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Abstract

Understanding the dynamics of nonlinear maps is an important but difficult
problem, and there are not many methods available. In this paper, we study
the dynamics of a simple function, f(x) = x + x−1, on fields of characteristic
two and provide explicit information about structure of it. The main idea is to
lift it to the dynamics of an isogeny on an elliptic curve and study the dynamics
of the isogeny.
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1. Introduction

A dynamical system consists of a set V and a map f : V → V . For any
point v ∈ V , we can iterate f by defining f0(v) = v and f i(v) = f(f i−1(v))
for i ≥ 1. The orbit of v under f is the set of f i(v)’s for all i ≥ 0. A point
v ∈ V is called periodic or cyclic if there exists m ≥ 1 such that fm(v) = v,
and such a minimum m is called the cycle length of v under f . A point v is
called preperiodic if the orbit of v is finite. In this case, the orbit of v contains
a cycle, and the tail length of v is the smallest n such that fn(v) is cyclic.

In a classical dynamical system, V is a topological and metric space. A point
v ∈ V is called stable if, whenever u ∈ V is “close” to v, the orbit of u stays
“close” to that of v. The Fatou set of f consists of all the stable points of V
and the Julia set of f is the complement of the Fatou set. So points in Julia
set tend to move away from each other under iteration of f and they behave
chaotically. In a classical dynamical system, it is important to understand the
limiting behaviors of orbits and to characterize the Julia set. For more on
classical dynamical system, we recommend [6] and [21].

Email addresses: jpark@clemson.edu (Jang-Woo Park), sgao@math.clemson.edu
(Shuhong Gao)

Preprint submitted to Elsevier July 10, 2011



Understanding dynamical systems on finite sets requires different techniques.
When V is finite, every point is preperiodic. So the “stability” and “chaos” in
classical dynamical systems are irrelevant in finite dynamical systems. We view
a discrete dynamical system of f on a finite set V as a directed graph. The
graph has V as a vertex set and, for any pair of v, w ∈ V , there is an edge from
v to w if and only if f(v) = w. Then the graph consists of a collection of cycles
with each node on the cycles having a tree. We are interested in understanding
the distribution of the cycle lengths and the tree structures.

Although one can get answers for all the questions above by enumerating
all points, we are interested in the underlying mathematical theory. The goal
is to analyze the dynamics without actually enumerating all state transitions,
since enumerating has exponential complexity in the number of model variables.
For dynamical systems over finite fields, there are only a few cases that have
been studied so far. For linear dynamical systems, Elspas [7] examined the
dynamics of linear systems over prime fields and showed that cycle structure
can be determined by the elementary divisor of the matrix, and Hernandez-
Toledo [12] generalized Elspas’s results to arbitrary finite fields and also showed
that tree structure can be determined by the nilpotent part of the map. Based
on these results, Jarrah et al. [13] presented an algorithms which describes the
phase spaces. Xua and Zoub [27] have presented an efficient algorithm to analyze
cycle structure of the dynamics of linear systems over finite commutative rings.
Studying dynamics of nonlinear maps is very challenging task. Only a few cases
have been well understood. Barta and Morton [2, 3] studied the dynamics of
certain types of polynomials over algebraic closure of finite fields. Zieve [28]
investigated the cycle lengths of polynomial maps over various rings. Even
dynamics of quadratic polynomials over finite fields are still open except f(x) =
x2 and f(x) = x2 − 2. The square map over prime fields was studied in [22]
and the dynamics of f(x) = x2 − 2 over prime fields was analyzed in [9], [20],
and [26]. For monomial dynamics, Jarrah et al. [14] provided an analysis of
boolean monomial dynamical systems and Colón-Reyes et al. [5] showed that
the structure of fixed points of monomial dynamics over general finite fields can
be reduced to boolean monomial dynamics.

In this paper, we are interested in the dynamics of a simple map f(x) =
x + x−1, x ∈ F, where F is any field. We make the convention that f(0) = ∞
and f(∞) = ∞. So f can be viewed as a function on the projection space,
F∪{∞}. We are interested in the case when F is a finite field. We did extensive
computer experiments on the dynamical systems of f over finite fields. It showed
that the dynamics of f over finite fields of odd characteristics look quite random,
but very regular over fields of characteristic two. For example, each connected
component of the graph is a cycle with binary tree of the same height attached
to each node. Figure 1 shows the dynamics of f on F25 ∪ {∞}. We want to
understand the mathematical reasons behind this phenomenon.

