Fast Absolute Irreducibility Testing

via Newton Polytopes™

Shuhong Gao'and Alan G.B. Lauder?

Abstract

We present a polytope method to test irreducibility of random sparse polynomials
over an arbitrary field, not necessarily computable. For example, for polynomials with
1000 random terms in 10 variables each with degree at most 10, more than 85% of them
can be recognized to be irreducible in half a second. This test does not recognize all
irreducible polynomials though, so it should be used as a pretest before a more general
slower algorithm is applied.

1 Introduction

In previous papers [2, 3], we considered a connection between multivariate polynomials and
convex polytopes. It was shown that indecomposable integral polytopes lead to absolutely
irreducible polynomials. We also gave a heuristic algorithm for testing indecomposability of
integral polytopes, and thus a fast method for testing absolute irreducibility of multivariate
polynomials. The purpose of the current paper is to show by computer experiments the
effectiveness of our method, particularly for sparse polynomials.

Let K[X3,...,X,] be a polynomial ring in n variables over an arbitrary field K. A
polynomial of degree bound by d in each variable in this ring will have a maximum of (d+1)"
terms, and we shall call a polynomial with Q((d + 1)") non-zero terms dense. Intuitively
speaking, “sparse” polynomials are those which have far fewer non-zero terms than this
maximum. We define a more precise notion of sparseness for polynomials which is motivated
in part by the range of applicability of our algorithm. We shall say that a polynomial in
this ring with degree bound by d in each variable is sparse if the number of non-zero terms
is O(nd).

*The first author was supported in part by the National Science Foundation (NSF) under Grant
DMS0302549, the National Security Agency (NSA) under Grant MDA904-02-1-0067, the DoD Multidis-
ciplinary University Research Initiative (MURI) program administered by the Office of Naval Research
(ONR) under Grant N00014-00-1-0565. The second author gratefully acknowledges the support of the Marr
Educational Trust and Wolfson College, Oxford.

"Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, USA. E-mail:

sgao@math.clemson.edu.
fMathematical Institute, Oxford University, Oxford OX1 3LB, U.K. E-mail: lauder@maths.ox.ac.uk.

1

The experiments detailed in Section 5 and Appendix A indicate that our method is
extremely effective for sparse polynomials. In particular, our experiments reveal that the
algorithm has a very high success rate for such polynomials, and has a running time which
is at worst cubic in the input size. However, there are polynomials for which our algorithm
will fail, such as dense polynomials. Indeed our method is not intended to be infallible. It is
known that most polynomials are absolutely irreducible, but the existing general methods
for showing this are very slow. Our contribution is in providing a fast method to decide
irreducibility of a special class of polynomials, namely a large fraction of sparse polynomials
as we define them. In practice, our algorithm may serve as a pretest before a slower general
algorithm is applied.

Remarkably, our method does not involve computations in the field K, and thus works
for any field, not necessarily computable. Two other observations on our algorithm, which
are related to this and distinguish it from previous methods, seem worth making. Firstly,
the actually values of the coefficients of the polynomial do not matter, all that is important
is which terms have non-zero coefficients. Thus our method actually allows one to show
absolute irreducibility of families of polynomials rather than single polynomials. This may
be of interest in areas such as deformation theory. For example, given complex polynomials
f and g, one may wish to show that all polynomials in a family f 4 tg where ¢ is a non-zero
complex number, are absolutely irreducible. The hypersurfaces defined by such polynomials
are considered deformations of that defined by f itself. Using our method one will very often
be able to quickly do this.

The second observation is that once a polynomial over a particular field has been shown
to be absolutely irreducible using our method, one knows that it will remain absolutely
irreducible “over almost any field”. This feature seems of particular relevance in number
theory. For suppose we have a polynomial f with integer coefficients which has been shown
to be absolutely irreducible using our method. Then given any prime p one immediately
knows, subject to mild and easily checked conditions relating p and the coefficients of f,
that the polynomial f mod (p) remains absolutely irreducible over the field with p elements.
Thus our method in fact proves a particularly strong form of absolute irreducibility.

Note that absolute irreducibility of polynomials is fundamental in algebra and geometry,
and in computer algebra systems. Many good algorithms have been designed for testing
irreducibility, see for examples [1, 4, 6, 7, 9, 10, 11, 12] and the literature given there. It
should be remarked that our method is totally different from any of the methods in the
literature.

