; there are
faster algorithms but this slower one suffices for our purpose).
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The bottleneck of our algorithm is in Step 1 for solving a system
of linear equations. Gauss elimination is fine for a small system but
not practical for a large system, which is typical in our case, in both
time and memory requirements. A close examination of the equation
(5) shows that it can be solved by the black box approach of Kaltofen
and Trager (1990) and Kaltofen and Saunders (1991) à la Wiedemann
(1986) and Lanczos methods (LaMacchia and Odlyzko 1990). In this
approach, one is provided with an efficient algorithm, i.e. a black box,
for computing matrix-vector product. Here the matrix-vector product
for the linear system (5) is nothing but three multiplications of polyno-
mials in Fq[x, y] of bidegrees at most (m,n), so can be computed by fast
algorithms (Schönhage and Strassen 1971, Cantor and Kaltofen 1991).
A basis for the solution space of a linear system with N unknowns can
be found by using O(rN) calls of the black box and an extra storage
of O(N) elements where r is the dimension of the solution space. The
running time can be improved by using block versions of Wiedemann
and Lanczos methods (Coppersmith 1993, 1994, Montgomery 1995).

Theorem 4.1. If the characteristic of Fq is larger than 6mn then the
algorithm FBP is expected to terminate using

O(r(mn)2 log2(mn) + r2 log q) (14)

operations in Fq where r is the number of absolutely irreducible factors
of f .

Proof. At Step 1, the constraint (4) implies that g has m(n + 1)
coefficients and h has (m + 1)n coefficients. So the linear system (5)
has

m(n+ 1) + (n+ 1)m = 2mn+m+ n = O(mn)

unknowns and at most 4mn = O(mn) equations. By using the black-
box approach, the linear system can be solved using O(rmn) matrix-
vector products. By (5), each matrix-vector product can be com-
puted by three multiplications of polynomials in Fq[x, y] of bidegrees at
most (m,n), using O(mn log2(mn)) operations in Fq. So Step 1 takes
O(r(mn)2 log2(mn)) operations in Fq.
Step 2 is trivial. For Step 3, one can first compute the remainders of

ggi, gifx modulo f (under certain term ordering) for 1 ≤ i ≤ r. Each
remainder has at most 4mn terms, so corresponds to a vector of length
4mn. Finding the matrix A = (aij) in (13) is equivalent to expressing
r vectors of length 4mn as linear combinations as r given vectors of
the same length. This can be done by Gauss elimination in O(r2mn)
operations in Fq. The characteristic polynomial det(Ix − A) can be
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computed in O(r3) = O(rmn) operations in Fq. So Step 3 uses in total
O(r2mn) operations in Fq and is expected to be executed twice only.
In Step 4, Eg(x) has degree r so can be factored in O(r

3+r2 log q) =
O(rmn + r2 log q) operations in Fq. In Step 5, f1 can be computed in
O(mn log2(mn)) operations in L = Fq[x]/(φ(x)), soO(t

2mn log2(mn)) =
O((mn)2 log2(mn)) operations in Fq where t = deg φ(x) ≤ r. h1 is the
gcd of two polynomials of bidegrees at most (m,n) and (tm, tn) respec-
tively, so can be computed in (t2mn log2(t2mn)) = O((mn)2 log2(mn))
operations in Fq. So the cost of all f1 and h1 is at mostO(r(mn)

2 log2(mn)).
The total cost of the algorithm is expected to be

O
(
r(mn)2 log2(mn) + r2mn+ rmn+ r2 log q + r(mn)2 log2(mn)

)
= O

(
r(mn)2 log2(mn) + r2 log q

)
operations in Fq. �
Note that r is usually small and always bounded from above by n

and m. If we ignore the logarithmic factors, then the running time in
Theorem 3.1 is roughly O(rN2) = O(N2.5) where N = mn is input size
(i.e. the number of coefficients of f).
In the rest of this section we make some brief comments of our algo-

rithm over complex numbers. To factor an integral polynomial f over
complex numbers, the bottleneck is again at Step 1 for solving a large
system of linear equations over rational numbers. The fast algorithm
of Kaltofen and Saunders (1991) for rational numbers is still applica-
ble, so our algorithm can be implemented efficiently. The exact time
complexity needs more careful analysis and we leave it for future work.
It may be tempting to try a modular approach: pick various primes

p larger than 2mn, factor f modulo p, and then recover the true fac-
tors by the Chinese Remainder Theorem. This works for most of the
polynomials. It does not work for some other polynomials, however,
no matter how large the primes p are used. The main obstacle lies
in determining the algebraic extension fields of the coefficients of the
factors, especially when some extension field has an elementary abelian
group as its galois group.
If one is only interested in the absolute irreducibility of an integral

