
COMPUTING GRÖBNER BASES FOR VANISHING IDEALS OF

FINITE SETS OF POINTS

JEFF FARR AND SHUHONG GAO

Abstract. We present an algorithm that incrementally computes a Gröbner
basis for the vanishing ideal of any finite set of points in an affine space under
any monomial order, and we apply this algorithm to polynomial interpolation
in multiple variables. For the case of distinct points, the algorithm is natural
generalization of Newton’s interpolation for univariate polynomials. The time
complexity in the worst case is exponential in term of the number of variables.
Computational evidence suggests, however, that it compares favorably with
two known algorithms when the number of variables is small relative to the
number of points. We also present a preprocessing technique that significantly
enhances the performance of all the algorithms considered. For points with
nontrivial multiplicities (defined by delta sets), we adapt our algorithm to
compute the vanishing ideal via Taylor expansions.

1. Introduction

Let F be a field, and suppose P1, . . . , Pn are distinct points in F
m. The set

of polynomials in F[x1, . . . , xm] that evaluate to 0 at each point Pi form a zero-
dimensional ideal, called the vanishing ideal of the points. The problem is to com-
pute the reduced Gröbner basis for the vanishing ideal of any finite set of points,
under any given monomial order. A polynomial time algorithm for this problem
is first given by Buchberger and Möller (1982) [3], and significantly improved by
Marinari, Möller and Mora (1993) [13], and Abbott, Bigatti, Kreuzer and Rob-
biano (2000) [1]. These algorithms perform Gauss elimination on a generalized
Vandermonde matrix and have a polynomial time complexity. Recently, O’Keeffe
and Fitzpatrick (2002) [8] studied this problem from coding theory point of view.
They present an algorithm that is exponential in the number of variables and the
Gröbner basis which they compute is not reduced.

We present an alternate method that is a generalization of Newton’s interpo-
lation for univariate polynomials. Our algorithm is similar to O’Keeffe and Fitz-
patrick’s approach, but computes the reduced Gröbner basis. Even though the time
complexity of our algorithm is still exponential, its practical performance improves
upon both O’Keeffe and Fitzpatrick’s algorithm and the linear algebra approach
mentioned above when the number of variables is relatively small compared to the

Date: January 1, 2004.
This work was supported in part by National Science Foundation (NSF) under Grants

DMS9970637 and DMS0302549, National Security Agency (NSA) under Grant MDA904-02-1-
0067, the DoD Multidisciplinary University Research Initiative (MURI) program administered by
the Office of Naval Research (ONR) under Grant N00014-00-1-0565.

1

2 J. FARR AND S. GAO

number of points. We provide running time comparisons based on computer exper-
iments for various monomial orders. We also present a preprocessing technique that
significantly enhances the performance of our algorithm, the O’Keeffe-Fitzpatrick
algorithm and, surprisingly, even the Gauss elimination algorithms.

The rest of the paper is organized as follows. In Section 2, we first present our
algorithm for the simple case when the points are distinct. Section 3 deals with an
application of our solution to the problem of multivariate polynomial interpolation.
Section 4 gives running time comparisons, and a preprocessing technique for sorting
the points is presented. Finally, Section 5 shows how to compute Taylor expansions
efficiently, which are then used in Section 6 to handle the case for points with
multiplicity.

2. Distinct points

In this section we present a solution to the problem of computing a Gröbner
basis for the vanishing ideal of a finite set of distinct points. The reader is referred
to [2, 6, 12] for introduction to Gröbner bases.

Let F be a field and F[x1, . . . , xm] the polynomial ring with m variables. We
shall fix an arbitrary monomial order on F[x1, . . . , xm]. For any subset V of F

m,
define

I(V) = {f ∈ F[x1, . . . , xm] : f(P) = 0, for all P ∈ V },

the vanishing ideal of V . If V = {P1, . . . , Pn}, I(V) is also written as I(P1, . . . , Pn).
For any polynomials g1, . . . , gs ∈ F[x1, . . . , xm], define

B(g1, . . . , gs) = {x
α : α ∈ Nm and LT(gi) - x

α, 1 ≤ i ≤ s},

where N = {0, 1, 2, 3, . . . }, LT(g) the leading term of g, and xα = xα11 · · ·x
αm
m for

α = (α1, . . . , αm).

Lemma 1. For g1, . . . , gs ∈ I = I(P1, . . . , Pn), {g1, . . . , gs} is a Gröbner basis for
I if and only if |B(g1, . . . , gs)| = n.

Proof: Note that {xα : α ∈ B(I)} form a basis for the quotient ring F[x1, . . . , xm]/I
viewed as a vector space over F (see Section 3 in [5]), which implies that g1, . . . , gs ∈
I form a Gröbner basis iff B(g1, . . . , gs) = B(I) (see Lemma 3.8 in [13]). By inter-
polation method one can show that dimF[x1, . . . , xm]/I = n. Hence the lemma
follows. �

Our algorithm is based on the following lemma.