Our paper is organised as follows. In the next section, we review the connection between
polynomials and polytopes, and recall a projection lemma that is essential for our algorithm.
In Section 3, we present our algorithm and give an analysis of its running time and space
requirement. In Section 4, we describe our models of random polynomials and polytopes,
and Section 5 and Appendix A contain details of computer experiments along with some
observations on the range of parameters over which our method is effective.

2 Polynomials and Newton polytopes

Given a multivariate polynomial in n variables over a field K one may associate with it a
convex polytope in R" called its Newton polytope. This is done in the following way. Let
[€ K[X1,Xs,...,X,] and define the support set Sy C R™ to be the set of all vectors
(21, 22, - . ., 2,) which occur as the exponent vector of some non-zero term aX7* X35?... X"
in f, where a € K. The Newton polytope of f, denoted Ny, is defined to be the convex hull
of S¢. Observe that all of the vertices of the polytope N; have integer coordinates; we call
polytopes with this property integral.

We shall now define a notion of addition of polytopes which reflects that of multiplication
of polynomials in a certain sense. Given any two integral polytopes () and R we define their
Minkowski sum by

Q+R:={q+r|qeQ,r € R}.

It is not difficult to show that the Minkowksi sum of two integral polytopes () and R is once
again an integral polytope, P say. We call @) and R summands of P and call the identity
P = @ + R an integral decomposition of P, or simply a decomposition. If either) or R
consists of a single point then we call the decomposition trivial. Note that all polytopes
have trivial decompositions obtained by adding a suitable translate of the polytope itself to
any integral point. If a polytope possesses no non-trivial decompositions we shall it integrally
indecomposable, or simply indecomposable.
We have the following proposition which is central to the algorithm we discuss.

Proposition 1 (Ostrowski 1921[13]) Let f,g9,h € K[X;, Xs,...,X,] and Ny, Ny, N, be
their respective Newton polytopes in R". If f = gh then Ny = Ny + Nj,.

We refer the reader to [2] for a simple proof of this result. As an immediate corollary one
obtains

Corollary 2 Let f € K[X1,Xo,...,X,]. If Ny is indecomposable and f is not divisible by
any nonconstant monomial, then f is absolutely irreducible over K.

Here absolute irreducibility means that the polynomial f is irreducible over the algebraic
closure of K.

Thus one method of detecting absolutely irreducibility of polynomials is to check whether
their Newton polytopes are indecomposable. One can determine whether polygons are inde-
composable quite easily, but working directly with polytopes in higher dimensions appears
rather more difficult. We circumvent this problem by taking random projections of high
dimensional polytopes down to two dimensions. The next result from [3] is then of great
use.

Lemma 3 (Projection Lemma) Let S be a set of integral points in R™ and A a 2 X n
matriz with integer entries. Define A(S) = {As|s € S} (a point in R" is viewed as a column
vector). Suppose that the polygon conv(A(S)) is indecomposable, and moreover, each vertex
of the polygon has exactly one pre-image under A in the set S. Then the polytope conv(S)
18 1ndecomposable.

3

Thus to detect indecomposability of the convex hull of a set of integral points in high di-
mension, one does not necessarily need to compute their convex hull and work with polytopes
in the high dimension. It is often sufficient, as we shall see from the implementation details,
to take random projections down to the plane and work solely with polygon computations.

3 The Algorithm

We now present an outline of the algorithm we shall consider, more details may be found in

3]-

Algorithm 4 Absolute Irreducibility Test
Input: f € K[X1, Xs,...,X,] with no nonconstant monomial factors.
Output: “Absolutely Irreducible” or no output.

Step 0: Let Sy denote the set of exponent vectors of non-zero terms in f. Choose positive
integers b and e. Let M (b) denote the set of all 2 x n matrices with integer entries bound in
absolute value by b. Repeat Steps 1-3 up to e times.

Step 1 (Random projection): Select a matrix A uniformly at random from M (b) and compute
the set of points in R?
A(Sy) .= {As|s e S¢}.

Step 2 (Convex hull): Compute the convex hull of A(Sy) and check that each vertex of
conv(A(Sy)) has only one preimage in Sy under the projection A. If this condition is not
met, return to Step 1.

Step 3 (Polygon indecomposability test): Test whether the polygon conv(A(Sy)) is integrally
indecomposable. If it is then output “Absolutely Irreducible” and halt the algorithm. If not,
then return to Step 1.

