
A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES∗

SHUHONG GAO† , FRANK VOLNY IV‡ , AND MINGSHENG WANG§

Abstract. The paper presents a simple characterization for so-called strong Gröbner bases
which contains Gröbner bases for both ideals and the corresponding syzygy modules (for the given
generators of the ideals). This characterization can detect useless S-polynomials without reductions,
thus yields an efficient algorithm for computing strong Gröbner bases. Rigorous proofs are given for
the correctness and finite termination of this algorithm. For any term order for an ideal, one may vary
signature orders (i.e. the term orders for the syzygy module). It is shown by computer experiments
on benchmark examples that signature orders based on weighted degree are much better than other
signature orders. This is useful for practical computation. Also, since computing Gröbner bases for
syzygies is a main computational task for free resolutions in commutative algebra, the algorithm of
this paper should be useful for computing free resolutions in practice.

Key words. Gröbner basis, Buchberger’s Algorithm, Syzygy Module, F5 Algorithm, Module

AMS subject classifications. 13P10, 68W10

1. Introduction. Polynomial systems are ubiquitous in mathematics, science
and engineering. Gröbner basis theory is one of the most powerful tools for solv-
ing polynomial systems and is essential in many computational tasks in algebra and
algebraic geometry. Buchberger introduced in 1965 the first algorithm for comput-
ing Gröbner bases, and it has been implemented in most computer algebra systems
including Maple, Mathematica, Magma, Sage, Singular, Macaulay 2, CoCoA, etc.

There has been extensive effort in finding more efficient algorithms for computing
Gröbner bases. In Buchberger’s original algorithm (1965, [2]), one has to reduce many
useless S-polynomials (i.e., those that reduce to 0 via long division), and each reduc-
tion is time consuming. It is natural to avoid useless reductions as much as possible.
Buchberger [3, 4] discovered two simple criteria for detecting useless S-polynomials.
Note that a reduction of an S-polynomial to 0 corresponds to a syzygy (for the ini-
tial list of polynomials). Möller, Mora and Traverso (1992, [17]) go a step further to
present an algorithm using the full module of syzygies, however, their algorithm is
not very efficient. Faugère (2002, [9]) introduced the idea of signatures and rewriting
rules that can detect many useless S-polynomials, hence saving a significant amount
of time. In fact, for a regular sequence of polynomials, his algorithm F5 detects all
useless reductions. By computer experiments, Faugère showed that his algorithm F5
is many times faster than previous algorithms. In fact, Faugère and Joux (2003,
[10]) solved the first Hidden Field Equation (HFE) Cryptosystem Challenge which
involves a system of 80 polynomial equations with 80 variables over the binary field
(1996, [18]).

In another direction of research, one tries to speed up the reduction step. Lazard
(1983, [15]) pointed out the connection between Gröbner bases and linear algebra,

∗ The work presented in this paper was partially the 973 Project (No. 2013CB834203), the Na-
tional Science Foundation of China under Grant 11171323, and the National Science Foundation of
USA under grants DMS-1005369 and CCF-0830481.
†Department of Mathematical Sciences, Clemson University Clemson, SC 29634-0975 USA

sgao@clemson.edu
‡Department of Mathematical Sciences, Clemson University Clemson, SC 29634-0975 USA

fvolny@clemson.edu
§Information Security Lab, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100190, P. R. China mingsheng wang@yahoo.com.cn

1

2 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

that is, a Gröbner basis can be computed by Gauss elimination of a Sylvester matrix.
The XL algorithm of Courtois et al. (2000, [5]) is an implementation of this Sylvester
matrix, which is recently improved by Ding et al. (2008, [6]). A more clever approach
is the F4 algorithm of Faugère (1999, [8]), which deals with much smaller matrices.
F4 is an efficient method for reducing several S-polynomials simultaneously where the
basic idea is to apply fast linear algebra methods to the submatrix of the Sylvester
matrix consisting of only those rows that are needed for the reductions of a given
list of S-polynomials. This method benefits from the efficiency of fast linear algebra
algorithms. The main problem with this approach, however, is that the memory usage
grows quickly (compared to F5 for example), even for medium systems of polynomials.

F5 as presented in [9] is difficult to understand, the proofs of its correctness and
finite termination contain significant gaps. Stegers (2006 [20] filled some details of
the proofs under the assumption of two conjectures, but one of which was later shown
to be false by Gash (2008 [12]). More recently, Arri and Perry (2011 [1]) presented
a simpler theory for signature based algorithms. They gave a revised F5 criterion
with correct proof, however, their proof of finite termination is flawed (see details in
Section 3).

The main contribution of the current paper is to present a new simple theory for
computing Gröbner bases. Every list of polynomials defines an ideal and a syzygy
module. Most papers in the literature focus on computing Gröbner bases for ideals,
while Gröbner bases for syzygies are computed by a totally different method. We show
that the two types of Gröbner bases can be computed by a unified framework. We work
in a bigger module that contains both the ideal and the syzygy module for a given list
of polynomials, and define signatures, J-pairs, and reductions in a natural fashion. A
strong Gröbner basis for the big module contains a Gröbner basis for the ideal as well
as a Gröbner basis for the syzygy module. Our main result is a simple characterization
of strong Gröbner bases (see Theorem 2.4). This characterization has the desirable
features that useless J-pairs can be detected without performing any reduction and
that J-pairs can be processed in any order. Note that computing Gröbner bases for
syzygies is a main computational task for free resolutions in commutative algebra.
Our work should be useful for computing free resolutions in practice.

The paper is organized as follows. In Section 2, we introduce the basic con-
cepts and theory for our algorithm. In particular, we define signatures, regular top-
reductions, super top-reductions, J-pairs, and strong Gröbner bases. The main result
is Theorem 2.4. As a special case, this provides a proof for the correctness of the G2V
algorithm in [11], which was missing there. In Section 3, we present our algorithm and
give a simple proof for its finite termination. We also present computer experiments
on some benchmark examples and compare the times of our algorithm under different
signature orders. In the last section, we discuss how our theory is related to other
related works and mention some recent progress since the current paper was initially
submitted (in 2010).

2. Theory. Let R = F[x1, . . . , xn] be a polynomial ring over a field F with n
variables. For any polynomials g1, . . . , gm ∈ R, we define an ideal of R:

I = 〈g1, . . . , gm〉 = {u1g1 + · · ·+ umgm : u1, . . . , um ∈ R} ⊆ R, (2.1)

and a submodule of Rm:

H = {(u1, . . . um) ∈ Rm : u1g1 + · · ·+ umgm = 0} , (2.2)

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 3

which is called the syzygy module of g = (g1, . . . , gm). We would like to develop an
algorithm that computes Gröbner bases for both I and H under any given term orders
on R and Rm.