Lemma 2. Suppose G = {g1, . . . , gs} is a Gröbner basis for I(V), for a finite set
V ⊂ Fm. For a point P = (a1, . . . , am) /∈ V , let gi denote the polynomial in G with
smallest leading term such that gi(P) 6= 0, and define

g̃j := gj −
gj(P)

gi(P)
· gi, j 6= i, and

gik := (xk − ak) · gi, 1 ≤ k ≤ m.

Then
G̃ = {g̃1, . . . , g̃i−1, g̃i+1, . . . , g̃s, gi1, . . . , gim}

is a Gröbner basis for I(V ∪ {P}).

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 3

Proof: By Lemma 1, at least one polynomial in G must be nonzero when evalu-
ated at P ; hence, gi exists.

Certainly, G̃ ⊆ I(V ∪{P}) as the new and modified polynomials evaluate to zero
at all points in V ∪ {P}. Denote LT(gi) by xα. We claim that

B(G̃) = B(G) ∪ {xα}. (1)

By the choice of i, LT(g̃j) = LT(gj), for all j 6= i. Also, since gi was replaced in

G̃ by gi1, gi2, . . . , gim, whose leading terms are x
αx1, x

αx2, . . . , x
αxm, we know

that xα is the only monomial not in B(I(V)) that is in B(I(V ∪ {P})). Thus, (1)

is satisfied, and |B(G̃)| = |B(G)|+ 1. Since G is a Gröbner basis for I(V), we have
|B(G)| = |V |, and the conclusion follows from Lemma 1. �

Notice that for some of the gik, LT(gik) may be divisible by the leading term of

another polynomial in G̃. In such a case, gik may be omitted from G̃ as G̃ \ {gik}
still has the same set of leading terms. In fact, we can check for this property before
computing gik so that we save ourselves needless computation. In so doing, we also

guarantee that the resulting G̃ is a minimal Gröbner for I(V ∪ {P}).

We must, however, be even more careful if we wish to compute the (unique)
reduced Gröbner basis. Notice that the reduction of any polynomial g ∈ G with
respect to G\{g} requires the use of only those polynomials in G which have leading
term smaller than LT(g). Thus, it is easily seen that the g̃j , j 6= i, are already in
normal form since G was reduced to begin with. Any of the gik, though, may need
to be reduced. If upon computing gik we immediately reduce it with respect to
the “current” G (before computing the remaining gi(k+1), . . . , gim), then we must
recompute the normal form of gik if one of the later gik′ is smaller than gik. To
circumvent this situation, we order the variables so that x1 < x2 < · · · < xm. Thus,
in Algorithm 1 G is always stored in such a way that the leading terms of all of its
polynomials are in increasing order; hence, each gik need only be reduced once. In
the algorithm below, Normal(h,G) denote the unique remainder of h when reduced
by polynomials in G.

Lemma 2 and the above remarks imply the following theorem.

Theorem 3. For a finite set V ⊆ Fm and a given monomial order, Algorithm 1
returns the reduced Gröbner basis for I(V).

3. Polynomial Interpolation

Suppose we have points P1, . . . , Pn ∈ Fm and n values r1, . . . , rn ∈ F. The
(multivariate if m > 1) interpolation problem is to find a “smallest” polynomial
f ∈ F[x1, . . . , xm] so that

f(Pi) = ri, 1 ≤ i ≤ n. (2)

Multivariate polynomial interpolation have been extensively studied in the past 30
years; See Gasca and Sauer [10], for a recent survey of the literature.

We show here that there is a simple relation between multivariate polynomial
interpolation problem and Gröbner bases. Specifically, the monomial basis of
I(P1, . . . , Pn) is a unique interpolation space, and the interpolating polynomial

4 J. FARR AND S. GAO

Algorithm 1

1 Input: P1, P2, . . . , Pn ∈ Fm, and a monomial order.
2 Output: G, the reduced Gröbner basis for I(P1, . . . , Pn), in increasing order.
3
4 /* Initialization */
5 G := {1}; /* the ith polynomial in G is denoted gi */
6 Order the variables so that x1 < x2 < · · · < xm;
7
8 FOR k from 1 to n DO
9 Find the smallest i so that gi(Pk) 6= 0;

10 FOR j from i+ 1 to |G| DO gj := gj −
gj(Pk)
gi(Pk)

· gi; END FOR;

11 G := G \ {gi};
12 FOR j from 1 to m DO
13 IF xj · LT(gi) not divisible by any LT of G THEN
14 Compute h := Normal((xj − aj) · gi, G);
15 Insert h (in order) into G;
16 END IF;
17 END FOR;
18 END FOR;
19
20 RETURN G.

may be found by computing the reduced Gröbner basis for the vanishing ideal of
the augmented points (P1, r1), . . . , (Pn, rn).

