
HENSEL LIFTING AND BIVARIATE POLYNOMIAL
FACTORISATION OVER FINITE FIELDS

SHUHONG GAO AND ALAN G.B. LAUDER

Abstract. This paper presents an average time analysis of a
Hensel lifting based factorisation algorithm for bivariate polyno-
mials over finite fields. It is shown that the average running time
is almost linear in the input size. This explains why the Hensel
lifting technique is fast in practice for most polynomials.

1. Introduction

It is well known that the Hensel lifting technique provides practical
methods for factoring polynomials over various fields. Such methods
are known to run in exponential time in the worst case, but seem fast
for most polynomials. The latter phenomenon has not been fully un-
derstood and calls for an average running time analysis. The only
analysis we know of is that of Collins 1979 [4] for univariate integral
polynomials (factoring over the rational numbers). He shows, under
some reasonable number theoretic conjectures, that the average run-
ning time is indeed polynomial. In this paper, we present a rigorous
analysis for bivariate polynomials over finite fields. We show that the
average running time is almost linear in the input size. More precisely,
for all bivariate polynomials of total degree n over a fixed finite field,
the average running time is O(N) using fast polynomial arithmetic,
and O(N1.5) using standard polynomial arithmetic where N = n2 rep-
resents the input size and we ignore the logarithmic factors in our
running times. This explains why the Hensel lifting technique is fast
in practice for bivariate polynomials over finite fields.

Date: May 30, 2000.
The first author was supported in part by NSF grant #DMS9970637, NSA grant

#MDA904-00-1-0048 and ONR grant #N00014-00-1-0565. The second author
gratefully acknowledges the support of the Marr Educational Trust and Wolfson
College, Oxford.
2000 Mathematics Subject Classification: Primary 11Y16; Secondary 11T06,
11Y05, 68Q25.
Key words and phrases: bivariate polynomial, finite field, Hensel lifting, factorisa-
tion, average-case complexity.

1

2 GAO AND LAUDER

Our paper is organised in the following way. In Section 2 we dis-
cuss different ways of ordering bivariate polynomials, and the proba-
bilities that polynomials chosen uniformly at random with respect to
these orderings are irreducible or absolutely irreducible. These put our
estimations on average running times in perspective, and are also of
independent interest. Section 3 contains a discussion of the basic ideas
behind Hensel lifting, and then in Section 4 we present our Hensel lift-
ing based algorithm, which is in essence the standard one. Section 5
contains an analysis of the algorithm’s expected running time; this is
the main result of the paper. Finally in Section 6 we present a ran-
domised version of the algorithm.

2. Distribution of reducible polynomials

In this section we discuss different natural ways of “ordering” bi-
variate polynomials, and the distribution of irreducible and absolutely
irreducible polynomials under these “orderings’.
For an integer n ≥ 1, let T (n, q) denote the set of all polynomials in
Fq[x, y] of total degree n that are monic in x and have degree n in x.
Let t(n, q) = |T (n, q)|.

Proposition 2.1. Let r(n, q) be the number of reducible polynomials
in T (n, q). Then, for n ≥ 6,

3

4
·
1

qn−1
≤
r(n, q)

t(n, q)
≤
4

3
·
1

qn−1
.

Proof. Observe that t(n, q) = qn(n+3)/2 as n(n + 3)/2 is the number of
coefficients for a polynomial in T (n, q). If a polynomial in T (n, q) is
reducible then one of its factors must have total degree i between 1 and
n/2. Hence r(n, q) is at most

∑
1≤i≤n/2

t(i, q)t(n− i, q) =
∑

1≤i≤n/2

q
i(i+3)
2
+
(n−i)(n−i+3)

2 .

It follows that

r(n, q)

t(n, q)
≤
∑

1≤i≤n/2

1

qi(n−i)
.

Since i(n− i) is a convex function of i (concave down), we have

i(n− i) ≥ n− 1 +
n− 2

2
(i− 1), 1 ≤ i ≤ n/2.

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 3

(The linear function on the right agrees with the quadratic on the left
when i = 1 and i = n/2.) Hence

r(n, q)

t(n, q)
≤
∑

1≤i≤n/2

1

qn−1+
n−2
2
(i−1)

≤
1

qn−1
·

1

1− 1/q(n−2)/2
,

which is at most 1
qn−1
· 4
3
for q ≥ 2 and n ≥ 6.

A trivial lower bound for r(n, q) is the number of polynomials in
T (n, q) that are products of a linear polynomial in T (1, q) and a poly-
nomial in T (n− 1, q) with no linear factors. Hence

r(n, q) ≥ t(1, q)
(
t(n− 1, q)− t(1, q)t(n− 2, q)

)
and

r(n, q)

t(n, q)
≥
q2
(
q
(n−1)(n+2)

2 − q2q
(n−2)(n+1)

2

)

q
n(n+3)
2

=
1

qn−1

(
1−

1

qn−2

)
,

which is at least 1
qn−1
· 3
4
for n ≥ 4 and q ≥ 2.