To establish the theoretical foundation for our algorithm, we work in the larger
R-module Rm × R which allows us to handle the ideal I and the syzygy module H
simultaneously. Note that elements of Rm are viewed as row vectors and are denoted
by bold letters say g,u etc. We consider the following subset of Rm ×R:

M =
{

(u, v) ∈ Rm ×R : ugt = v
}
. (2.3)

It is an R-submodule of Rm×R because it is closed under addition and multiplication
by R, that is, for any (u1, v1), (u2, v2) ∈M and any r1, r2 ∈ R, we have

r1(u1, v1) + r2(u2, v2) = (r1u1 + r2u2, r1v1 + r2v2) ∈M.

For 1 ≤ i ≤ m, let Ei ∈ Rm be the ith unit vector whose i-th entry is 1 and other
entries are 0. Note that a monomial (or a term) in R is of the form

xα =

n∏
i=1

xaii

where α = (a1, . . . , an) ∈ Nn is any vector of non-negative integers, and a term in Rm

is of the form

xαEi

where 1 ≤ i ≤ m and α ∈ Nn. We say xαEi divides xβEj if i = j and xα divides xβ ,
with the quotient being

(xβEi)/(x
αEi) = xβ−α ∈ R.

Also, the R-module M in (2.3) is generated by

(E1, g1), (E2, g2), . . . , (Em, gm). (2.4)

Fix any term order ≺1 on R and any term order ≺2 on Rm. We emphasize that
the order ≺2 may or may not be related to ≺1 in the theory below, though ≺2 is
usually compatible with ≺1, that is,

xα ≺1 x
β iff xαEi ≺2 x

βEi for all 1 ≤ i ≤ m.

For the sake of convenience, we shall use the following convention for leading terms:

lm(v) = lm≺1
(v), lm(u) = lm≺2

(u)

for any v ∈ R and u ∈ Rm. Note that, for v ∈ R, lm(v) is a monomial xα, while,
for u ∈ Rm, lm(u) is a term xαEi for some α ∈ Nn and 1 ≤ i ≤ m. We make the
convention that if v = 0 then lm(v) = 0; similarly for lm(u). This should not cause
any confusion, but the reader should keep the two different orders in mind.

For any (u, v) ∈ Rm × R, we call lm(u) the signature of (u, v). Our definition
of signatures is different from that of F5 [1, 9] where each v ∈ I = 〈g1, . . . , gm〉 is
associated with a signature:

S(v) = min{lm(u) : u ∈ Rm with ugt = v}.

4 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

The F5 signature is hard to use in practice, while our signature is natural and easy
to use.

We define top-reduction similar to the top-reduction in F5. Let p1 = (u1, v1), p2 =
(u2, v2) ∈ Rm × R be any two pairs. When v2 is nonzero, we say p1 is top-reducible
by p2 if the following two conditions are satisfied:

(i) v1 is nonzero and lm(v2) divides lm(v1); and
(ii) lm(tu2) � lm(u1) where t = lm(v1)/lm(v2).

The corresponding top-reduction is then

p1 − ctp2 = (u1 − ctu2, v1 − ctv2), (2.5)

where c = lc(v1)/lc(v2). The effect of a top-reduction is that the leading monomial in
the v-part is decreased without increasing the signature of p1. Such a top-reduction
is called regular, if

lm(u1 − ctu2) = lm(u1),

and super otherwise. So the signature of p1 − ctp2 remains the same as p1 under
a regular top-reduction but becomes smaller under a super top-reduction. A super
top-reduction happens if

lm(tu2) = lm(u1) and
lc(u1)

lc(u2)
=

lc(v1)

lc(v2)
.

When v2 = 0, p2 = (u2, 0) ∈M corresponds to the syzygy u2. We say that p1 is top-
reducible by a syszygy p2 = (u2, 0) if u1 and u2 are both nonzero and lm(u2) divides
lm(u1). A top-reduction by a syzygy is always called super. Hence, if p1 = (u1, v1) is
super top-reducible by p2 = (u2, v2) in either case, then lm(u2) divides lm(u1). We
note that a pair (u1, 0) is never top-reducible by (u2, v2) with v2 6= 0, and in our
algorithm below, we only detect super top-reductions of the two kinds defined here,
but never actually perform super top-reductions.

Definition 2.1. A subset G of M is called a strong Gröbner basis for M if every
nonzero pair in M is top-reducible by some pair in G.

This definition is similar to the usual definition for Gröbner bases for ideals: a
subset G of an ideal I is called a Gröbner basis if the leading term of every polynomial
in I is divisible by the leading term of some polynomial in G, that is, every polynomial
in I is top-reducible by some polynomial in G.

Proposition 2.2. Suppose that G = {(u1, v1), (u2, v2), . . . , (uk, vk)} is a strong
Gröbner basis for M . Then

1. G0 = {ui : vi = 0, 1 ≤ i ≤ k} is a Gröbner basis for the syzygy module of
g = (g1, . . . , gm), and

2. G1 = {vi : 1 ≤ i ≤ k} is a Gröbner basis for I = 〈g1, . . . , gm〉.
Proof. For any u = (u1, . . . , um) in the syzygy module of g, we have (u, 0) ∈M .

By our assumption, (u, 0) is top-reducible by some pair (ui, vi) in G. Then we must
have vi = 0, thus ui ∈ G0 and lm(u) is reducible by lm(ui). This proves that G0 is a
Gröbner basis for the syzygy module of g.

Now suppose v ∈ I and is nonzero. Then there exists u = (u1, . . . , um) ∈ Rm

so that ugt = v, hence (u, v) ∈ M . Among all such u, we pick one so that lm(u) is
minimum. Since (u, v) ∈ M , it is top-reducible by some (ui, vi) where 1 ≤ i ≤ k. If
vi = 0, then we could use (ui, 0) to reduce (u, v) to get a u′ so that u′gt = v and
lm(u′) is smaller than lm(u), contradicting to the minimality of lm(u). So vi 6= 0 and
lm(vi) divides lm(v). Hence G1 is a Gröbner basis for I.

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 5

Remark. Note that M ⊂ Rm × R has a Gröbner basis in the classical sense of
Burchberger as a submodule of Rm+1 where the leading term of (u, v) is lm(v)Em+1

if v 6= 0 and lm(u) if v = 0. The above proposition implies that a strong Gröbner basis
for M is a classical Gröbner basis for M as a submodule of Rm+1, but the converse
may not be true for an arbitrary submodule M of Rm+1 (as our regular top-reduction
must preserve signatures). This is why we call our basis a strong Gröbner basis.

Since M is infinite, it is not clear how to check whether a given set of generators
for M is a Gröbner basis. We need a characterization in term of G itself similar to
Buchberger’s criterion. We define a concept of J-pairs, similar to S-polynomials in
Buchburger’s algorithm. Suppose p1 = (u1, v1), p2 = (u2, v2) ∈ Rm ×R are two pairs
with v1 and v2 both nonzero. We form a joint pair from them as follows. Let

t = lcm(lm(v1), lm(v2)), t1 =
t

lm(v1)
, t2 =

t

lm(v2)
.