polynomial f , then the modular approach works fine. In fact, Rup-
pert’s results (Theorem 2.1 and Corollary 2.2) show that for random
primes p of suitable size, it is with high probability that f is absolutely
irreducible iff (5) has no nontrivial solution modulo p. So one may use
any fast linear solver over finite fields for the linear system (5) and get
a correct answer with high probability. Also, by Theorem 2.3, one can
determine the number of absolutely irreducible factors by the modu-
lar approach: simply compute the dimension of the solution space G
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modulo random large primes p. With high probability, the computed
dimension is equal to the true dimension over rational numbers.
Additional Remarks. (1) In solving the linear system (3) or (5) it
is possible to tell in advance that some of the coefficients of g and h
must be zero. The idea is to consider the Newton polytopes of the
polynomials involved; see [15, 17] for more information on decomposi-
tion of polynomials and polytopes. By (9), we see that the support of
xg must be contained in the Newton polytope of f ; similarly for yh.
Hence for g ∈ G, any term of xg that is outside of the Newton polytope
of f must have zero coefficient. For example, if f = a + by2 + cxn+1,
whose Newton polytope is the triangle determined by the three points
(0, 0), (0, 2) and (n+ 1, 0), then the bidegree of g is at most (n, 2) and
its coefficients at the following terms must be zero: y2xi, 1 ≤ i ≤ n,
yxi, (n − 1)/2 ≤ i ≤ n. So the size of the linear system depends only
on the number of integral points in the Newton polytope of f . This is
especially useful for sparse polynomials.
(2) When computing the matrix A in (13), one can substitute a

value α ∈ F for y, so deal with univariate polynomials in F[x] only.
The matrix A is still uniquely determined if gcd(f(x, α), fx(x, α)) = 1.
This point was observed by Michael Monagan, Janez Ales and the
author during a discussion at MSRI at Berkeley.
(3) Jürgen Gerhard pointed out that one may find a proper factor
of f from any nontrivial solution g ∈ G, without knowing a basis for
G. This can be done as follows. Instead of the polynomial Eg from
Theorem 2.8, one may compute the resultant Rg(z) = Resx(f, g−zfx).
The roots of Rg are precisely the residues of g/f at the roots of f in L.
In fact, the multiplicity of λ as a root of Rg is equal to the degree in
x of gcd(f, g − λfx) (this has been shown, e.g., by Lazard and Rioboo
1990). Rg has degree m in x, and its squarefree part with respect to
x has degree r if and only if g is a splitting polynomial (i.e., Eg has
only simple roots; in fact, then the squarefree part of Rg is equal to
a polynomial in y times Eg). If g ∈ G then the primitive part of Rg
does not contain y (since none of the roots of Rg do), and the content
is a constant multiple of the leading coefficient of Rg, which in turn
equals Resx(f, fx), up to sign. Thus the primitive part of Rg can be
computed efficiently by substituting y = α for some α that is not a
root of Resx(f, fx); usually y = 0 should do. With this modification,
one can factor f in quadratic time.
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5. Reduction: Effective Hilbert Irreducibility Theorem

We show how to reduce the factorization of multivariate polynomials
with more than two variables to that of bivariate polynomials. This is
accomplished by an effective Hilbert irreducibility theorem or Bertini’s
Theorem.
Bertini’s Theorem says, among other things, that the intersection of

an irreducible algebraic set with a generic plane is irreducible (an irre-
ducible curve); see [29] for more information. In our case, a polynomial
defines a hypersurface whose irreducible components correspond to the
absolutely irreducible factors of the polynomial. If one takes a random
plane and intersects with a hypersurface, the question is how likely the
intersection of the plane with each component of the hypersurface re-
mains irreducible? For algorithmic purpose, we need an effective bound
on this probability, namely, an effective Hilbert irreducibility theorem.
To be precise, let f ∈ F[x1, . . . , xn] of total degree d. A plane in Fn

can be parameterized as

xi = aix+ biy + ci, 1 ≤ i ≤ n

where ai, bi, ci ∈ F. The intersection of the hypersurface defined by f
with the above plane is a curve in Fn and this curve is isomorphic to
the plane curve defined by the bivariate polynomial

f0 = f(a1x+ b1y + c1, . . . , anx+ bny + cn) ∈ F[x, y]. (15)

This is nothing but a substitution for the variables in f . Suppose one
picks random values for a1, b1, c1, . . . , an, bn, cn from a finite set S ⊂ F.
We want to know the probability that all the irreducible factors of
f remain irreducible under the substitution, that is, f0 and f have
the same factorization pattern. For complex numbers, Bajaj et al [1,
Theorem 4.2] proves, modifying Mumford’s proof of Theorem 4.17 in
[43], that this probability is at least 1 − (d4 − 2d3 + d2 + d + 1)/|S|.
For general fields, von zur Gathen [21, Theorem 4.5] proves, using

elimination theory, that it is at least 1−9d
2
/|S|. Kaltofen [32, Corollary

2] improves it to 1−2d4/|S| using his factorization algorithm. The next
theorem improves this bound further for general fields.