The next proposition will not be needed for our analysis but seems
interesting by itself.

Proposition 2.2. Let r0(n, q) be the number of polynomials in T (n, q)
that are not squarefree. Then for n ≥ 5,

3

4
·
1

q2n−1
≤
r0(n, q)

t(n, q)
≤
4

3
·
1

q2n−1
.

Proof. The proof is similar to that of the previous proposition. We
have

r0(n, q)

t(n, q)
≤

∑
1≤i≤n/2 t(i, n)

2t(n− 2i, q)

t(n, q)
=
∑

1≤i≤n/2

1

qi(4n−5i+3)/2
.

Note that i(4n− 5i+ 3) is a convex function of i, we have

i(4n− 5i+ 3) ≥ 4n− 2 + (i− 1)(3n− 4)/2, 1 ≤ i ≤ n/2,

where equality holds for i = 1 and i = n/2. Hence

r0(n, q)

t(n, q)
≤
∑

1≤i≤n/2

1

q2n−1+(i−1)(3n−4)/4
≤

1

q2n−1
·

1

1− 1/q(3n−4)/4
,

which is at most 1
q2n−1

· 4
3
for n ≥ 4 and q ≥ 2.

4 GAO AND LAUDER

For the lower bound,

r0(n, q)

t(n, q)
≥
t(1, q)2

(
t(n− 2, q)− t(1, q)2t(n− 4, q)

)
t(n, q)

≥
1

q2n−1
·

(
1−

1

q2n−7

)
,

which is at least 1
q2n−1

· 4
3
for n ≥ 5 and q ≥ 2.

Remark. The above arguments actually prove more: for n ≥ 4,

1

qn−1
·

(
1−

1

qn−2

)
≤ r(n,q)

t(n,q)
≤
1

qn−1
·

1

1− 1/q(n−2)/2
,

1

q2n−1
·

(
1−

1

q2n−7

)
≤ r0(n,q)

t(n,q)
≤

1

q2n−1
·

1

1− 1/q(3n−4)/4
.

So r(n,q)
t(n,q)

and r0(n,q)
t(n,q)

are asymptotically 1/qn−1 and 1/q2n−1, respectively,

when q or n is large.
The upper bound in Proposition 2.1 means that most polynomials in

T (n, q) are irreducible. Thus a polynomial picked uniformly at random
from the set T (n, q) is unlikely to have any proper factorisations over
the defining field Fq. Any good general algorithm for factoring bivariate
polynomials must perform well on most irreducible polynomials, that
is, it must detect most irreducible polynomials as soon as possible. Our
analysis below indicates that Hensel lifting based algorithms do seem
to have this property so perform well on average, even though very
badly on some polynomials.
The lower bound in Proposition 2.1 means that there are still a

significant fraction of polynomials in T (n, q) that are reducible. This
shows that our model of polynomials is not “trivial”. Certainly, our
model is not trivial also because any polynomial of total degree n can be
transformed into a polynomial in T (n, q) that has the same factorisation
pattern (provided q > n). This can be seen as follows. Let h(y) =∑n
i=0 ciy

i where
∑n
i=0 cix

n−iyi is the homogeneous part of f of degree
n. Then g = f(x, y + αx) still has total degree n and the coefficient of
xn is h(α). Since h is nonzero and has degree at most n, we only need
to pick α ∈ Fq such that h(α) 6= 0; this is always possible provided
q > n. If q is too small, one needs to go an extension of Fq to have
enough elements. When h(α) 6= 0, g can be made monic in x so can
be viewed as belonging to T (n, q). Certainly, the factors of f can be
easily obtained from those of g by the inverse transformation.
To see what we mean by “trivial”, we give below a model of polyno-

mials that has a simple description similar to T (n, q), yet we consider

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 5

it “trivial” for factoring purpose. Note that a polynomial f in T (n, q)
can be written as

f = fn(y) + fn−1(y)x+ · · ·+ f1(y)x
n−1 + xn ∈ Fq[x, y](1)

with

deg fi(y) ≤ i, 1 ≤ i ≤ n.(2)

Let us slightly modify this degree condition as follows

deg fi(y) ≤ n, 2 ≤ i ≤ n, deg f1(y) = n.(3)

Let T̄ (n, q) be the set of all polynomials f in (1) satisfying (3).

Proposition 2.3. For any f ∈ T̄ (n, q) as in (1), rewrite f as f =
a0(x) + a1(x)y + · · ·+ an(x)yn and let

h = gcd(a0(x), a1(x), . . . , an(x)) ∈ Fq[x].

Then f/h is an absolutely irreducible factor of f .