Let c = lc(v1)/lc(v2) and T = max(t1lm(u1), t2lm(u2)). Without loss of generality,
we assume T = t1lm(u1). If

lm(t1u1 − ct2u2) = T, (2.6)

then T is called the J-signature of p1 and p2, while t1p1 is called the J-pair of p1 and
p2. We do not define any J-pair for p1 and p2 when lm(t1u1 − ct2u2) ≺ T , which
happens if

t1lm(u1) = t2lm(u2), and
lc(u1)

lc(u2)
=

lc(v1)

lc(v2)
.

In comparison to Buchburger’s algorithm, the S-polynomial of v1 and v2 is t1v1−ct2v2.
In terms of pairs, this corresponds to a reduction:

t1p1 − ct2p2 = (t1u1 − ct2u2, t1v1 − ct2v2). (2.7)

When (2.6) holds, (2.7) is a regular top-reduction of t1p1 by p2. This means that the
J-pair of p1 and p2 is defined if and only if (2.7) is a regular top-reduction. Hence
the J-pair of any two pairs p1 and p2 is always regular top-reducible by p1 or p2. We
point out that, in the case of S-polynomials, the goal is to cancel the leading terms
of v’s. In our J-pair, the leading terms of v’s are not cancelled, but will be cancelled
in later top-reductions. This seems strange at first glance, but it is useful in saving
storage as a J-pair tpi can be stored simply as a pair (t, i) where i is the index of the
pair pi = (ui, vi), instead of storing the actual pair (tui, tvi). Also, we never define
the J-pair of p1 = (u1, v1) and p2 = (u2, v2) when v1 or v2 is zero.

Lemma 2.3. Let t be a monomial in R and p1 = (u1, v1), p2 = (u2, v2) ∈ Rm×R.
If tp1 is regular top-reducible by p2 (hence both v1 and v2 are nonzero), then t1p1 is
a J-pair of p1 and p2, where

t1 =
lcm(lm(v1), lm(v2))

lm(v1)
=

lm(v2)

gcd(lm(v1), lm(v2))

and t1 is a divisor of t. Furthermore, t1p1 is regular top-reducible by p2.
Proof. Since tp1 is regular top-reducible by p2, we know that both v1 and v2 are

nonzero and there is a monomial s such that

t lm(v1) = s lm(v2), t lm(u1) = lm(tu1 − csu2), (2.8)

6 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

where c = lm(v1)/lm(v2). Let

t2 =
lcm(lm(v1), lm(v2))

lm(v2)
=

lm(v1)

gcd(lm(v1), lm(v2))
.

Then the first equation of (2.8) implies that, for some monomial w,

t =
lm(v2)

gcd(lm(v1), lm(v2))
w = t1w, and

s =
lm(v1)

gcd(lm(v1), lm(v2))
w = t2w.

Hence the second equation of (2.8) implies that t1 lm(u1) = lm(t1u1 − ct2u2). This
shows that t1p1 is the J-pair of p1 and p2, and t1p1 is regular top-reducible by p2.

Let G be any set of pairs in Rm × R. We say that a pair (u, v) ∈ Rm × R is
regular top-reducible by G if it is regular top-reducible by at least one pair in G.
We call (u, v) eventually super top-reducible by G if there is a sequence of regular
top-reductions of (u, v) by pairs in G that reduce (u, v) to a pair (u′, v′) that is no
longer regular top-reducible by G but is super top-reducible by at least one pair in G.
Also, we say that a pair (u, v) is covered by G if there is a pair (ui, vi) ∈ G so that
lm(ui) divides lm(u) and t lm(vi) ≺ lm(v) (strictly smaller) where t = lm(u)/lm(ui).
Note that there is no reduction at all in checking whether a pair is covered by G.

Theorem 2.4. Suppose G is a subset of M such that, for any term T ∈ Rm,
there is a pair (u, v) ∈ G and a monomial t such that T = t lm(u). Then the following
are equivalent:

(a) G is a strong Gröbner basis for M ,
(b) every J-pair of G is eventually super top-reducible by G,
(c) every J-pair of G is covered by G.
Proof. (a) ⇒ (b) Let p = (u, v) be any J-pair of G. Then p is in M , hence

top-reducible by G. We can perform regular top-reductions to p as much as possible,
say to get p′ = (u′, v′) which is not regular top-reducible. Since p′ is still in M ,
it is top-reducible by G, hence must be super top-reducible by G. Therefore, p is
eventually super top-reducible by G.

(b) ⇒ (c) Let p = (u, v) be any J-pair from G. Since p is eventually super
top-reducible by G, after a sequence of regular top-reductions of p by G, we can get
a p0 = (u0, v0) ∈ M such that p0 is not regular top-reducible by G but is super
top-reducible by some pair p1 = (u1, v1) ∈ G.

If v1 = 0, then lm(u1) | lm(u0) = lm(u) and tv1 = 0 is smaller than lm(v). So we
may assume that v1 6= 0. Then

lm(v0)

lm(v1)
=

lm(u0)

lm(u1)
,

which is denoted by t. Note that every J-pair can be regular top-reduced by G, so we
have lm(v0) < lm(v) and lm(u0) = lm(u), the latter implies that

t lm(v1) = lm(v0) ≺ lm(v).

Hence we have lm(u1) | lm(u0) and t lm(v1) ≺ lm(v) as desired. This shows that p is
covered by G, thus (c) is satisfied.

(c)⇒ (a). We prove by contradiction. Assume that there is a pair p = (u, v) ∈M
that is not top-reducible by any pair in G. Among all such pairs p we pick one with

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 7

minimal signature T = lm(u). Note that T 6= 0. Next, we select a pair p1 = (u1, v1)
from G such that

(i) T = t lm(u1) for some monomial t, and
(ii) t lm(v1) is minimal among all p1 ∈ G satisfying (i).
We claim that t(u1, v1) is not regular top-reducible by G. To prove this claim,

we suppose that t(u1, v1) is regular top-reducible by some p2 = (u2, v2) ∈ G, so
both v1 and v1 are nonzero. We want to derive a contradiction to the condition (ii).
By Lemma 2.3, the J-pair of p1 and p2 is t1(u1, v1) and that t1p1 is still regular
top-reducible by p2, where

t1 =
lcm(lm(v1), lm(v2))

lm(v1)
, and t = t1w

for some monomial w. By the assumption in (c), the J-pair t1p1 is covered by G,
hence there is a pair p3 = (u3, v3) ∈ G so that t3lm(v3) ≺ t1lm(v1), where t3 =
t1lm(u1)/lm(u3) is a monomial. Then we have

T = t lm(u1) = wt1lm(u1) = wt3lm(u3),

and

wt3lm(v3) ≺ wt1lm(v1) = t lm(v1).