Theorem 4. Fix any monomial order on F[x1, . . . , xm], and let G be the reduced
Gröbner basis for I = I(P1, . . . , Pn) and B = B(I) = {xα1 , . . . ,xαn}, the corre-
sponding monomial basis.

(i) For any r1, . . . , rn ∈ F, there is a unique f ∈ SpanF(B) satisfying (2).
(ii) Introduce a variable z together with the unique elimination order for z in
F[x1, . . . , xm, z] that extends the given monomial order on F[x1, . . . , xm].
Then the reduced Gröbner basis for

I((P1, r1), . . . , (Pn, rn)),

is of the form G ∪ {z − f}, where f is the unique polynomial in (i).

Proof: Part (i) is standard. We show Part (ii). For the polynomial f ∈ F[x1, . . . , xm]
satisfying (2), we have z − f ∈ I((P1, r1), . . . , (Pn, rn)). Note for any elimination
order for z in F[x1, . . . , xm, z], z is the leading term in z − f . Hence

F[x1, . . . , xm, z]/I((P1, r1), . . . , (Pn, rn))

is isomorphic (as a ring) to F[x1, . . . , xm]/I(P1, . . . , Pn), both have B(I(P1, . . . , Pn))
as their monomial basis. Therefore G ∪ {z − f} is equal to the unique reduced
Gröbner basis for I((P1, r1), . . . , (Pn, rn)). �

By the above theorem, the interpolation polynomial f can found by simply apply-
ing Algorithm 1 to the augmented points (P1, r1), . . . , (Pn, rn) with an elimination
order for z. It will find f and a Gröbner basis for I(P1, . . . , Pn) simultaneously!

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 5

4. Time Complexity

4.1. The cost of reduction. All the steps in Algorithm 1 are straightforward
except the reduction step in line 14. We use the standard long-division technique,
sometimes called Buchberger reduction. This reduction has a worst-case time com-
plexity that may be exponential in the numberm of variables. It is possible to make
this step polynomial time by using the border-basis reduction technique introduced
in [7]. To compute a border Gröbner basis, we simply replace “not divisible by”
in line 13 by “not equal to”, and replace the reduction step in line 14 by a sim-
pler border-basis reduction. The border Gröbner basis computed, however, is not
a reduced Gröbner basis and is, in general, quite large. For example, the reduced
Gröbner basis for the vanishing ideal of a random set of 500 points from F2

10 under
lex order usually contains around 100 polynomials, while the border basis typically
contains over 2000! Hence the average running time of Algorithm 1 using border-
basis reduction is much worse than the original. Additionally, due to the size of
the border basis, memory concerns become an issue. For these reasons we ignore
the theoretical “improvements” that border-basis reduction provides. In the time
comparisons below, Algorithm 1 is implemented with the theoretically worse, but
practically better, Buchberger reduction.

4.2. Comparison with current methods. As we mentioned earlier, the methods
in Buchberger and Möller (1982) [3], Marinari, Möller and Mora (1993) [13], and
Abbott, Bigatti, Kreuzer and Robbiano (2000) [1] are based on Gauss elimination
and have a polynomial time complexity O(n3m). We compare our Algorithm 1
particularly with the algorithm (which we designate MMM) of Marinari, Möller
and Mora [13].

We denote the algorithm of O’Keeffe and Fitzpatrick [8] by O’K-F. The Gröbner
basis found via this method is minimal in the sense that the number of polynomials
in the basis is the smallest, but the length of the polynomials computed may grow
exponentially in the number m of variables. Hence it has an exponential time
complexity. For example, for 200 random points in F105 , the largest polynomial in
O’K-F’s Gröbner basis typically has roughly 300 terms for glex order, and roughly
1500 terms for pure lex order. So, most of the computing time in O’K-F is taken up
with dealing with large polynomials, and most of the time in Algorithm 1 involves
the reduction step, i.e., computing Normal(gij , G).

Tables 1 - 3 present running times for Algorithm 1, MMM and O’K-F for various
point sets. To highlight the significance of the dimension, we have chosen three
vector spaces over F2 and three other vector spaces of relatively the same size, but
of low dimension; e.g., F102 has approximately the same number of points as F

3
11.

The times are the average running times (in seconds) for randomly chosen point
sets from the specified vector space (based on 100 experiments for n = 250, 10
experiments for n = 500, 1000). The algorithms were implemented in MAGMA
version 2.8 and run on a SUN Blade 1000, 750 MHz Ultra3 CPU, 512 MB RAM.
Entries marked *** indicate that memory was exhausted.