Thus factoring a bivariate polynomial f ∈ T̄ (n, q) is easily reduced
to factoring a univariate polynomial h which is 1 almost all the time!
So polynomials in T̄ (n, q) are indeed quite trivial to factor.
To prove Proposition 2.3, one just considers the Newton polytope of

f , a polygon in the Euclidean plane formed by the convex hull of the
exponent vectors (i, j) of all nonzero terms xiyj in f . The degree con-
dition in (3) implies that the polygon has a long indecomposable edge
determined by the terms xn and xn−1yn and so one of the summands
in any Minkowski decomposition of the polygon must be a horizontal
line segment, which corresponds to a factor of f that only involves x
(no y). Then the proposition follows easily. For more details on this
argument and on Newton polytopes and factorisation of polynomials,
the reader is referred to the recent papers [6, 7].

3. Motivation

This section contains a discussion of the motivation behind the algo-
rithm we present following in part the exposition in [13]. In particular,
our discussion will justify the correctness of the algorithm and elucidate
some of its subtler features which are of importance in the analysis of
the average running time. However, the reader familiar with Hensel
lifting based factorisation algorithms may safely move directly onto
Section 4 and refer back when required.
Let f ∈ T (n, q) with f = gh where g, h ∈ Fq[x][[y]] are non-constant
power series. We call f = gh a (proper) analytic factorisation of f at
the prime ideal generated by y. If both of g and h lie in the subring
Fq[x, y] then we further refer to f = gh as a polynomial factorisation

6 GAO AND LAUDER

of f . All analytic factorisations of f may in principle be found using
Newton polygons and a form of Hensel lifting with respect to the prime
ideal (y).
Suppose that f = gh for some power series g, h ∈ Fq[x][[y]]. We
shall first of all examine how the coefficients in the y-adic expansions
of f ,g and h are related. So let f =

∑n
k=0 fky

k denote the finite y-adic
expansion of f , and g =

∑
k≥0 gky

k and h =
∑
k≥0 hky

k denote the,
possibly infinite, expansions of g and h. Here fk, gk, hk ∈ Fq[x]. Since
f ≡ gh mod y we have that f0 = g0h0. Equating the coefficients of yk

for k ≥ 1 on both sides of f = gh we see that

f1 = g0h1 + g1h0
f2 = g0h2 + g1h1 + g2h0
...
...
...

fk =
∑k
i=0 gihk−i

...
...
...

Thus for k ≥ 1 we have

g0hk + gkh0 = fk −
k−1∑
i=1

gihk−i(4)

Now let d = gcd (g0, h0) with u and v chosen so that ug0 + vh0 = d
and deg u < deg h0, deg v < deg g0. Then d divides the righthand side
of Equation (4) and we see that gk and hk must be of the form

gk = v
fk −

∑k−1
i=1 gihk−i

d
+ wk

g0

d
(5)

hk = u
fk −

∑k−1
i=1 gihk−i

d
− wk

h0

d
(6)

for some polynomial wk ∈ Fq[x]. Thus we have obtained equations
which relate the coefficients fk, gk and hk of the y-adic expansions of
f ,g and h respectively.
Consider now the situation in which we are given a polynomial

f =
∑n
k=0 fky

k and a factorisation f0 = g0h0 for some polynomials
g0, h0 ∈ Fq[x]. Is it possible to use Equations (5) and (6) to define a
sequence of polynomials {gk}k≥0 and {hk}k≥0 such that g =

∑
k≥0 gky

k

and h =
∑
k≥0 hky

k satisfy f = gh mod yn+1? The answer is posi-
tive, provided that at each stage wk is chosen so that d, the greatest
common divisor of g0 and h0, divides the polynomial fk−

∑k−1
i=1 gihk−i.

If d = gcd (g0, h0) 6= 1 then the choice we make of wk may not be
unique, so resulting in exponentially many choices for gk’s and hk’s. If

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 7

d = gcd (g0, h0) = 1, however, the equation (4) uniquely determines gk
and hk when deg gk < deg h0 and deg hk < deg g0. This means that the
“lifting” can be carried out uniquely as high as one wishes.
We are interested in polynomial factorisations rather than arbitrary

analytic factorisations and so a few more observations can be made.
Suppose we have been given a factorisation f = gh. Let us further
assume that f ,g and h all lie in Fq[x, y] and n = deg (f), r = deg (g)
and s = deg (h). Then we have r + s = n. Hence for 0 ≤ k ≤ n we
have deg (gk) ≤ r − k and deg (hk) ≤ s − k. Here we interpret this to
mean gk and hk should be zero in the cases when r − k and s − k are
less than zero, respectively.
Turning this observation around, suppose now we have been given

a polynomial f ∈ Fq[x, y] and a factorisation f0 = g0h0 where f =∑n
k=0 fky

k and g0 and h0 are polynomials in Fq[x] with deg(g0) = r,
deg(h0) = s. We wish now to lift this to a factorisation in Fq[x, y].
When using Equations (5) and (6) to define the polynomials gk and hk
we must choose wk so that appropriate conditions on the degrees are
met. In the case that deg (f0) = n the restrictions are deg (gk) ≤ r− k
and deg (hk) ≤ s− k. When gcd (g0, h0) = 1 there will be at most one
way of doing this. One defines gk and hk by the equations

gk = v
(
fk −

k−1∑
i=1

gihk−i
)
mod g0(7)

hk = u
(
fk −

k−1∑
i=1

gihk−i
)
mod h0.(8)

and then checks whether deg (gk) ≤ r−k and deg (hk) ≤ s−k. (Observe
that since fk =