This violates the condition (ii) for the choice of p1 in G.
Hence we may assume that t(u1, v1) is not regular top-reducible by G. Consider

(u, v) = (u, v)− ct(u1, v1), (2.9)

where c = lc(u)/lc(u1) so that lm(u) ≺ lm(u) = T . Note that lm(v) 6= t lm(v1), since
otherwise (u, v) would be top-reducible by p1 contradicting the choice of (u, v). Also,
as (u, v) ∈ M and lm(u) ≺ T , we have that (u, v) is top-reducible by G. If (u, v) is
top-reducible by some pair p2 = (u2, v2) ∈ G with v2 = 0, then we can reduce (u, v)
repeatedly by such pairs to get a new pair (ũ, v) that is not top-reducible by any pair
in G with v-part being zero. Note that (ũ, v) is still in M and lm(ũ) ≺ T . Hence (ũ, v)
is top-reducible by some pair p2 = (u2, v2) ∈ G with v2 6= 0. As lm(v) 6= t lm(v1), we
consider two cases:

• lm(v) ≺ t lm(v1). Then lm(v) = t lm(v1), hence t(u1, v1) is regular top-
reducible by (u2, v2) (as lm(ũ) ≺ t lm(u1)). Since t(u1, v1) is not regular
top-reducible by any pair in G, this case is impossible.

• lm(v) � t lm(v1). Then lm(v) = lm(v), and (u, v) is regular top-reducible by
(u2, v2), contradicting the fact that (u, v) is not top-reducible by any pair in
G.

Therefore such a pair (u, v) does not exist in M , so every pair in M is top-reducible
by G. This proves (a).

The condition (c) of Theorem 2.4 tells us that any J-pair that is covered by G
can be discarded (without performing any reductions). This will greatly speed up the
algorithm. As special cases, we have the following two criteria.

Corollary 2.5 (Syzygy Criterion). If a J-pair is top-reducible by a syzygy, then
it can be discarded.

Corollary 2.6 (Signature Criterion). Among all J-pairs with an equal signa-
ture, one just needs to store one of them (the one with the v-part minimal).

8 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Remarks. In the original version of this paper (presented in ISSAC 2010 July 25–29,
Münich, Germany), Theorem 2.4 had only (a) and (b). Later, Huang (November 2010
[14]) and Arri and Perry (December 2010, [1]) characterize Gröbner bases in term of
irreducible and primitive irreducible pairs (or polynomials). In particular, Arri and
Perry [1] gave an F5 criterion similar to our condition (b) (see more comments about
this in Section 5), but they used the condition (c) (without proof) in their algorithm.
When using the condition (b) or the F5 criterion of [1], the J-pairs must be processed
in increasing order. Our condition (c) was actually proved in the original proof of the
equivalence of (a) and (b); the current proof is just a rewording of that proof.

3. Algorithm and Finite Termination. Our algorithm is based on Theorem
2.4. The basic idea is as follows. Initially, we have the pairs in (2.4) in our Gröbner
basis. So the condition of the theorem is satisfied. From these pairs, we form all J-
pairs, keeping only one J-pair for each J-signature (the one whose v-part is minimal).
We then take any J-pair from the list of J-pairs (usually the one with minimal signa-
ture). Check if the minimality condition (c) is satisfied for this pair. If yes, discard
this J-pair; otherwise, repeatedly perform regular top-reductions to this pair until it
is no longer regular top-reducible, say to get (u, v). If the v part of the resulting pair
is zero, then the u part is a syzygy in H, and we store this vector. If the v part is
nonzero, then add this (u, v) pair to the current Gröbner basis and form new J-pairs.
Repeat this process until the list of J-pairs is empty.

We make two improvements on this basic algorithm. First, storing and updating
vectors u ∈ Rm are expensive. In our computation, we shall make all pairs (u, v)
monic, namely, the leading coefficient of u is 1. Then we only store the signature,
i.e., the leading term of u. Now suppose (u1, v1) and (u2, v2) are any two monic
pairs. Then a top-reduction (regular or super) is determined only by lm(u1), lm(u2),
v1 and v2. The other terms of u1 and u2 are not used at all. Let T1 = lm(u1) and
T2 = lm(u2), the signatures of (u1, v1) and (u2, v2), respectively. Suppose we store
only (T1, v1) and (T2, v2). Then (T1, v1) is regular top-reducible by (T2, v2) when
v2 6= 0, lm(v1) is divisible by lm(v2), and tT2 ≺ T1, or tT2 = T1 but lc(v1) 6= lc(v2).
The corresponding top-reduction is

v := v1 − ctv2

where t = lm(v1)/lm(v2) and c = lc(v1)/lc(v2), and furthermore, if tT2 = T1 then we
update v as

v := v/(1− c),

to keep the u-part of (u, v) monic where T1 = lm(u). Then (T1, v) is the resulting pair
of the reduction, and it replaces (T1, v1). Our algorithm below will perform regular
top-reductions in this fashion.

Another improvement is to use trivial syzygies. We will store the leading terms
of known syzygies in a list called H. Let (T1, v1) and (T2, v2) be any two pairs from
the Gröbner basis computed so far, where v1 and v2 are both nonzero. There are
ui ∈ Rm such that lm(ui) = Ti and (ui, vi) ∈M for 1 ≤ i ≤ 2. Then we have

v2(u1, v1)− v1(u2, v2) = (v2u1 − v1u2, 0) ∈M.

Hence v2u1 − v1u2 is a syzygy of (g1, . . . , gm). Its leading term is

T = max(T1lm(v2), T2lm(v1)),

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 9

provided that T1lm(v2) 6= T2lm(v1) or T1lm(v2) = T2lm(v1) but lc(v1) 6= lc(v2). When
T1lm(v2) = T2lm(v1) and lc(v1) = lc(v2), the leading terms in v2u1 and v1u2 cancel
each other. In that case, we don’t know the leading term of the syzygy, so we just
ignore such a syzygy. In all other cases, our algorithm will add T to the list H.
The leading terms of these syzygies are obtained free (i.e., without performing any
reductions), thus saving time.

The algorithm is described more precisely in Figure 3.1 below. As mentioned
above, we use H to record leading terms of syzygies. In addition to H, our algorithm
uses two more lists to store the pairs (T1, v1), (T2, v2), . . . , (Tk, vk) with vi 6= 0 for
1 ≤ i ≤ k. This list will be stored as

U = [T1, T2, . . . , Tk], V = [v1, v2, . . . , vk].

Then [U, V] represents the whole list (T1, v1), (T2, v2), . . . , (Tk, vk).
Theorem 3.1. Suppose the term order in R is compatible with the term order in

Rm. Then the algorithm in Figure 3.1 terminates in finitely many steps with a strong
Gröbner basis for M .

Proof. The correctness of the algorithm follows directly from Theorem 2.4, as
Step 2 makes sure the condition (c) is satisfied. We only need to prove the finite
termination of the algorithm. For any two pairs p1 = (u1, v1), p2 = (u2, v2) ∈ M , we
say that p1 divides p2 if lm(u1) | lm(u2) and lm(v1) | lm(v2). We list the pairs in G
in exactly the same order as they were obtained (not including (T, 0) for T ∈ H):

(E1, g1), (E2, g2), . . . , (Em, gm), (T1, v1), (T2, v2), . . . , (Ti, vi), . . .