The tables seem to indicate that Algorithm 1 has a decided advantage over MMM
provided the dimension is small relative to the number n of points. If m is much

6 J. FARR AND S. GAO

q m MMM Algorithm 1 O’Keeffe-Fitzpatrick
glex lex glex lex glex lex

2 10 11.56 4.37 9.38 3.18 13.08 24.45
2 15 39.85 9.28 42.49 19.18 41.32 61.37
2 20 110.08 13.72 152.06 44.18 106.99 93.52
11 3 9.60 5.21 4.25 1.08 3.83 2.40
31 3 11.20 5.64 5.10 0.988 4.57 1.44
101 3 11.57 5.53 5.31 0.747 4.75 0.833
1009 3 12.51 6.41 5.70 0.477 5.03 0.464

Table 1. Average running times for 250 random points from Fmq
(based on 100 experiments)

q m MMM Algorithm 1 O’Keeffe-Fitzpatrick
glex lex glex lex glex lex

2 10 52.75 24.40 36.98 13.00 81.05 915.41
2 15 293.24 50.50 311.14 96.82 301.93 1094.0
2 20 553.61 77.29 677.23 308.59 608.32 2091.4
11 3 64.18 39.10 21.33 5.50 19.41 22.12
31 3 84.32 41.35 33.25 5.43 29.60 10.16
101 3 86.30 42.44 35.30 3.61 31.23 4.77
1009 3 90.24 46.58 36.27 2.16 31.61 2.10

Table 2. Average running times for 500 random points from Fmq
(based on 10 experiments)

q m MMM Algorithm 1 O’Keeffe-Fitzpatrick
glex lex glex lex glex lex

2 12 727.46 227.04 604.10 197.08 1269.49 ***
2 15 1633.0 328.63 1659.6 545.30 2394.4 ***
2 20 4442.8 508.98 5606.9 2624.4 4872.0 ***
31 3 752.16 331.43 237.34 31.86 213.37 83.06
101 3 762.07 356.20 243.21 20.96 218.34 33.51
1009 3 724.02 362.60 256.70 11.10 220.14 11.88

Table 3. Average running times for 1000 random points from Fmq
(based on 10 experiments)

larger, then the advantage swings to MMM; however, Algorithm 1 seems to catch
up in the m = 15 cases as n increases. The number of points would have to be
much greater than 1000 before Algorithm 1 could compete in the m = 20 case.

Interestingly, if the dimension m and the number of points n are fixed and the
field size is allowed to grow, then the running time for Algorithm 1 and O’K-F under
lex order actually decreases. The reason is that the Gröbner basis polynomials
actually become simpler and the reduction by these polynomials is faster. The
MMM algorithm experiences no such speedup, although the increase in its running
time is mild.

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 7

4.3. Sorting the Points. It is somewhat surprising that a clever ordering of the
points can improve the running time of Algorithm 1. This improvement is more or
less significant depending on both the chosen monomial order and the geometric
structure of the points. Additionally, this special ordering does improve the running
time of the Fitzpatrick-O’Keeffe algorithm, drastically in some cases. Even more
surprising is the fact that this ordering also speeds up the MMM algorithm.

The details of this ordering, motivated by [9], are quite simple. If x1 < x2 <
· · · < xm, then group the points first according to the x1-coordinate; these groups
are ordered in a nonincreasing order by size. Within each of the groups, repeat the
process, but according to the x2-coordinate. Continue for x3, . . . , xm.

Example 1. Under any order with x1 < x2 < x3, the set of points

{(4, 0, 0), (2, 1, 4), (2, 4, 0), (3, 0, 1), (2, 1, 3), (1, 3, 4), (2, 4, 3), (2, 4, 2), (1, 0, 2)}

is reordered as

{(2, 4, 0), (2, 4, 2), (2, 4, 3), (2, 1, 3), (2, 1, 4), (1, 3, 4), (1, 0, 2), (3, 0, 1), (4, 0, 0)}.

Essentially, this sorting decreases the amount of reduction that Algorithm 1
does. Further, the Fitzpatrick-O’Keeffe algorithm, though it does not involve re-
duction, is also helped since the Gröbner basis remains comparatively small. In the
MMM algorithm, reordering the points corresponds to a favorable reordering of the
columns in a matrix before Gauss elimination is applied.

Gröbner bases under lex order experience the greatest speedup since they typi-
cally require the most reduction and are prone to exponential growth without re-
duction, and Gröbner bases under a glex order with points from a low-dimensional
vector space experience little to no speedup. A comparison of Tables 4 - 6 below
with Tables 1 - 3 indicates the sizable impact that reordering gives.

q m MMM Algorithm 1 O’Keeffe-Fitzpatrick
glex lex glex lex glex lex

2 10 7.78 2.72 6.60 1.84 7.17 2.22
2 15 32.71 6.24 35.65 9.17 31.58 7.14
2 20 98.97 9.26 139.66 24.05 92.93 11.28
11 3 8.11 2.80 3.96 0.944 3.43 1.01
31 3 11.15 3.72 5.10 0.932 4.47 0.950
101 3 11.63 4.18 5.31 0.721 4.71 0.704
1009 3 12.52 6.11 5.70 0.469 5.02 0.462

Table 4. Average running times for 250 random points (sorted)
from Fmq (based on 100 experiments)

5. Computing Taylor Expansions

In this section we describe in detail how to compute the Taylor expansion modulo
an ideal I. We use this material in the next section to strengthen Algorithm 1 by
allowing points with multiplicities to be considered.