∑k
i=0 gihk−i, if deg (gi) ≤ r − i for all i ≤ k, and we

further assume that deg(hi) ≤ s− i for all i < k then deg(hk) ≤ s− k.
Thus we need only check the degrees of the polynomials gk.)
It is these recursion equations we use in Algorithm 4.1 which is pre-

sented in the next section. The check which must be made on the
degree of gk at each step is crucial to our analysis of the running time.
For more information on Hensel lifting based algorithms for factor-

ing polynomials, see the textbook [9], particularly [16] for univariate
polynomials over rationals and [11, 14, 15] for multivariate polynomials.

4. The Algorithm

For n ≥ 1, letM(n, q) ⊆ T (n, q) denote the subset of all polynomials
whose reduction modulo y is squarefree. The previous section shows
that Hensel lifting works for all polynomials inM(n, q). In this section

8 GAO AND LAUDER

and the next one, we will analyse the average running time of this
method. In Section 6, we show how to factor polynomials in T (n, q).
Let us first state the algorithm explicitly as follows.

Algorithm 4.1. Hensel Factorisation
Input: A polynomial f =

∑n
k=0 fky

k in M(n, q), where fk ∈ Fq[x].
Output: All monic factors of f with total degree between 1 and bn/2c.

Step 1: Use a univariate polynomial factorisation algorithm to factor
f0, a squarefree polynomial.
If f0 is irreducible then halt the algorithm.
Hence assume f0 is reducible. List all pairs (g0, h0) of monic factors

with f0 = g0h0 and 1 ≤ deg g0 ≤ deg h0. For each pair (g0, h0), do the
following steps 2–4 where r = deg g0 so 1 ≤ r ≤ bn/2c.

Step 2: Compute polynomials u and v with ug0+vh0 = 1 and deg (u) <
deg (h0), deg v < deg (g0).

Step 3: For k from 1 to bn/2c, compute

gk = v{fk −
k−1∑
i=1

gihk−i} mod g0,(9)

and

hk = u{fk −
k−1∑
i=1

gihk−i} mod h0.(10)

In the case that r ≥ k check whether deg (gk) ≤ r − k, and in the case
that k > r check whether gk = 0. If the appropriate one of these two
conditions is not satisfied halt the computation for this pair.

Step 4: Check whether g :=
∑r
k=0 gky

k divides f . If so then output g.

This is in essence the standard Hensel lifting technique for factoring
polynomials, and a proof of its correctness follows easily from the dis-
cussion in Section 3. It is of interest to note that the check that the
polynomial gk has suitably bounded degree in Step 3, which is crucial
for our estimate of the average running time, appears to originate in
Wan [13]. Also, in Step 3 one needs only lift a maximum of r steps
rather than bn/2c steps; however, we include these redundant extra
lifting steps so that Algorithm 4.1 ties in precisely with the slightly
modified version which we present shortly. Note that these extra steps
do not adversely affect the average running time since they are per-
formed so seldomly.

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 9

Our main concern is to determine the average running time. We
have the following result.

Theorem 4.2. For f ∈M(n, q), the average number of Fq-field opera-
tions used by Algorithm 4.1 is O˜(n1+α+d(n, q)). Here d(n, q) denotes a
bound on the worst-case number of Fq-field operations required to factor
univariate polynomials of degree n over Fq. Also, α = 1 or 2 according
to whether we are using ordinary or fast polynomial multiplication and
division, respectively.

Here and hereafter we adopt the soft-O notation:

O˜(p(n)) = O(p(n)(log n log q)O(1)),

meaning that we ignore the logarithmic factors.
To prove the above theorem it is convenient to present the algorithm

in a slightly different manner. Let (g
(j)
0 , h

(j)
0), 1 ≤ j ≤ t, denote all the

pairs which are computed in Step 1, and u(j) and v(j) the corresponding

polynomials computed in Step 2. Let r(j) = deg(g
(j)
0) for 1 ≤ j ≤ t.

We shall now give an equivalent but alternative description of Step 3
in which all liftings are performed in parallel, as opposed to in series as
in the above algorithm. This does not affect the average running time
and aids analysis.
We shall replace Step 3 by

Step 3 ′: For each 1 ≤ k ≤ bn/2c define a subset Ck ⊂ {1, 2, . . . t}.
Firstly let C1 = {1, 2, . . . t}. For k ≥ 1, and for each j ∈ Ck we
compute

g
(j)
k = v

(j){fk −
k−1∑
i=1

g
(j)
i h

(j)
k−i} mod g0,(11)

h
(j)
k = u

(j){fk −
k−1∑
i=1

g
(j)
i h

(j)
k−i} mod h0.(12)

For 1 ≤ k ≤ bn/2c − 1 define

Ck+1 = {j ∈ Ck | r(j) ≥ k and deg (g
(j)
k) ≤ r

(j) − k}

∪ {j ∈ Ck | r(j) < k and g
(j)
k = 0}.