Then there exist ui ∈ Rm so that lm(ui) = Ti for i ≥ 1. Let pi = (ui, vi) for i ≥ 1.
We claim that, for all i < j, pi does not divide pj . Suppose otherwise, say pi = (ui, vi)
divides pj = (uj , vj) for some i < j. Then there are monomials t1, t2 ∈ R so that

lm(vj) = t1lm(vi), lm(uj) = t2lm(ui).

Suppose t1 ≺ t2 (in R). Then t1lm(ui) ≺ t2lm(ui) (since the term orders are
compatible). As t2lm(ui) = lm(uj), we have that pj is regular top-reducible by pi,
contradicting to the choice of the algorithm. Thus we must have t2 � t1. Then
t2lm(vi) � t1lm(vi) = lm(vj). Let p = (u, v) be the J-pair that was reduced to pj by
the algorithm. Then lm(u) = lm(uj) = Tj and lm(vj) ≺ lm(v) (as a J-pair is always
regular top-reducible). Hence the J-pair p is covered by pi, hence should have been
discarded by the algorithm. Therefore we have a sequence

(T1, lm(v1)), (T2, lm(v2)), . . . , (Ti, lm(vi)), . . . (3.1)

with no pair divisible by any previous one.
We introduce new variables

yi = (yi1, yi2, . . . , yin), 1 ≤ i ≤ m.

Each pair (xαEi, x
β) corresponds to a term yαi x

β , a monomial in the variables xi’s
and yij ’s. Then the pairs in (3.1) gives us a list of monomials in xi’s and yij ’s with the
property that no one divisible by any previous one. Since every polynomial ring over
a field is Noetherian, the ascending chain condition tells us that this list of monomials
must be finite. Therefore, G is finite.

Remarks on Finite Termination. We would like to make a few remarks about
proofs of finite termination that have appeared in the literature.

10 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Algorithm for computing Gröbner bases
Input: g1, . . . , gm ∈ R = F[x1, . . . , xn] and term orders for R and Rm

Output: A Gröbner basis for I = 〈g1, . . . , gm〉 and a Gröbner basis for
lm(H), the leading terms of the syzygy module

Variables: U a list of terms Ti, representing signatures of (ui, vi) ∈M ,
V a list of polynomials for vi for (ui, vi) ∈M ,
H a list for lm(u) were u ∈ Rm is a syzygy found so far,
JP a list of pairs (xα, i), where xα is a monomial so that xα(ui, vi)
is a J-pair of (ui, vi) and (uj , vj) for some j 6= i.

Step 0. U = [E1, . . . ,Em], and V = [g1, . . . , gm].
Find the leading terms of the principle syzygies gjEi − giEj for

1 ≤ i < j ≤ m, and add them in H.
Compute all the J-pairs of (E1, g1), . . . , (Em, gm) storing into JP :

storing only the J-pairs whose signatures are not reducible by
H and storing only one J-pair for each distinct signature.

Step 1. Take any pair (xα, i) from JP (say with minimal signature), and
delete it from JP . Let (T, v) = xα(ui, vi).

Step 2. If (T, v) is covered by G = [U, V], then discard (T, v) and go to
Step 5.

Step 3. Reduce the pair (T, v) repeatedly by G using only regular top-
reductions until it is not regular top-reducible, say to get (T, ṽ).

Step 4a. If ṽ = 0, then append T to H, and delete every J-pair in JP whose
signature is divisible by T .

Step 4b. If ṽ 6= 0 then
(b1) Add the leading terms of the principle syzygies, ṽTj − vjT for

1 ≤ j ≤ |U |, to H (and delete any redundant ones),
(b2) Form new J-pairs between (T, ṽ) and (Tj , vj), 1 ≤ j ≤ |U |,

and insert into JP all such J-pairs whose signatures are not
reducible by H (storing only one J-pair for each distinct signa-
ture T , the one with v-part minimal), and

(b3) Append (T, ṽ) to G (i.e. T to U and v to V).
Step 5. While JP is not empty, go to step 1.
Return: V and H.

Fig. 3.1.

(a) We remark that Huang (2010 [14]) is the first person who gave a correct
proof of finite termination for signature-based algorithms when the J-pairs
are processed in increasing order. The proof for the general case (when J-
pairs are processed in arbitrary order) is partly due to Sun and Wang (2012,
[16], especially the part for t2 � t1.

(b) Huang gave a counter example when the orders for R and Rm are not com-
patible. For convenience of the reader, we reproduce his example here. Let
g1 = x2, g2 = x1 − x2 ∈ R = F[x1, x2]. Suppose that the term order in
R is the lex order with x2 ≺1 x1 and the term order for R2 is defined by
position and then the reverse lex order with E2 ≺2 E1 and x1Ei ≺2 x2Ei
for i = 1, 2. So the two orders are not compatible. Starting with the pairs
(E1, x2) and (E2, x1 − x2), every signature-based algorithm will produce the

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 11

infinite sequence:

(xk1E1 − (xk−11 x2 + xk−21 x22 + · · ·+ xk2)E2, xk2), k = 2, 3, · · ·

in which no pair is top-reducible by any other pair (including (E1, x2) and
(E2, x1 − x2)). Hence every signature-based algorithm will not have finite
termination for these term orders.

(c) We would like to mention that the proofs of finite termination in Hashemi and
Ars [13] and Arri and Perry [1] have flaws. In [13], the proof of Proposition
4.1 assumes that the each time a new polynomial is added to the current
Gröbner basis, the ideal generated by its leading terms strictly increases (just
like Buchburger’s algorithm). This is not true in general, as a polynomial
may be reducible by the current Gröbner basis in the sense of Buchburger’s
algorithm but such a reduction may not preserve signature hence not allowed
in F5 algorithm.

(d) In [1], they claim finite termination for any term orders ≺1 on R and ≺2 on
Rm. That is not correct by Huang’s example. Even if assuming that the
two orders are compatible, their proof of Proposition 14 is still flawed. More
precisely, they assumed that if an R-module N of Rm ×R is generated by a
set of elements of the form

(xβjEij , x
αj), j = 1, 2, . . . ,

then, for every element (u, v) ∈ N , the element (lm(u), lm(v)) is divisible by
one of the generators, that is, there is a monomial t ∈ R and some j so that

(lm(u), lm(v)) = t (xβjEij , x
αj).

This is not true in general. Here’s a counterexample. Let R = F[x, y] under
lex with x > y and R2 under POT order with E1 = (1, 0) > E2 = (0, 1).
Consider the R-submodule N generated by

(E1, x), (E2, x), (E2, y).

Then (E1, y) = (E1, x)− (E2, x) + (E2, y) ∈ N , but (E1, y) is not divisible by
any of the three generators.