Theorem 5 Algorithm 4 halts within O(e((nbd)® + t(t + n))log?® (nbd)) binary operations
for a polynomial in n variables, with t non-zero terms and degree at most d in each variable.
The space requirement is O((nbd)?log (nbd)) bits. Moreover, if the output is “Absolutely
Irreducible” then the input polynomial is absolutely irreducible.

Proof: The final statement on the output follows from Corollary 2 and Lemma 3 in
Section 3.

Before presenting a short analysis of the complexity of the algorithm we must give some
details of the subroutines required.

Step 2 may be done using any standard planar convex hull algorithm. In our implemen-
tation we use a naive algorithm which has running time O(t¢) for ¢ points whose convex hull

4

has ¢ edges. The worst-case time is thus O(¢?) operations on integers, although O(tlog(t))
algorithms exist [8, pages 361-375].

Step 3 is performed using Algorithm 15 from [3]. For a polygon with ¢ integral points
on the boundary and a integral points in the interior this has running time O(af) integer
operations and space requirement O(a). Note that determining whether a polygon is inte-
grally decomposable is NP-complete (see Proposition 14 in [3]) and the Algorithm used to
perform Step 4 is in fact only “pseudo-polynomial time” [5]; however, this is good enough
for our purpose.

We now prove the running time and space requirement: The running time of the pro-
jection in Step 1 is O(tn) arithmetic operations with integers bound by nbd. Note that all
t of the 2 dimensional points thus obtained have coordinates bound in absolute value by
nbd. Hence a naive implementation of the convex hull algorithm in Step 2 requires O(t?)
arithmetic operations with integers bound by nbd. Similarly, in Step 3 one must test inde-
composability of a polygon which lies in a square of area O((nbd)?) and, consequently, has
no more than O(nbd) edges. Thus this has running time O((nbd)3) arithmetic operations,
and space requirement O((nbd)?) integers.

The total running time of one execution of Steps 1-3 of the algorithm is in the worst-case
O((nbd)? + t? + tn) integer operations with integers bound by nbd. Thus the overall running
time is O(e((nbd)®+t(t+n))log? (nbd)) bit operations. The space requirement is dominated
by the polygon decomposability algorithm used in Step 4, which is O((nbd)? log (nbd)) bits.
This completes the proof of Theorem 5

Recall that we called an n-variable polynomial with degree bound by d in each variable
“sparse” if it had O(nd) non-zero terms. Algorithm 4 has a worst-case running time of
O((nd)?) integer operations for such polynomials, if we assume that the integers b and e are
constant.

We shall demonstrate the effectiveness of our algorithm in practice by selecting random
sets of points and showing that in many cases we can quickly show that their convex hull is
indecomposable. We define precisely what is meant by “random” in the next section, after
which we give implementation details.

4 Random polytopes and polynomials

For a positive integer d, define Z(d) = {z € Z|0 < z < d}, and for any natural number n let
Z(d)n = {Z = (Zla crey zn) S R" | Zi € Z(d)}

By selecting t points independently and uniformly at random from Z(d)" and taking the
convex hull we obtain a random polytope of type (n,d,t).

To get a random polynomial, we first pick ¢ random points from Z(d)"™ as above. This
set S of points will be the support set of f. The polynomial f is then formed as

f =Poly(S) := > a.X?

zeS
5

n

where a, € K is arbitrarily nonzero and X* = Xi'... X for z = (21,...,2,). So f
has at most ¢ nonzero terms and has degree in each variable at most d. Any nonconstant
monomial factor of f is then removed. We call a polynomial chosen in such a fashion a
random polynomial f of type (n,d,t) over K.

For different values of n,d and ¢, we shall measure experimentally the effectiveness of
our algorithm for random polynomials of type (n,d,t). We wish to demonstrate that our
algorithm is useful over a very wide range. Note that one could use an alternative notion
of a random polynomial based upon restricting the total degree rather than the degree
in each term, and also by choosing distinct random monomials rather than just random
monomials. Implementations reveal, see Table 4, that our algorithm is also effective under
this distribution.

5 Implementation details

The algorithm was implemented in C by the second author and programs run on a 550 MHz
PC with 128 MB of RAM. Tables 1 - 7 in Appendix A give details of the results obtained;
the glossary below explains the terms used in these tables.