(Thus the set Ck just contains the indices j such that in Algorithm

4.1 Step 3, starting with the factors g
(j)
0 and h

(j)
0 , Equations (9) and

(10) are performed at least k times.)

We also replace Step 4 with

10 GAO AND LAUDER

Step 4′: For each j ∈ Cbn/2c determine whether g(j) :=
∑r
k=0 g

(j)
k y

k

divides f . If so then output g(j).

Our modified algorithm thus comprises Steps 1, 2, 3′ and 4′, and we
will refer to this version as Algorithm 4.1′. It is clearly sufficient to
determine the average running time of Algorithm 4.1′ to prove Theorem
4.2. The main challenge in doing this is to determine the expected
cardinality of the sets Ck for randomly selected input. We shall do
this, and prove Theorem 4.2, in the next section.

5. An analysis of the algorithm

5.1. Polynomial arithmetic and the distribution of factors.
Our algorithm uses basic polynomial arithmetic such as multiplica-
tion and factorisation of univariate polynomials, and in Section 6 we
shall consider gcd computations for bivariate polynomials over Fq. We
measure the time complexity of an algorithm by the number of oper-
ations used in Fq, which is easily transformed into the number of bit
operations. A product, division or gcd of two univariate polynomials
of degree at most n over Fq can be computed in O(n2) operations in
Fq using “classical” arithmetic, or in O(n log

2 n) = O˜(n) operations
in Fq using fast algorithms (Schönhage and Strassen 1971 [12], Cantor
and Kaltofen 1991 [2]). So a product of two polynomials in Fq[x, y] of
bidegree at most (m,n) can be computed in O(mn log2(mn)) = O˜(mn)
operations in Fq. Factoring a univariate polynomial of degree n over
Fq can be done in time O˜(n2 + n log q) (von zur Gathen and Shoup
1992 [8]) or O(n1.815 log q) (Kaltofen and Shoup 1998 [10]). To com-
pute gcd of bivariate polynomials, we use a modular approach (Brown
1971 [1], Geddes et al 1992 [9]). For any two polynomials in Fq[x, y] of
total degree n, their gcd can be found in time O(n4) (using “classical”
arithmetic).
We also need the following lemma.

Lemma 5.1. The average number of unordered, non-trivial pairs of
monic factors {g, h} of a squarefree monic polynomial f ∈ Fq[x] (so
f = gh) of degree n(≥ 3) over the field Fq is at most n/2.

Proof. Let SF (n, q) denote the set of all squarefree monic polynomials
of degree n over Fq. Then |SF (1, q)| = q and, for n ≥ 2, |SF (n, q)| =
(q − 1)qn−1, due to L. Carlitz [3] (see also[5]). Now let f ∈ SF (n, q).
We need to find the average number of monic factors of f whose degree
is at least 1 and not greater than bn/2c. This is |SF (n, q)| divided into

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 11

the following expression:

∑
f∈SF (n,q)

bn/2c∑
i=1

∑
g∈SF (i,q), g|f

1

=

bn/2c∑
i=1

∑
g∈SF (i,q)

∑
h∈SF (n−i,q), gcd(g,h)=1

1

≤

bn/2c∑
i=1

∑
g∈SF (i,q)

∑
h∈SF (n−i,q)

1

= q(q − 1)qn−2 +

bn/2c∑
i=2

qi−1(q − 1)qn−i−1(q − 1)

= qn−1(q − 1) + (bn/2c − 1)(q − 1)2qn−2.

Finally 1 + (1− 1/q)(bn/2c − 1) ≤ n/2, so the lemma is proved.

5.2. Affine maps. Let U(m, q) denote the set of all univariate poly-
nomials over Fq of total degree bounded bym. Throughout this section
we shall consider random variables on the sets M(n, q) and U(m, q),
where m ≤ n, with respect to the uniform distribution. We use the
notation E(.) to denote the expectation of a random variable. This is
of course just the average, but it is convenient to use the formalism of
probability theory in our proofs.
We wish to obtain an estimate of the likelihood that the conditions

on the degrees of the polynomials “gk” in Step 3
′ of Algorithm 4.1′ meet

the required restrictions. This will allow us to estimate the expected
cardinality of the sets Ck for input polynomials chosen uniformly at
random from M(n, q). We do this after first presenting a necessary
result on affine maps.
Recall that any affine map L from Fmq to F

w
q may be represented

uniquely, with respect to the natural bases, as L(x) = Ax+ b where A
is an w ×m matrix over Fq and b ∈ Fwq . In the case that m ≥ w, we
shall say that L has full rank if the corresponding matrix A has rank
w. Thus a full rank affine map L maps Fmq surjectively “q

m−w to 1”
onto the space Fwq .