8 J. FARR AND S. GAO

q m MMM Algorithm 1 O’Keeffe-Fitzpatrick
glex lex glex lex glex lex

2 10 26.50 9.48 21.83 5.76 29.26 9.12
2 15 233.32 27.77 267.23 30.50 222.91 46.37
2 20 466.00 44.26 586.64 142.60 475.94 83.39
11 3 44.71 14.25 19.63 4.50 17.18 5.05
31 3 83.54 21.97 33.77 4.87 28.65 4.97
101 3 86.83 27.14 35.63 3.55 30.51 3.52
1009 3 90.17 41.73 36.16 2.17 31.43 2.04

Table 5. Average running times for 500 random points (sorted)
from Fmq (based on 10 experiments)

q m MMM Algorithm 1 O’Keeffe-Fitzpatrick
glex lex glex lex glex lex

2 12 429.45 79.80 416.59 74.34 600.22 152.30
2 15 1200.7 140.15 1306.0 189.94 1481.3 338.86
2 20 3763.5 236.67 5045.0 924.12 3821.9 701.99
31 3 733.93 143.02 238.92 28.22 201.84 30.02
101 3 759.31 182.38 249.26 20.11 214.26 20.24
1009 3 717.05 292.70 254.09 10.62 217.55 10.46

Table 6. Average running times for 1000 random points (sorted)
from Fmq (based on 10 experiments)

Let v = (v1, . . . , vm) ∈ Zm. We define a differential operator Dv by

Dv =
1

v1! · · · vm!
·
∂v1+···+vm

∂v1x1 · · · ∂vmxm
.

We note that Dv is a linear map on functions with the m variables x1, . . . , xm. Let
P ∈ Fm and f be any function on x1, . . . , xm. We employ the notation

[Dvf](P) = Dvf |x=P , (3)

where P = (a1, . . . , am) ∈ Fm. Then, under reasonable conditions (analytic or
algebraic) on f , we have

f(x+ P) =
∑
v∈Nm

[Dvf](P) · xv. (4)

We call the right-hand side of (4) the Taylor expansion of f at P , denoted by
T (f, P). Note that (4) is equivalent to

f(x) =
∑
v∈Nm

[Dvf](P) · (x− P)v =
∑
v∈Nm

[Dvf](P) · (x1 − a1)
v1 · · · (xm − am)

vm ,

which is the more typically referred to form of Taylor expansion.

Suppose ∆ ⊆ Nm is a finite set, referred to as a delta set or a Ferrers dia-
gram, satisfying the division order; that is, if v = (v1, . . . , vm) < u = (u1, . . . , um)

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 9

componentwise and u ∈ ∆, then v ∈ ∆. Define

T (f, P,∆) =
∑
v∈∆

[Dvf](P) · xv.

T (f, P) denotes the full (possibly infinite if f is not a polynomial) Taylor expansion
of f , while T (f, P,∆) is truncated to consider only those coefficients corresponding
to monomials with exponents in ∆.

Let I denote the monomial ideal generated by monomials with exponents in the
complement of ∆:

I = 〈xv : v ∈ (Nm \∆)〉.

So, ∆ = B(I) regardless of the monomial order placed on F[x1, . . . , xm]. Assuming
we have a point P and a polynomial f ∈ F[x1, . . . , xm] given by its coefficients (i.e.,
f =

∑
v∈S fvx

v, fv nonzero elements in F, S ⊆ Nm), the goal is to compute the
Taylor expansion of f about P modulo I; by Equation (4), this is equivalent to
computing [Dvf](P) for v ∈ ∆ = B(I). Since I is a monomial ideal, any terms
with exponent not in ∆ can simply be ignored.

Also, notice that if T (g, P,∆) and T (h, P,∆) are the Taylor expansions (having
at most |∆| terms apiece) of g and h, respectively, then the Taylor expansion of
g · h is

T (g · h, P,∆) ≡ T (g, P,∆) · T (h, P,∆) mod I. (5)

Again, computing modulo I is free; simply, drop any terms with exponents outside
of ∆.

We break the strategy for computing [Dvf](P) into two cases depending on the
density of the set S of terms in f with nonzero coefficients. Define ∆S to be the
smallest delta set containing S, and let δ denote the total degree of f . If |S|/|∆S |
is small, then S is said to be sparse; otherwise, S is dense.

In the former case, one can compute the Taylor expansion term-by-term. For
any v ∈ S, (x+P)v can be computed via the square-and-multiply method modulo
I. These expansions can then be added together to find T (f, P,∆). This approach
has time complexity O(m · |S| · log δ · |∆|2).