Theorem 5.1. Let F be any field and S a finite subset of F. Let
f ∈ F[x1, . . . , xn] of total degree d and f0 defined from f as in (15).
Suppose F has either characteristic zero or characteristic larger than
2d2. For random choices of ai’s, bi’s and ci’s in S, with probability
at least 1 − 2d3/|S| all the absolutely irreducible factors of f remain
absolutely irreducible factors of f0 in F[x, y].
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Theorem 5.1 can be restated without using the language of proba-
bility. We say that a point (a1, b1, c1, . . . , an, bn, cn) ∈ S3n is Hilbertian
good for f if all the absolutely irreducible factors of f in F[x1, . . . , xn]
remain absolutely irreducible factors of f0 in F[x, y]. Define Hf (S) to
be the density of Hilbertian good points, i.e.,

Hf (S) = (the number of Hilbertian good points of f in S
3n)/|S|3n.

Theorem 5.1′. Let F be any field of characteristic p, S a subset of
F and f ∈ F[x1, . . . , xn] of total degree d. If p = 0 or p > 2d2 then
Hf (S) ≥ 1− 2d3/|S|.

To prove Theorem 5.1, we need a result from Kaltofen (1995). We
view a1, b1, c1, . . . , an, bn, cn as independent variables over F and let

L = F(a1, b1, c1, . . . , an, bn, cn),

the rational function fields of these variables over F. Then f0 ∈ L[x, y].

Lemma 5.2 (Kaltofen 1995). The bivariate polynomial f0 in (15) is
absolutely irreducible over L iff f is absolutely irreducible over F.

Proof of Theorem 5.1. We may assume that f is squarefree, other-
wise we would work with the product of its distinct irreducible factors
which would have a smaller degree. View a1, b1, c1, . . . , an, bn, cn as
independent variables over F. Then, by Lemma 5.2, the absolutely ir-
reducible factors of f0 over L are in 1-1 correspondence with those of f .
In particular, since f has r absolutely irreducible factors over F, f0 also
has r absolutely irreducible factors over L. Consider the linear system
(5) for f0 over L. Let M be the coefficient matrix of the system. By
Theorem 2.3, the rank of M must be N − r where N is the number
of unknowns of the system. Note that f0 has total degree d, so the
polynomial g in (5) has total degree at most d− 1 by (9); similarly for
h. This means that g and h each have at most d(d+ 1)/2 coefficients,
so N ≤ d(d+ 1).
Since f0 has r absolutely irreducible factors over L, by Theorem 2.3,

M must have rank N − r, which implies that there is an (N − r) ×
(N − r) submatrix M1 of M whose determinant is nonzero and all the
(N − r + 1) × (N − r + 1) submatrices of M have determinant zero.
Note that each entry ofM is a polynomial in ai’s, bi’s and ci’s of degree
at most d, so det(M1) is a polynomial in these variables of degree at
most

d(N − r) ≤ dN ≤ d2(d+ 1) ≤ 2d3.

Now if we substitute values for ai’s, bi’s and ci’s and if det(M1) remains
nonzero then the resulted polynomial from f0 is a polynomial in F[x, y]
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and, by Theorem 2.3 again, has r absolutely irreducible factors over F.
By a result of Schwartz (1980) and Zippel (1979), for random values of
ai’s, bi’s and ci’s from a set S, the probability that det(M1) 6= 0 is at
least 1− 2d3/|S|. The theorem follows. �
The algorithm FBP together with the above theorem gives a ran-

domized algorithm for factoring multivariable polynomials. The idea
is as follows. To factor a polynomial f ∈ F[x1, . . . , xn] of total de-
gree d, one chooses random values a1, b1, c1, . . . , an, bn, cn from a set
S ⊆ F with |S| ≥ 4d3, and factor the bivariate polynomial f0 =
f(a1x + b1y + c1, . . . , anx + bny + cn) over F. By Theorem 5.1, with
probability at least 1/2 the factors of f0 correspond to the factors of f
evaluated at the values of ai’s, bi’s and ci’s. Repeat this process until
sufficiently many factorizations are collected, then obtain factors of f
by interpolation; see [24] for more details.
Acknowledgement. The author thanks Janez Ales, Jürgen Ger-
hard, Erich Kaltofen, Michael Monagan and Virǵınia Rodrigues for
their helpful comments and discussions on the paper.
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