Lemma 5.2. Let m ≥ w and L1, L2, . . . , Lt be full rank affine maps
from Fmq to F

w
q . For z selected uniformly at random from F

m
q the ex-

pected number of Lj such that Lj(z) = 0 is t/q
w.

Proof. Observe firstly that for each Lj the cardinality of the preimage
L−1j (0) is exactly q

m−w. Now consider the array A with qm rows and

12 GAO AND LAUDER

t columns with entries from Fwq defined as follows. Order the elements
of Fmq as z1, z2, . . . , zqm . The (i, j)th entry of A is Lj(zi). For z chosen
uniformly at random from Fmq the expected number of Lj such that
Lj(z) = 0 is just the number of zero w-tuples in this array divided
by qm. Now the jth column has |L−1j (0)| = q

m−w zero elements of
F
w
q . As there are t columns the required expected value is therefore
tqm−w/qm = t/qw. This completes the proof.

We now consider again Equation (9) in Fq[x]. Here deg (fk) ≤ n−k,
deg (g0) = r and we have n− k ≥ r (since k ≤ bn/2c). By interpreting
fk and gk as vectors in F

n−k
q and Frq respectively, Equation (9) defines

a map, which we denote M , from Fn−kq to Frq. Specifically M(fk) = gk.

Lemma 5.3. The map M is a full rank affine map.

Proof. This follows from the observation that the map M can be de-
composed as M = Q ◦ R ◦ S. Here S : Fn−kq → Frq is the full rank
linear map z 7→ z mod g0, R : Frq → F

r
q is the full rank affine map

z mod g0 7→ z −
∑k−1
i=1 gihk−i mod g0 and Q : F

r
q → F

r
q is the full rank

linear map z mod g0 7→ vz mod g0 (recall that v is invertible modg0 so
this map is indeed a bijection).

For n − k ≥ r ≥ k we know that at the kth lift, if we are to find
a polynomial factor, the polynomial gk must satisfy deg (gk) ≤ r − k.
Similarly, for n − k ≥ r and r < k, at the kth lift, if we are to find
a polynomial factor, then gk must equal the zero polynomial. Define
w = min{k − 1, r} and let P denote the map from Frq to F

w
q which

projects onto the last w coordinates. Thus for gk mod g0 we have that
deg (gk) ≤ r − k in the case r ≥ k, or gk = 0 in the case r < k, if
and only if P (gk) = 0 ∈ Fwq . Now let L = P ◦M denote composition
of our full rank affine map M with the projection P . Then L(fk) =
(P ◦M)(fk) = P (gk), and moreover, L is still a full rank affine map,
but now of rank w whereas M was of rank r. So we have

Lemma 5.4. Define the map L and integers n, k and w as above.
Then L is a full rank affine map from Fn−kq to Fwq . Moreover, the
appropriate condition in Step 3 is met — that is deg (gk) ≤ r − k in
the case r ≥ k or gk = 0 in the case r < k — if and only if L(fk) = 0.

The above lemma may now be used to prove

Lemma 5.5. For f ∈ M(n, q) and 1 ≤ k ≤ n, let ck(= ck(f)) de-
note the cardinality of the set Ck when f is input to Algorithm 4.1

′.
With respect to the uniform distribution on M(n, q) denote by E(ck)

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 13

the expectation of ck. Then for 2 ≤ k ≤ bn/2c we have

E(ck+1) ≤ E(ck)/q.

Proof. For each j ∈ Ek associate with Equation (11) an affine map
Lj, as described in the paragraphs preceding Lemma 5.4. This gives

ck full rank affine maps {Lj}1≤j≤ck from F
n−k
q to Fw

(j)

q where w(j) =

min{k − 1, r(j)}. Now let w = minj∈Ck{w
(j)} and L′1, L

′
2, . . . , L

′
ck
be

defined as L′j = Pj ◦ Lj, where Pj is the projection of the first w

coordinates from Fw
(i)

q onto Fwq . Then we have a set of ck full rank

(rank w) affine maps L′j from F
n−k
q to Fwq . Observe that if Lj(fk) = 0

then L′j(fk) = 0.
Because of the uniform distribution on M(n, q), we see that fk in
Equation (11) is chosen uniformly at random from the set U(n− k, q)
of all polynomials over Fq of degree not greater than n − k. Thus
by Lemma 5.2 the expected number of L′j with L

′
j(fk) = 0 is ck/q

w.
Hence by our observation at the end of the preceding paragraph, the
expected number of Lj such that Lj(fk) = 0 is not greater than ck/q

w.

It follows from Lemma 5.4 that the expected number of g
(j)
k which

meet the required condition — deg (g
(j)
k) ≤ r− k in the case r ≥ k and

g(j) = 0 in the case r < k — cannot be greater than ck/q
w. Hence the

expectation, with respect to the uniform distribution on U(n − k, q),
of ck+1 is not greater than ck/q

w. Thus E(ck+1), the expected value of
ck+1 with respect to the uniform distribution onM(n, q), is not greater
than E(ck)/q

w. The result now follows since trivially w ≥ 1.