Glossary of terms used:

Variables - the number of variables.

Degree - a bound on the degree in each variable.

Total Degree - a bound on the total degree.

Terms - the number of randomly selected monomials.

D.Terms - the number of randomly selected distinct monomials.

Success - the number of cases in which the Newton polytope of the randomly selected poly-
nomial is integrally indecomposable (and thus the polynomial has at worst trivial factors
which we assume have been removed).

Failure - the number of cases in which the algorithm gives no output (and thus the absolute
irreducibility of the polynomial is left undetermined).

Time - the average time per randomly selected polynomial over all choices, given in 1073 of
a second (ms) or seconds (s), depending upon which is more appropriate.

Project. - the average number of projections required when the algorithm is successful.
Matrix Bound - the value of “b” in the algorithm, which bounds the absolute values of the
random matrix entries.

Projection Bound - the value of “e” in the algorithm, which gives the maximum number of
projections per polytope.

Thus a random polynomial of type (n,d,t) has “Variables = n”, “Degree = d”, and
“Terms = t”. The parameters “Total Degree” and “D. Terms” are used in Table 4 where
we consider the slightly different notion of a random polynomial mentioned at the end of
Section 4.

In the following sections we make brief comments on the effectiveness of our algorithm
referring to the tables in Appendix A.

5.1 Bivariate polynomials

In general the algorithm becomes more effective the more variables there are in the poly-
nomial under consideration. When looking at bivariate polynomials one can of course omit
the random projection stage as the Newton polytope of the polynomial already lies in two
dimensions. Randomly chosen polygons themselves are frequently decomposable, and this
makes the algorithm far less useful for bivariate polynomials. However, the algorithm will
always decide decomposability of polygons, whereas in higher dimensions it is possible that
the decomposability will be left undecided after many projections.

In Table 1, the row with degree 5 means that, among 10,000 polygons each formed by
the convex hull of 10 random integral points in the square [0,5] x [0,5], 2,301 of them are
indecomposable while the rest are decomposable. (Or equivalently, among 10,000 random
polynomials of type (2,5,10), 2,301 have been shown to be absolutely irreducible whereas
the irreducibility of the remainder has been left undecided.) If one increases the degree to
100, so picking points from the square [0, 100] x [0, 100], then about 90% of the polygons are
indecomposable.

5.2 Trivariate polynomials

Observe from Table 3 that the algorithm has a near 100% success rate for polynomials chosen
at random with number of terms suitably bounded with respect to the degree. For example,
for random polynomials with no more than 10 terms and degree in each variable not greater
than 5 the algorithm will almost without exception show them to be absolutely irreducible
within 1 ms. Also one may increase the chance of success in certain cases by loosening the
bound on the absolute values of the randomly chosen matrices, although this comes at the
expense of a longer running time (see the starred row).

Table 2 gives less detailed information on the performance of the algorithm for polynomi-
als of high degree. One practical problem on working with polynomials of very high degree
is the space requirement of the algorithm. We found that this gave a limitation of around
2000 on the degree in each term for trivariate polynomials on a machine with 128MB RAM.
However, up to this limit, absolute irreducibility of polynomials with a few hundred terms
could be shown within minutes.

Table 4 gives information on polynomials of total degree bounded by 3. Here the mono-
mials are distinct random monomials and thus column 1 contains the exact number of mono-
mials in each polynomial. We have chosen to present this detailed information in a slightly
different format since polynomials of low total degree are perhaps of greater practical inter-
est, and also, at very low degree the difference between choosing distinct random monomials
and just random monomials becomes significant.

5.3 Polynomials with more variables

For polynomials with more variables, Algorithm 4 becomes more effective. This is supported
by Tables 5-7. Table 5 shows results for randomly chosen polynomials with 500 terms in

7

n = 10 variables and with degree d ranging from 3 to 20. For d > 13, we see that all
of the 1,000 random polynomials are found to be absolutely irreducible. Also the column
“Project.” indicates that the number of projections decreases as the degree increases.

In Table 6, we fix the number of variables to be n = 10 and the degree in each variable
to be at most d = 10, and vary the number of terms. It is natural that the more terms the
less effective our algorithm becomes. For a reasonable range of terms, our algorithm is very
efficient. For example, for polynomials with 1000 random terms, more than 85% of them
can be recoginzed to be irreducible in less than a second.