We are more interested in the situation in which S does not have a sparse
structure. Here, we can do better than the term-by-term approach used in the
sparse case. The reason for this is that the expansions for similar terms share some
information. For example, the expansions of the terms x2yz3 and x2y2z2 both
are related to the expansion of x2yz2; namely, by Equation 5, T (x2yz3, P,∆) ≡
T (z, P,∆)·T (x2yz2, P,∆) mod I and T (x2y2z2, P,∆) ≡ T (y, P,∆)·T (x2yz2, P,∆)
mod I. By accounting for such dependencies, we can save considerable computing
time.

Before presenting Algorithm 2 below to compute T (f, P,∆), we make two im-
portant observations. First, as seen in the simple illustration above, the order in
which we compute the term expansions makes a difference. Clearly, computing
the expansion of a larger term before computing the expansion of a smaller term
would be counterproductive. Hence, we start by computing the constant term and
building up from there in all m directions.

10 J. FARR AND S. GAO

The second remark is that we do not need to remember the expansion for
each term throughout the entire algorithm. In the illustration, after we com-
pute T (x2yz3, P,∆), T (x2y2z2, P,∆) and T (x3yz2, P,∆), if necessary, we can forget
about T (x2yz2, P,∆). So, in a sense, we only need to keep track of the term expan-
sions on the “border” (denoted by R in Algorithm 2) of the set of already computed
expansions; the other terms may be added to the eventual output and forgotten.

Algorithm 2

1 Input: P ∈ Fm; a monomial basis ∆ of a monomial ideal I;
f ∈ F[x1, . . . , xm] given by its coefficients fv, v ∈ ∆S ⊆ ∆;
and a monomial order.

2 Output: T (f, P,∆), the Taylor expansion of f about P modulo I.
3 Variables:
4 T– the current Taylor expansion, updated each iteration;
5 R– the border of the set

{v : the Taylor expansion of (x+ P)v is already computed};
6
7 /* Initialization */
8 R := {(0, . . . , 0)};
9 T0 := f(P);
10 T := T0;
11
12 /* Main */
13 WHILE R 6= ∅ DO
14 R1 = ∅;
15 FOR v ∈ R DO
16 FOR k from 1 to m DO
17 v̄ := v + ek; /* ek is the kth unit vector */
18 IF (v̄ ∈ ∆S) & (v̄ /∈ R1) THEN
19 Append(v̄, R1);
20 Tv̄ := Tv · (xk + ak) mod I;
21 T := T + fv̄ · Tv̄;
22 END IF;
23 END FOR;
24 END FOR;
25 R := R1;
26 END WHILE;
27
28 RETURN T .
Table 7. Algorithm for computing Taylor expansions modulo a
delta set

Algorithm 2 has time complexity O(m · |∆S |2). So unless

|S|

|∆S |
<

|∆S |

|∆|2 · log δ
,

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 11

f is dense and Algorithm 2 outperforms the term-by-term square-and-multiply
method.

6. Points with Multiplicities

We now consider the case in which some points in the vanishing set have mul-
tiplicity. What is meant by the multiplicity of a solution of a multivariate polyno-
mial varies depending on the context and the author. Marinari, Möller and Mora
describe several notions of a general algebraic multiplicity [14], one of which is de-
scribed in detail in [13]. In this paper we use a slightly restricted (but easier to
present) form of this latter definition, studied by Cerlienco and Mureddu [4].

For any nonzero polynomial f ∈ F[x1, . . . , xm], a point P ∈ Fm and a delta set
∆ ⊂ Nm, P is said to have multiplicity ∆ if the truncated Taylor expansion of f at
P is zero; that is,

T (f, P,∆) =
∑
v∈∆

[Dvf](P) · xv = 0,

where [Dvf](P) is as defined in Equation (3). We assume that ∆ is the largest
possible delta set satisfying these conditions.

A somewhat more common definition of multiplicity, called arithmetic multiplic-
ity, is as follows. A solution P of a polynomial f ∈ F[x1, . . . , xm] = F[x] is said to
have multiplicity m0 if [D

vf](P) = 0 whenever v1 + v2 + · · ·+ vm < m0. In terms
of the algebraic definition, this implies that the multiplicity set is restricted to a
triangular shape. Thus, it is obvious that the algebraic definition of multiplicity
subsumes the arithmetic.

With the former definition of multiplicity in mind, we present a generalization
of Algorithm 1 that computes the vanishing ideal of a set of points {P1, . . . , Pn},
each having multiplicity defined by the sets ∆1, . . . ,∆n. Denote this ideal by

I ((P1,∆1), . . . , (Pn,∆n)) = {f ∈ F[x1, . . . , xm] : T (f, Pi,∆i) = 0, 1 ≤ i ≤ n}.

Since the ∆i’s are delta sets, one can show that this set is indeed an ideal in
F[x1, . . . , xm]. (We should mention that this is not true if ∆i’s are not all delta
sets.)