5.3. Proof of the main theorem. We now prove Theorem 4.2.

Proof. Throughout this proof we shall ignore logarithmic factors in n
and q in our estimates on the expected number of Fq-field operations.
Also these estimates are only true for sufficiently large n and q.
Let E(ck) denote the expected cardinality of the set Ck over the
uniform distribution on M(n, q). By Lemma 5.5 we have that

E(ck) ≤ E(c1)/q
k−1.(13)

Moreover, by Lemma 5.1 we see that E(c1) ≤ n, this is just the ex-
pected number of suitably normalised pairs of factors of a squarefree
univariate polynomial of degree n. We claim now that the number
of Fq-field operations in the algorithm has expected value not greater
than a constant times

14 GAO AND LAUDER

d(n, q) +E(c1)n
α +


bn/2c∑
k=1

(
k∑
j=1

j)nαE(ck)


+ E(cbn/2c)n2+α.(14)

The first term in expression (14) corresponds to the univariate fac-
torisation in Step 1, and the second term to the computations in Step
2. The bn/2c terms in the outer summation correspond to the com-
putations performed in the parallel lifting up to the bn/2cth stage in
Step 3′. In Step 4′ the polynomial of smaller degree in each pair of
polynomials corresponding to the indices in Cbn/2c is then divided into
f . This accounts for the last term in the expression; note that the
factor n2+α is either n3 or n4 depending upon whether we are using
fast or standard polynomial division in Step 4′.
Substituting (13) into (14) we find the expected number of field

operations is not greater than a constant times

d(n, q) + E(c1)n
α +

bn/2c∑
k=1

k(k + 1)

2qk−1
nαE(c1) +

n2+αE(c1)

qbn/2c−1
.

As observed before we have E(c1) ≤ n and thus the overall expression
is not greater than

d(n, q) + nα+1 + nα+1


bn/2c∑
k=1

k(k + 1)

2qk−1
+

n2

qbn/2c−1


 .

It is easily seen that this expression is less than

d(n, q) + nα+1 + 2nα+1
bn/2c∑
k=1

k(k + 1)

qk−1
.

Finally observe that

bn/2c∑
k=1

k(k + 1)

qk−1
≤

∞∑
k=1

k(k + 1)

qk−1
=

2

(1− 1/q)3
≤ 16,

as q ≥ 2. Thus we have shown that the expected number of Fq-field
operations in the algorithm is bounded by a constant times d(n, q) +
nα+1, ignoring logarithmic factors in n and q, and for suitably large n
and q. This completes the proof of Theorem 4.2.

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 15

6. A randomised version of the algorithm

Let f ∈ T (n, q) be squarefree in Fq[x, y]. In general, f0 = f mod y
may not be squarefree in Fq[x]. We show how to transform f into
a member of M(n, q) so that it can be factored by the Hensel lifting
algorithm.

Lemma 6.1. Let S be a subset of Fq and f ∈ T (n, q) squarefree. For
random β ∈ S, we have g = f(x, y + β) ∈ M(n, q) with probability at
least 1− n(2n− 1)/|S|.

Proof. We need to determine how likely g0 = g mod y is squarefree for
random β ∈ S. Note that g0 = g(x, 0) = f(x, β). First let us view β as
a variable and g0 ∈ Fq[x, β]. Then g0 and f determine each other by
simple substitutions. Since f is squarefree, we see that g0 is squarefree
in Fq[x, β] so squarefree in Fq(β)[x]. Hence the resultant

R = Resx(g0,
∂g0

∂x
) ∈ Fq[β]

is nonzero and has degree (in β) at most n(2n− 1). Now we let β take
random values in S. With probability at least 1 − n(2n − 1)/|S|, we
have R 6= 0 so g0 is squarefree in Fq[x].

If q > 4n2 then we can take S = Fq and the probability in the lemma
will be at least 1/2. If q is small, one needs to go to an extension of Fq
of suitable size and factor f over there and then combine the factors
to go down to Fq. For simplicity, we will assume that q is already large
enough to have any required probability of success.
Now one may easily obtain the following randomised version of Al-

gorithm 4.1.

Algorithm 6.2. Randomised Hensel Factorisation
Input: A polynomial f ∈ T (n, q).
Output: A proper factor of f , “Irreducible” or “Failure”

Step 1: Choose β ∈ Fq uniformly at random and define f̄ = f(x, y+β).
Check whether f̄0 = f̄ mod y is squarefree.

Step 2: If f̄0 is not squarefree then compute h = gcd(f̄ ,
∂f̄
∂x
) in Fq[x, y].

If h 6= 1 then output h, otherwise output “Failure”.

Step 3: If f̄0 is squarefree then input f̄ to Algorithm 4.1. If Algorithm
4.1 has no output then output “Irreducible”. Otherwise output g(x, y−
β) for any polynomial g output by Algorithm 4.1.