In Table 7, we fix the degree bound on each variable and the number of terms, and vary
the number n of variables. We see that our algorithm becomes more effective as n increases.
Also, the column “Project.” indicates that indecomposable polytopes in higher dimensions
need fewer projections to be proven so.

5.4 The effective range of the algorithm

A careful examination of the data indicates that our method is extremely effective if the
number ¢ of terms is about O(nd). More explicitly for n > 3, the effective range seems to be
t < 3nd. This means that our method is indeed effective for sparse polynomials which have
O(nd) terms, and as observed at the end of Section 3, the running time in this case is cubic
in the input size. One may give a heuristic argument which to some extent explains this
observation: For polynomials with O(nd) terms, in Step 3 of the Algorithm 4 one considers
a polygon which is the convex hull of O(nd) points all lying in a square of side O(nd). It
seems such polygons are frequently indecomposable in practice, and thus our algorithm is
often successful for sparse polynomials. Also, note that if one increases the matrix bound
with the other parameters fixed, the algorithm becomes more effective at the expense of
a longer running time (see the starred row in Table 3). This corresponds to increasing
the size of the square which the polygon in Step 3 lies within, which perhaps explains the
improvement in effectiveness.

6 Conclusion

We presented a heuristic method for testing absolute irreducibility of multivariate polyno-
mials over an arbitrary field. Our computer experiments indicate that it is most effective
for sparse polynomials, that is to say for polynomials with O(nd) non-zero terms, where
n is the number of variables and d is the degree in each variable. Since our algorithm is
extremely fast for most polynomials, but not infallible, it can be used as a pretest before a
slower general method is applied.

Our method is essentially one for testing indecomposability of integral polytopes. The
data we obtained shows that almost all polytopes in high dimensions are indecomposable.
It would be interest to verify this phenomenon in theory. Also, once one has established the
indecomposability of a particular polytope, it follows that all polynomials whose Newton
polytope is of that form are absolutely irreducible, regardless of the field over which they

8

are defined. Thus our method allows one to show that families of polynomials are absolutely
irreducible, and to find polynomials which are provably absolutely irreducible over “any
field”, a somewhat curious property.

Acknowledgements: The second author thanks Dr Gavin Brown of the Mathematical
Institute, Oxford, for his illuminating observations on the applications of the algorithm, and
the computer support staff at the Mathematical Institute for answering his programming
questions.

References

1]

2]

D. Duval, Absolute factorization of polynomials: a geometric approach, SIAM J. Com-
put. 20 (1991), 1-21.

S. Gao, Absolute irreducibility of polynomials via Newton polytopes, Journal of Algebra
237 (2001), 501-520.

S. Gao and A.G.B. Lauder, Decomposition of polytopes and polynomials, Discrete and
Computational Geometry 26 (2001), 89-104.

S. Gao, Factoring multivariate polynomials via partial differential equations, Mathemat-
ics of Computation 72 (2003), 801-822.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, New York, 1979.

J. von zur Gathen and E. Kaltofen, Factorization of multivariate polynomials over finite
fields, Math. Comp. 45 (1985), no. 171, 251-261.

J. von zur Gathen and I. Shparlinski, Computing components and projections of curves
over finite fields, SIAM. J. Comput. 28 (1998), no. 3, 822-840.

J.E. Goodman and J. O'Rourke (Eds), Handbook of Discrete and Computational Ge-
ometry, Elsevier Science, Amsterdam, 1997.

D. Yu Grigoryev and A. L. Chistov, Fast factorization of polynomials into irreducible
ones and the solution of systems of algebraic equations, Dokl. Akad. Nauk SSSR 275
(1984), no. 6, 1302-1306. English translation: Soviet Math. Dokl. 29 (1984), no. 2,
380-383.

E. Kaltofen, Polynomial-time reductions from multivariate to bi- and univariate integral
polynomial factorization, SIAM J. Comput. 14 (1985), no. 2, 469-489.

A. K. Lenstra, Factoring multivariate polynomials over finite fields, J. Comput. System
Sci. 30 (1985), no. 2, 235-248.

[12] A. K. Lenstra, Factoring multivariate polynomials over algebraic number fields, STAM
J. Comput. 16 (1987), no. 3, 591-598.

[13] A. M. Ostrowski, On multiplication and factorization of polynomials, II. Irreducibility
discussion, Aequationes Math. 14 (1976), 1-32.