Algorithm 3 varies from Algorithm 1 in the following ways. First, instead of
evaluating a polynomial f at Pi, we need to compute the truncated Taylor ex-
pansion T (f, Pi,∆i) using Algorithm 2; we denote the set of these expansions by
T . It is important that each ∆i is ordered according to the division order to en-
sure that these Taylor expansions may be computed efficiently and to ensure that
I ((P1,∆1), . . . , (Pn,∆n)) is actually an ideal. That is, order ∆i in such a way that
no element divides any previous element in ∆i.

Secondly, we note that Algorithm 3 is also an iterative method; in fact, not only
does the algorithm build the Gröbner basis for the vanishing ideal “one point at a
time” but it also builds it “one multiplicity at a time.” That is, when a new point
is introduced, the algorithm updates the Gröbner basis by stepping through the
corresponding multiplicity set element by element; this fact is seen in Algorithm
3 by noticing that the FOR loop of line 12 is inside the FOR loop of line 10. Of

12 J. FARR AND S. GAO

course if each multiplicity set is trivial (|∆i| = 1), then Algorithm 3 is equivalent
to Algorithm 1.

Algorithm 3

1 Input: P1, . . . , Pn ∈ Fm; ∆1, . . . ,∆n ⊂ Nm; and a monomial order.
2 Output: G, the reduced Gröbner basis for I((P1,∆1), . . . , (Pn,∆n)),

in increasing order.
3
4 /* Initialization */
5 G := {1}; /* gi is the ith polynomial in G, in increasing order */
6 Order the variables so that x1 < x2 < · · · < xm;
7 Order the elements in each ∆k in nondecreasing order under the

division order;
8
9 /* Main */
10 FOR k from 1 to n DO
11 Compute T = {Tj = T (gj , Pk,∆k) : gj ∈ G}, the set of

(truncated) Taylor expansions;
12 FOR v in ∆k DO
13 Find the smallest i so that coeff(Ti,x

v) 6= 0;
14 FOR j from i+ 1 to |G| DO
15 δ := coeff(Tj ,x

v) / coeff(Ti,x
v);

16 gj = gj − δ · gi;
17 Tj = Tj − δ · Ti;
18 END FOR;
19 G := G \ {gi} and T := T \ {Ti};
20 FOR j from 1 to m DO
21 IF xj · LT(gi) not divisible by any LT of G THEN
22 Compute h := Normal((xj − aj) · gi, G);
23 Th := xj · Ti (truncated);
24 Insert (in order) h into G and Th into T ;
25 END IF;
26 END FOR;
27 END FOR;
28 END FOR;
29
30 RETURN G.

Table 8. Algorithm for computing the reduced Gröbner basis for
the vanishing ideal of a set of points with multiplicities

The following analogue to Lemma 1 is necessary to establish the correctness of
Algorithm 3. We omit a formal proof of the correctness of Algorithm 3, noting
only that the key step that established Algorithm 1 is the same for this algorithm.
Namely, at each step in the algorithm, we add exactly one element from a multi-
plicity set and exactly one element to the monomial basis. This ensures that our
basis G is always Gröbner.

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 13

Lemma 5. Fix a monomial order on F[x], and let V = {(P1,∆1), . . . , (Pn,∆n)}
where Pi ∈ Fm are distinct points and ∆i ⊂ Nm are delta sets. Then {g1, . . . , gs} ⊂
I(V) is a Gröbner basis for I if and only if |B(g1, . . . , gs)| =

∑n
j=1 |∆j |.

Proof: We know that g1, . . . , gs ∈ I(V) form a Gröbner basis iff |B(g1, . . . , gs)| =
dimF[x1, . . . , xm]/I(V); see Lemma 3.8 in [13]. We just need to show that the latter
has dimension equal to

∑n
j=1 |∆j |. To see this, let Ij = I(Pj ,∆j), the vanishing

ideal of Pj with multiplicity ∆j . Then I(V) = I1 ∩ · · · ∩ In and

F[x1, . . . , xm]/I(V) ∼=
n⊗
j=1

F[x1, . . . , xm]/Ij ,

as rings over F. Note that {xα : α ∈ ∆j} form a basis for F[x1, . . . , xm]/Ij as a
vector space over F, so its dimension equal to |∆j |. The lemma follows immediately.
�
Example 2. Consider the following simple example with two points in F 23 . Let

P1 = (0, 0), ∆1 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)},

and P2 = (1, 2) ∆2 = {(0, 0), (1, 0), (0, 1)}.