Theorem 6.3. Suppose q > 4n2. For f ∈ T (n, q), the average running
time of Algorithm 6.2 is O˜(n1+α + d(n, q)), where α and d(n, q) are

16 GAO AND LAUDER

defined as in Theorem 4.2, and the probability of failure is less than
1/2.

Proof. The algorithm fails only if f is squarefree in Fq[x, y] but f̄0 =
f(x, β) is not squarefree in Fq[x]. By Lemma 6.1, the probability of
this happening is less than 1/2.
On the running time, we assume that f is chosen from T (n, q) uni-

formly at random. Then for any β ∈ Fq, f̄ is still uniform random
in T (n, q) (since the transform is a bijection). Particularly, f̄0 is a
uniform at random monic polynomial in Fq[x] of degree n and f̄ is uni-
form at random in M(n, q). The probability of f̄0 being squarefree is
qn−1(q − 1)/qn = 1− 1/q, so the probability of not being squarefree is
1/q.
Now Step 1 costs O(n2), Step 2 costs O(n4) and Step 3 costs on
average O˜(n1+α+d(n, q)). So the average cost for the whole algorithm
is

O˜
(
n2 +

1

q
n4 + (1−

1

q
)(n1+α + d(n, q))

)
= O˜(n1+α + d(n, q)),

as n4/q ≤ n2. The theorem is proved.

7. Conclusion

We presented a modified version of the Hensel lifting method for
factoring bivariate polynomials over finite fields. The average running
was shown to be almost linear in the input size. Compared to Collins’
analysis for univariate integral polynomials, our proof was uncondi-
tional. Our success relies on the fact that almost all polynomials are
irreducible and so presumably can not be lifted too high. It may be
interesting to give a more sensitive analysis that yields the “variance”
of the number of field operations required in our Hensel lifting based
factorisation algorithm.
In practice, polynomials to be factored may be known to be reducible

in advance. Is it possible to find the average time for all reducible
polynomials?
Acknowledgement. We thank Daniel Panario for his helpful disscu-
sion on the number of factors of polynomials and for bringing Carlitz’s
result to our attention.

References

[1] W. S. Brown, “On Euclid’s algorithm and the computation of polynomial
greatest common divisors”, J. ACM 18 (1971), 478–504.

[2] D.G. Cantor and E. Kaltofen, “On fast multiplication of polynomials
over arbitrary algebras”, Acta Inform. 28 (1991), 693-701.

HENSEL LIFTING AND POLYNOMIAL FACTORISATION 17

[3] L. Carlitz, “The arithmetic of polynomials in a Galois field”, Amer. J. Math.
54 (1932), 39–50.

[4] G. E. Collins, “Factoring univariate integral polynomials in polynomial av-
erage time”, Symbolic and algebraic computation (EUROSAM ’79, Internat.
Sympos., Marseille, 1979), pp. 317–329, Lecture Notes in Comput. Sci., 72,
Springer, Berlin-New York, 1979.

[5] P. Flajolet, X. Gourdon and D. Panario, “Random polynomials and
polynomial factorization”, Automata, languages and programming (Paderborn,
1996), 232–243, Lecture Notes in Comput. Sci., 1099, Springer, Berlin, 1996.

[6] S. Gao, “Absolute irreducibility of polynomials via Newton polytopes,”
preprint, 1998 (16 pages).
(Available at URL: http://www.math.clemson.edu/faculty/Gao)

[7] S. Gao and A.G.B. Lauder, “Decomposition of polytopes and polynomi-
als,” preprint, 1999 (17 pages).
(Available at URL: http://www.math.clemson.edu/faculty/Gao)

[8] J. von zur Gathen and V. Shoup, “Computing Frobenius maps and fac-
toring polynomials”, Computational Complexity 2 (1992), 187–224.

[9] K. O. Geddes, S. R. Czapor and G. Labahn, Algorithms for Computer
Algebra, Kluwer, Boston/Dordrecht/London, 1992.

[10] E. Kaltofen and V. Shoup, “Subquadratic-time factoring of polynomials
over finite fields”, Math. Comp. 67 (1998), no. 223, 1179–1197.

[11] D.R. Musser, “Multivariate polynomial factorization”, J. ACM 22 (1975),
291–308.

[12] A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen”,
Computing 7 (1971), 281-292.

[13] D. Wan, “Factoring polynomials over large finite fields”, Math. Comp. 54
(1990), No. 190, 755–770.

[14] P. S. Wang, “An improved multivariate polynomial factorization algorithm”,
Math. Comp. 32 (1978), 1215–1231.

[15] P. S. Wang and L. P. Rothschild, “Factoring multivariate polynomials
over the integers,” Math. Comp. 29 (1975), 935–950.

[16] H. Zassenhaus, “On Hensel factorization I”, J. Number Theory 1 (1969),
291–311.

Department of Mathematical Sciences, Clemson University, Clem-

son, SC 29634-0975 USA E-mail address: sgao@math.clemson.edu

Mathematical Institute, Oxford University, Oxford OX1 3LB, UK

E-mail address: lauder@maths.ox.ac.uk