Gröbner bases for the syzygy module. Our algorithm as presented in Figure
3.1 only calculates the leading terms of the syzygy module. While one has the option
of modifying the algorithm to compute syzygies instead of leading terms of syzygies,
there is a more efficient method. Suppose that the algorithm terminates with lists
U, V and H, then we can compute a minimal Gröbner basis for the syzygy module as
follows. The m pairs (Ei, gi), 1 ≤ i ≤ m, are already in M . Among these pairs, we
need to perform regular top-reductions until no one is regular top-reducible by any
others. Then we have m pairs

(u1, v1), . . . , (um, vm) ∈M

whose signatures are E1, . . . ,Em, respectively, and none of them is regular top-
reducible by others in the list. Now order the signatures in U \ {E1, . . . ,Em} in
increasing order, say

Tm+1, . . . , T`.

12 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

For i from m+ 1 to `, find j < i and a monomial t so that Ti = t lm(uj) and t lm(vj)
is minimal, and perform regular top-reductions of t(uj , vj) by

(u1, v1), . . . , (um, vm), . . . , (ui−1, vi−1),

until it is not regular top-reducible. Denote the resulted pair by (ui, vi) and proceed
to the next i. By the end of this loop, we get ` pairs

(u1, v1), (u2, v2), . . . , (um, vm), . . . , (u`, v`) (3.2)

in M , whose signatures are exactly those in U .
To get a Gröbner basis for the syzygy module, just do the following. For each

term T in H, we recover the u such that ugt = 0 and lm(u) = T . Find a pair (ui, vi),
1 ≤ i ≤ `, so that T = t lm(ui) and t lm(vi) is minimal. Then perform regular top-
reductions of t(ui, vi) by (3.2) until the v-part is zero and the u-part is a syzygy with
leading term equal to T . If T comes from a trivial syzygy, then no reductions are
required. All these syzygies form a minimal Gröbner basis for the (g1, . . . , gm)-syzygy
module with respect to ordering ≺2.

This algorithm takes advantage of the signatures already computed in U and H,
thus saving time that would be used in processing J-pairs and reducing J-pairs that
are eventually super top-reducible.

4. Term Orderings and Time Comparison. Explicit Term Orders. Now
we discuss choices of term orders. We use ≺1 to represent a term ordering on R and
≺2 to represent a term ordering on Rm. While computing Gröbner bases for both
〈g1, . . . , gm〉 and H, one should set ≺1 and ≺2 to the appropriate term orderings for
the Gröbner bases desired. Often, however, the Gröbner basis for H is not needed.
Then we only need the leading terms of H to speed up the computation of 〈g1, . . . , gm〉.
In this case, we have tremendous freedom in the choice of ≺2.

There are many ways that we can construct a term ordering on Rm. We consider
four extreme cases below. Let ≺ be some term order on R. We extend ≺ to Rm as
follows.
(POT) The first is called position over term ordering (POT). We say that xαEi ≺

xβEj if i < j or i = j and xα ≺ xβ .
(TOP) The second is the term over position ordering (TOP). We say that xαEi ≺

xβEj if xα ≺ xβ or xα = xβ and i < j.
(g1) Next is the g-weighted degree followed by TOP. We say that xαEi ≺ xβEj if

deg(xαgi) < deg(xβgj) or deg(xαgi) = deg(xβgj) and xαEi ≺top xβEj , where
deg is for total degree.

(g2) Finally, we have g-weighted ≺ followed by POT. We say that xαEi ≺ xβEj
if lm(xαgi) ≺ lm(xβgj) or lm(xαgi) = lm(xβgj) and xαEi ≺pot xβEj .

These signature orders are compatible with the order in R, hence our algorithm
has finite termination by Theorem 3.1. We remark that, under the POT order, our
new algorithm closely corresponds to the G2V algorithm presented in [11]. The reason
being that this new algorithm always first picks J-pairs with signatures containing E1,
then those with E2, etc. This means that it computes Gröbner bases for 〈g1〉, 〈g1, g2〉,
. . ., 〈g1, g2, . . . , gm〉, just like G2V and F5. The only difference is that the intermediate
bases may not be reduced and non-leading terms are not reduced as in the computing
of normal forms.

Another remark is that our algorithm under the g1 order roughly corresponds to
the behavior of the F4 and XL algorithms [5]. In the XL algorithm, one performs row

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 13

Test Case (#generators) F5 F5C G2V

Katsura5 (22) 1.48 0.93 0.36
Katsura6 (41) 2.79 2.34 0.37
Katsura7 (74) 30.27 22.76 4.64
Katsura8 (143) 290.97 177.74 29.88

Schrans-Troost (128) 1180.08 299.65 21.34
F633 (76) 30.93 29.87 2.06

Cyclic6 (99) 28.44 22.06 5.65
Cyclic7 (443) 4591.20 2284.05 732.33

Table 4.1
Runtimes in seconds comparing F5, F5C and G2V (GVW under POT ordering) for various

test cases in Singular 3110 on an Intel Core 2 Quad 2.66 GHz. This table is reproduced from [11].

Test Case F5 F5C G2V POT TOP g1 g2

Katsura5 (22) 79 66 64 67 64 64 39
Katsura6 (41) 103 77 69 73 97 97 55
Katsura7 (74) 280 218 216 224 189 189 101
Katsura8 (143) 691 492 439 448 368 368 191
Schrans-T (128) 1379 813 461 398 208 208 220

F633 (76) 420 362 288 164 237 225 150
Cyclic 6 (99) 451 338 411 163 1209 1209 216
Cyclic 7 (443) 3905 2581 3108 785 9322 9322 974

Table 4.2
Counts of the J-pairs or S-polynomials processed by F5, F5C (as in [7]), G2V (as in [11]), and

GVW under POT, TOP, g1 and g2 orders

reductions on a matrix whose rows correspond to all polynomials xαgi, 1 ≤ i ≤ m,
with total degree of xαgi smaller than some bound. Our algorithm basically works
with only some of those rows that correspond to J-signatures. So our algorithm needs
much less storage.

Performance Comparison. For ease of exposition, we refer to our algorithm as
GVW. We implemented GVW in C++ . Because our C++ implementation is vastly
different than our F5/C and G2V implementations, we did not compare timings as we
did in [11] (see Table 4.1, reproduced here1 for comparison purposes). Instead, table
4.2 lists the counts of J-pairs or S-polynomials processed by each algorithm. Within
Table 4.2, we distinguish between the G2V (as in [11], without theorem 2.4(c)) and
GVW under the POT order. But as mentioned earlier, GVW under POT is nearly
the G2V algorithm except for the interreduction between increments and theorem
2.4(c).

Just as in [11], various benchmark examples (from [7]) were run for comparison.
We collected data from each example under each term ordering for comparison. Table
4.3 list the runtimes in seconds of GVW for each of the four term orderings. In
examining the timings, we find that g2 seems to be a clear winner among the four
term orders.

Table 4.4 lists the sizes of the Gröbner bases produced by GVW with each term
ordering. These are the Gröbner bases produced by the algorithm before any interre-

1with permission from ACM.