We assume a glex order on F3[x, y] with y > x.

k v i G T
1 (0, 0) 1 {1} {1}
1 (1, 0) 1 {x, y} {x, y}
1 (0, 1) 1 {y, x2, xy} {y, x2, xy}
1 (2, 0) 1 {x2, xy, y2} {x2, xy, y2}
1 (1, 1) 1 {xy, y2, x3} {xy, y2, x3}
1 (0, 2) 1 {y2, x3, x2y} {y2, x3, 0}
1 (3, 0) 1 {x3, x2y, xy2, y3} {x3, 0, 0, 0}
2 (0, 0) 1 {x2y, xy2, y3, x4} {y + x− 1, y + x+ 1,

−1, x+ 1}
2 (1, 0) 1 {xy2 + x2y, y3 − x2y, x4 + x2y, {−y − x,−y − x,

x3y − x2y} y − x,−x}
2 (0, 1) 2 {y3−xy2+x2y, x4−xy2, x3y+xy2, {0,−y, y, 0}

x2y2 + xy2 − x2y}

OUTPUT G = {y3 − xy2 + x2y, x3y + x4, x2y2 + xy2 − x2y,
x5 − x4 − xy2 − x2y}

Table 9. Results of Algorithm 3 in Example 2

Table 9 shows the results of Algorithm 3 at each iteration after line 13 has been
performed. It is easy to verify by hand that the output

G = {y3 − xy2 + x2y, x3y + x4, x2y2 + xy2 − x2y, x5 − x4 − xy2 − x2y}

is a subset of I, and an examination of B(G) together with Lemma 5 proves that
G is a Gröbner basis for I.

14 J. FARR AND S. GAO

7. Final Remarks

We have presented an algorithm to compute the Gröbner basis for the vanishing
ideal of any finite set of affine points over any field. Additionally, we adapt our
method to handle the case in which some points have nontrivial multiplicities, given
by a delta set.

While the method is described for any field, the authors are most interested in
applications over finite fields, as many of the examples indicate. Hence, we have left
many numerical questions that arise from the use of nonexact arithmetic unstudied.
Particularly, the question of the conditioning of our solution may be of interest. The
Gauss elimination techniques that are in practice involve Vandermonde matrices
which are often ill-conditioned, and our algorithm could produce an advantage in
this area. Another numerical issue to deal with is the growth of coefficients when
working over the rational number field. Modular methods have been effective in
controlling such growth in other Gröbner basis algorithms [1, 11]; we expect that a
similar idea would work for our algorithm.

References

[1] J. Abbott, A. Bigatti, M. Kreuzer and L. Robbiano, Computing ideals of points, J. Symbolic
Comput. 30 (2000), 341-356.

[2] William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate
Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.

[3] B. Buchberger and H. M. Möller, The construction of multivariate polynomials with preas-
signed zeros. Computer algebra, EUROCAM ’82, pp. 24-31, Lecture Notes in Comput. Sci.,
vol. 144, Springer, Berlin-New York, 1982.

[4] L. Cerlienco and M. Mureddu, From algebraic sets to monomial linear bases by means of
combinatorial algorithms, Formal power series and algebraic combinatorics (Montreal, PQ,
1992), Discrete Math. 139 (1995), no. 1-3, 73-87.

[5] David Cox, John Little and Donal O’Shea, Ideals, varieties, and algorithms, 2nd ed., Under-
graduate Texts in Mathematics, Springer-Verlag, New York, 1997.

[6] David Cox, John Little and Donal O’Shea, Using algebraic geometry, Graduate Texts in
Mathematics, 185, Springer-Verlag, New York, 1998.

[7] J. Faugere, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional
Gröbner bases by change of ordering, J. Symbolic Comput. 16 (1993), 329-344.

[8] Patrick Fitzpatrick and Henry O’Keeffe, Gröbner basis solutions of constrained interpolation
problems, Fourth special issue on linear systems and control, Linear Algebra Appl. 351/352
(2002), 533-551.

[9] Shuhong Gao, Virǵinia M. Rodrigues and Jeffrey Stroomer, Gröbner basis structure of finite
sets of points, preprint.

[10] Mariano Gasca and Thomas Sauer, Polynomial interpolation in several variables, in Multi-
variate polynomial interpolation, Adv. Comput. Math. 12 (2000), no. 4, 377-410.

[11] J. de Kleine and M. Monagan, A modular method for computing Gröbner bases, preprint.
[12] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag,

Berlin, 2000.
[13] M. G. Marinari, H.M. Möller and T. Mora, Gröbner bases of ideals defined by functionals

with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput. 4
(1993), no. 2, 103-145.

[14] M. G. Marinari, H.M. Möller and T. Mora, On multiplicities in polynomial system solving,
Trans. Amer. Math. Soc. 348 (1996), no. 8, 3283-3321.

[15] Thomas Sauer, Polynomial interpolation of minimal degree and Gröbner bases, Gröbner
bases and applications (Linz, 1998), 483-494, London Math. Soc. Lecture Note Ser., vol. 251,
Cambridge Univ. Press, Cambridge, 1998.

COMPUTING GRÖBNER BASES FOR VANISHING IDEALS 15

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975,

USA E-mail address: {jeffref, sgao}@ces.clemson.edu