10

A Appendix: Experimental data

Degree | Success | Failure | Time(ms
5 2301 7699 0.1
10 4027 5973 0.2
15 5191 4309 0.3
20 6067 3933 0.4
30 7005 2995 0.8
40 7613 2369 1.4
50 8020 1980 2.1
100 8966 1034 8.2

Table 1: Variables 2, Terms 10.

Degree | Success | Failure | Project.| Time(s)
200 98 2 10 8.7

400 100 0) 15.8
600 100 0 3 22.7
800 100 0 3 39.8
1000 100 0 3 04.2

Table 2: Variables 3, Terms 200, Matrix Bound 1, Projection Bound 100.

11

Degree | Terms | Success | Failure | Project.| Time
3 5 9876 124 2 0.2ms
3 10 9836 164 6 0.8ms
3 15 9276 724 13 2.7ms
3 20 7562 2438 18 6.9ms
3 25 5545 4455 23 12ms
3* 25 6282 3728 18 29ms
5 10 9991 9 4 0.8ms
5 20 9711 289 12 5ms

5 30 8222 1778 21 16ms
5 40 5766 4234 28 31ms
5 50 3688 6312 32 45ms
10 20 9991 9 5 6ms
10 40 9552 448 16 33ms
10 60 7907 2093 26 84ms
10 80 5821 4179 32 0.14s
10 100 3979 6021 36 0.19s
20 50 9938 62 10 82ms
20 100 8676 1324 24 0.36s
20 150 633 367 31 0.68s
20 200 434 566 35 0.94s
40 100 987 13 12 0.62s
40 200 848 152 26 2.5s
40 300 629 371 30 4.3s
40 400 451 549 37 5.8s
80 200 97 3 13 5.58
80 400 78 22 28 19.9s
80 600 65 35 30 28.5s
80 800 54 46 30 35.9s

Table 3: Variables 3, Matrix Bound 2 (*Matrix Bound 4), Projection Bound 100.

12

D.Terms Success | Failure | Project.| Time(ms
3 9830 170 2 0.1
4 9071 929 3 0.4
5 9554 446 3 0.3
6 9429 571 4 0.5
8 8872 1128 7 1.2
10 7285 2715 9 2.8
12 4694 5306 12 5.3
14 2156 7844 13 7.9
16 460 9540 15 9.8
18 58 9942 49 10.4

Table 4: Variables 3, Total Degree 3, Matrix Bound 2, Projection Bound 100.

Degree | Success | Failure | Project.| Time(ms
3 232 768 49 269
4 483 517 42 245
5 699 301 41 227
6 823 177 36 212
7 886 114 32 206
8 965 35 26 172
9 979 21 24 174
10 992 8 21 171
11 993 7 20 182
12 998 2 16 160
13 995 5 16 181
14 1000 0 13 165
15 1000 0 13 182
16 1000 0 11 174
17 1000 0 10 182
18 1000 0 10 181
19 1000 0 10 204
20 1000 0 9 204

Table 5: Variables 10, Terms 500 , Matrix Bound 1, Projection Bound 100

13

Terms | Success | Failure | Project.| Time
100 1000 0 5 16ms
200 1000 0 9 42ms
300 1000 0 13 75ms
400 998 2 17 115ms
500 986 14 21 168ms
600 979 21 24 220ms
700 959 41 28 294ms
800 927 73 32 380ms
900 904 96 33 433ms
1000 878 122 33 0.50s
2000 598 402 43 1.28s
3000 424 576 47 2.10s
4000 312 688 49 2.92s
5000 233 767 51 3.75s
7000 132 868 49 5.39s
10000 | 71 929 55 7.86s

Table 6: Variables 10, Degree 10, Matrix Bound 1, Projection Bound 100

Variables| Success | Failure | Project.| Time(ms
3 140 860 52 106
4 717 283 47 134
5 706 294 39 127
6 953 47 27 85
7 997 3 18 63
8 1000 0 14 52
9 1000 0 10 44
10 1000 0 9 42
15 1000 0 5 37
20 1000 0 4 42
30 1000 0 3 48
40 1000 0 3 60
50 1000 0 3 66
75 1000 0 2 79
100 1000 0 2 110

Table 7: Degree 10, Terms 200, Matrix Bound 1, Projection Bound 100.

14