14 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 0.00 0.00 0.00 0.01
Katsura6 (41) 0.02 0.04 0.04 0.04
Katsura7 (74) 0.46 0.36 0.36 0.34
Katsura8 (143) 4.20 2.97 2.99 2.82

Schrans-Troost (128) 1.54 3.72 3.75 3.94
F633 (76) 0.07 0.43 0.36 0.06

Cyclic 6 (99) 0.04 0.66 0.64 0.07
Cyclic 7 (443) 5.40 253.75 252.02 7.49

Table 4.3
Runtimes in seconds using our C++ implementation on an Intel Core 2 Quad 2.66 GHz processor

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 67 64 64 27
Katsura6 (41) 73 91 91 44
Katsura7 (74) 224 175 175 80
Katsura8 (143) 448 343 343 151

Schrans-Troost (128) 398 133 133 134
F633 (76) 135 184 170 106

Cyclic 6 (99) 155 1189 1189 188
Cyclic 7 (443) 749 9237 9237 846

Table 4.4
Sizes of Gröbner bases before any interreduction for different term orders

duction occurs to produce a reduced Gröbner basis. We believe this measure to be
significant since fewer extraneous generators means quicker reductions. Again, we
see that g2 produces less redundancy than the other orderings. In fact, the paren-
thetical values of each table shows the size of a minimal Gröbner basis for the ideal
〈g1, . . . , gm〉.

5. Related Works and Conclusions. In this section, we make some detailed
comments about how our work is related to other recent works in the literature.

Since F5 algorithm was published in 2002, several papers have been published
trying to simply F5 and fills in details in the proofs of its correctness and finite
termination including Stegers (2006 [20], Gash (2008, [12]), Eder and Perry (2009,[7]),
Sun and Wang (2009 [21]), Hashemi and Ars (2010 ,[13]), and Arri and Perry (2011,
[1]).

Gao, Guan and Volny (2010, [11]) give a new incremental approach which is the
origin of the current paper. In [11], an algorithm is presented, however, no proof of
correctness nor finite termination is given. After the original version of this paper
was submitted in October 2010, several related papers have appeared. Eder and
Perry (2011, [1]) provide a detailed comparison on F5, G2V and Arri’s algorithm. As
mentioned earlier, Huang (2010, [14]) completely characterizes when our algorithm has
finite termination (when J-pairs are processed in increasing order) and give a counter
example when the term orders are not compatible. Sun and Wang (2011–2012 [22, 16])
generalized the GVW algorithm further and they allow J-pairs be processed in any
order, not just in increasing signature orders, which will provide more flexibility in
implementation.

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 15

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 5.16 4.92 4.95 4.62
Katsura6 (41) 5.73 6.44 6.45 5.41
Katsura7 (74) 14.48 13.72 13.70 8.34
Katsura8 (143) 53.17 45.56 46.14 22.94

Schrans-Troost (128) 55.75 17.84 17.84 18.89
F633 (76) 7.91 10.09 8.89 6.05

Cyclic 6 (99) 5.88 26.55 26.86 6.06
Cyclic 7 (443) 43.36 2772.00 2764.00 42.06

Table 4.5
Maximal amount of memory used (MiB) for different term orders

Huang [14] characterizes Gröbner bases in terms of TRB and TRP pairs, while
Arri and Perry (2011, [1]) characterize Gröbner bases in terms of S-irreducible poly-
nomials and S-primitive polynomials. TRB pairs are equivalent to S-irreducible poly-
nomials, and TRP pairs are equivalent to S-primitive polynomials. We note that,
in our language, that a pair (u, v) is a TRB pair if it is not regular top-reducible
by any pair in the module M in (2.3), and a TRB pair is a TRP pair if it is not
super top-reducible by another TRB pair whose signature is strictly smaller. To be
able to check whether (u, v) is S-irreducible by using current G, G must contain all
TRP pairs whose signatures are smaller than lm(u). Roune and Stillman (2012, [19])
present implementation details of signature based algorithms.

In the following, we give more technical details of comparison of our work to
Faugére’s F5 [9] and Arri and Perry’s F5 criterion [1], which are most relevant to our
work. In our paper, we never define any signature of a polynomial v ∈ I, instead
we define the signature of a pair (u, v) ∈ M . This seems more natural and easier to
use. In comparison, in both papers [1, 9], they define signatures as follows. For any
v ∈ I = 〈g1, . . . , gm〉, the signature of v is defined as

S(v) = min{lm(u) : u ∈ Rm with ugt = v}.

Their definition is not exactly as above but is equivalent to it. In F5, the term order in
Rm is the position-over-term order (POT), hence the algorithm is incremental, that is,
it computes the Gröbner basis for each of the ideals 〈gi, . . . , gm〉 for i = m,m−1, . . . , 1.
In [1], the term order in Rm can be arbitrary. In their algorithms, to make sure that
each polynomial added to the current Gröbner basis is represented by a minimal
u ∈ Rm, one has to process the critical pairs (or J-pairs in our language) in increasing
order. In F5, the generator polynomials g1, . . . , gm are assumed to be homogeneous
and the critical pairs are processed from minimal degree to higher degrees, this is more
or less equivalent to increasing signature order. However, if the generator polynomials
are not homogeneous, their signatures may not be in increasing order any more. So
F5 as presented in [9] does not work for nonhomogeneous polynomials. The algorithm
in [1] does process critical pairs in increasing order and claim to have S(v) for each
v ∈ G. The latter, however, is not rigorously proved. In fact, their algorithm stores a
list L of leading terms of syzygies (which come from critical pairs that are reduced to
0, but they forgot to include trivial syzygies). For any pair (T, v), the authors claim
that T = S(v) iff T is not divisible by any leading term in L. This is true only if L
generates all the leading terms of syzygies up to T which is, however, not justified in
their paper.

16 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

To simply F5 algorithm and to adapt F5 to general polynomials, Arri and Perry
[1] introduce a revised F5 criterion (Proposition 18). In fact, their F5 criterion cor-
responds to our condition (b). To see this, we recall the main condition of their F5
criterion:

for any g1, g2 ∈ G such that (g1, g2) is a normal pair, there exists
g ∈ G and a monomial t such that tg is S-irreducible and

S(tg) = S(Spol(g1, g2)),

where G is a subset of S-irreducible polynomials in I. Let

S(g) = T1 and S(Spol(g1, g2)) = T2.

On the one hand, the condition that tg is S-irreducible implies that S(tg) = tT1. On
the other hand, the condition that tg is S-irreducible means, in our language, that
(T1, g) is not regular top-reducible by any pair in M . Let v be the polynomial obtained
from Spol(g1, g2) via regular top-reductions by M so that (T2, v) is S-irreducible. Now
S(tg) = S(Spol(g1, g2)) means that tT1 = T2. Hence both (tT1, tg) and (T2, v) are
S-irreducible with the same signature. Then we must have lm(tg) = lm(v), thus
(T2, v) is super top-reducible by (T1, g). This means that the S-pair (T2,Spol(g1, g2))
is eventually super top-reducible by G. Also, the condition that tg is S-irreducible (by
M) is hard to check in practice, but it is not required by our condition (b). Therefore,
except the requirement of being a normal pair, the F5 criterion is equivalent to our
condition (b).

In [9], rewritten rules are introduced to eliminate many critical pairs in F5. In
our language, the F5 rewritten rules can be summarized as follows (as described in
[1]):

(S) if the signature of a critical pair is divisible by some term in H, then this
pair can be discarded, where H is the collection of leading terms of all trivial
syzygies and the signatures of critical pairs that are reduced to 0 known so
far;

(R) a pair (tEi, v) (from a critical pair) is discarded if
(R1) there is a pair (t1Ei, v1) ∈ G or in JP so that t1 divides t and

v1 was computed before v.
In [1] (Algorithm 21), they use the rule (S), except that they forgot to include the
leading terms of trivial syzygies in H (or L in their notation), and use the rule (R)
with (R1) replaced by

(R2) there is a pair (t1Ei, v1) ∈ G or in JP so that t1 divides t and
t2lm(v1) ≺ lm(v) where t2 = t/t1.

The mathematical implication of the rule (R1) is not clear, but for homogeneous
polynomials, one may interpret (R1) as (R2).

In fact, (R2) is similar to our condition (c) in Theorem 2.4. The condition (R2)
is implied by the F5 criterion (Proposition 18 [1]) or by our condition (b). However,
Arri and Perry did not prove that (R2) is sufficient to get a Gröbner basis. Using F5
criterion or our condition (b), one has to process J-pairs in increasing order, while
the condition (c) has no such constraint at all, one can process J-pairs in any order,
which may be useful in practical implementation.

In conclusion, we have presented simple characterizations of strong Gröbner bases
that encode Gröbner bases for both ideals and syzygy modules. Computing syzygies
has traditionally been approached separately by different methods, however, our pa-
per shows that it can be handled simultaneously with computing of Gröbner bases

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 17

for ideals and they each help speed up the computation of the other. Our charac-
terization (b) is natural generalization of Burchberger’s criterion for ideals, but (c) is
totally different and it is more computing friendly as it detects useless J-pairs without
any reduction. We presented a complete proof of correctness and finite termination
and showed via benchmark examples that different signature orders may have dra-
matic impact on the time for computing Gröbner bases for ideals. We hope that the
simplicity of our characterizations of strong Gröbner bases is useful for actual imple-
mentations in practical Gröbner basis computation for ideals as well as for syzygy
modules.

Acknowledgement. The authors would like to thank Dingkang Wang, Yao Sun
and Lei Huang for helpful discussions as well as the referees for useful comments.

REFERENCES

[1] A. Arri and J. Perry, The F5 criterion revised, J. Symbolic Comput., 46 (2011), pp. 1017–
1029.

[2] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal, PhD thesis, Leopold-Franzens University,
1965.

[3] B. Buchberger, A criterion for detecting unnecessary reductions in the construction of
Gröbner bases, in EUROSAM ’79: Proceedings of the International Symposiumon on Sym-
bolic and Algebraic Computation, London, UK, 1979, Springer-Verlag, pp. 3–21.

[4] B. Buchberger, Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory., Reidel
Publishing Company, Dodrecht - Boston - Lancaster, 1985.

[5] N. Courtois, E. Klimov, J. Patarin, and A. Shamir, Efficient algorithms for solving overde-
fined systems of multivariate polynomial equations, in In Advances in Cryptology, Euro-
crypt’2000, LNCS 1807, Springer-Verlag, 2000, pp. 392–407.

[6] J. Ding, J. Buchmann, M. S. E. Mohamed, W. S. A. E. Mohamed, and R.-P. Weinmann,
MutantXL, in First International Conference on Symbolic Computation and Cryptography,
Springer-Verlag, 2008.

[7] C. Eder and J. Perry, F5C: A variant of Faugère’s F5 algorithm with reduced Gröbner bases,
Journal of Symbolic Computation, 45 (2010), pp. 1442 – 1458. MEGA’2009.

[8] J. C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), Journal of Pure
and Applied Algebra, 139 (1999), pp. 61 – 88.

[9] J. C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5), in ISSAC ’02: Proceedings of the 2002 international symposium on Symbolic
and algebraic computation, New York, NY, USA, 2002, ACM, pp. 75–83.

[10] J. C. Faugère and A. Joux, Algebraic cryptanalysis of hidden field equation (HFE) cryp-
tosystems using gröbner bases, in In Advances in Cryptology — CRYPTO 2003, Springer,
2003, pp. 44–60.

[11] S. Gao, Y. Guan, and F. Volny IV, A new incremental algorithm for computing Gröbner
bases, in ISSAC’10: Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation, Munich, Germany, 2010, ACM, pp. 13–19.

[12] J. Gash, On efficient computation of gröbner bases, Ph.D. dissertation, Indiana University,
Bloomington, IN, (2008).

[13] A. Hashemi and G. Ars, Extended F5 criteria, Journal of Symbolic Computation, 45 (2010),
pp. 1330 – 1340. MEGA’2009.

[14] L. Huang, A new conception for computing Gröbner basis and its applications, CoRR,
arXiv:1012.5425v2 (2010).

[15] D. Lazard, Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equa-
tions, in EUROCAL ’83: Proceedings of the European Computer Algebra Conference on
Computer Algebra, London, UK, 1983, Springer-Verlag, pp. 146–156.

[16] X. Ma, Y. Sun, D. Wang, and Y. Zhang, A signature-based algorithm for computing gröbner
bases in solvable polynomial algebras, in ISSAC’12: Proceedings of the 2012 International
Symposium on Symbolic and Algebraic Computation, Grenoble, France, 2012, ACM.

[17] H. M. Möller, T. Mora, and C. Traverso, Gröbner bases computation using syzygies, in
ISSAC ’92: Papers from the international symposium on Symbolic and algebraic compu-
tation, New York, NY, USA, 1992, ACM, pp. 320–328.

18 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

[18] J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new
families of asymmetric algorithms, in EUROCRYPT’96: Proceedings of the 15th annual
international conference on Theory and application of cryptographic techniques, Berlin,
Heidelberg, 1996, Springer-Verlag, pp. 33–48.

[19] B. H. Roune and M. Stillman, Practical gröbner basis computation, in ISSAC’12: Proceedings
of the 2012 International Symposium on Symbolic and Algebraic Computation, Grenoble,
France, 2012, ACM.

[20] T. Stegers, Faugère’s F5 algorithm revisited, Cryptology ePrint Archive, Report 2006/404
(2006).

[21] Y. Sun and D. Wang, A new proof of the F5 algorithm, CoRR, arXiv:1004.0084 (2010).
[22] , A generalized criterion for signature related Gröbner basis algorithms, CoRR,

arXiv:1101.3382 (2011).