In the next Section, we present the concept of finite covering as a general
framework for understanding dynamical systems. In particular, we show that
the dynamics of f(x) = x + x−1 on a field of characteristic two can be lifted
to a dynamical system on an elliptic curve on F2, i.e. so-called the Koblitz
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Figure 1: Dynamics of f(x) = x+ x−1 on F25 ∪ {∞}.

curve E, with corresponding dynamics defined by an isogeny g( i.e. g is a
group homomorphism of the elliptic curve group). In Section 3, we describe the
recurrence relation of g using the minimum polynomial of g. In Section 4, we
examine the group structure of E(F2n) and its relation to the structure of the
endomorphism ring End(E) of the elliptic curve E. In Section 5, we analyze the
cycle structure of g and show that the cycle lengths can be determined by the
group structure of E(F2n) and the linear recurrence relation of g. In Section 6,
we prove that all trees attached to the cycle of g are complete binary trees of the
same height and show how to determine the exact height of trees. In Section 7,
we project the dynamics of g on E(F22n) to that of f on F2n∪{∞}. In Section 8,
we conclude with a few interesting questions.

2. Understanding Dynamics via Finite Covering

Let V be an algebraic variety and f : V → V be any morphism. We want to
understand the dynamics of f on V . We say that f is covered by a morphism
g : W → W where W is an algebraic variety if there is a finite dominant
morphism π : W → V so that the following diagram is commutative:

W
g //

π

��

W

π

��
V

f // V

The commutativity of the diagram implies that each orbit of g on W is projected
by π to an orbit of f on V . Hence each cycle of g yields a cycle of f , though
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of possibly smaller length. Since π is dominant, then almost all cycles of f can
be obtained this way from g. If the dynamics of g is easier to analyze, then we
may understand the dynamics of f via that of g. The question is, for a given
morphism f on V , how to decide if f is covered by a simpler dynamics of g on
some algebraic variety W . We illustrate this idea by the following example. Let
k be a field and f(x) = x2−2 which defines a dynamics on V = k. The dynamics
of f is nontrivial to see and is in fact the subject of some recent papers [9], [20],
and [26]. Now let W = {(u, v) ∈ K2 : uv = 1} where K is an extension of k that
contains all the square roots of elements in k, and let g : W →W be defined by
g(u, v) = (u2, v2). Then we have the following diagram:

(u, v) �
g //

π

��

(u2, v2)

π

��
x � f // x2 − 2

where π : W → V is defined by π(u, v) = u+ v. Since π(u2, v2) = π(u, v)2 − 2,
the above diagram is commutative. As π is a 2-cover, any odd cycle of g projects
(via π) to a cycle of f of the same length, and any even cycle of g projects to
a cycle of half length. So we can explain the dynamics of f by studying the
dynamics of g which is the squaring map. Especially if k = Fq, then K = Fq2
and the cycle lengths of g are the orders 2 modulo m where m|q2 − 1. f has
a special name which is the Dickson’s polynomial D2(x, 1). In fact, using the
same method, we can analyze the complete structure of the dynamics of the is
the Dickson’s polynomials Dn(x, 1) for any n.

Especially the rational maps covered by elliptic curve endomorphisms are
called Lattès maps. Since the dynamics of endomorphisms on elliptic curves are
simpler due to the structure of elliptic curve groups, the dynamics of Lattès maps
show more regularities than that of arbitrary rational maps. They have been
studied for years primarily over the complex numbers. [18] provides excellent
introduction to Lattès maps over C. They also have been studied over other
fields such as algebraically closed fields and local fields. For more on Lattès maps
over these fields, we recommend Chapter 6 of [25]. In [8], [19], and [10], Lattès
maps over finite fields plays very important roles to solve the Schur problem
for polynomials and rational functions. Now we consider a covering of the map
f(x) = x+ x−1 over fields of characteristic 2. Let E be the elliptic curve group
over the algebraic closure F2 defined by

E : y2 + xy = x3 + 1. (1)

This curve is sometimes called Koblitz curve, due to its use in cryptosystems [15].
Then, with the point O at infinity, E forms an abelian group with respect

to the addition of points. Let σ : E → E be the Frobenius morphism, that is,
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for P = (x, y) 6= O, σ(x, y) = (x2, y2). Define a map g : E → E by

g(P ) = P + σ(P )

where + is the addition of points on the curve. Note that, for P = (x, y) /∈ {O, (0, 1)},

g(x, y) = (I + σ)(x, y) = (x, y) + (x2, y2) = (x′, y′),

where
x′ = x+ x−1

and

y′ = x2 + 1 +
1

x2
+ y +

y

x2
. (2)

Thus we have the following commutative diagram1:

E
g //

π

��

E

π

��
F2 ∪ {∞}

f // F2 ∪ {∞}

where the projection map π is defined as

π(P ) =

{
x if P = (x, y) 6= O,
∞ if P = O.

Let E(F22n) be the set of F22n points of E. Since for any x ∈ F2n ∪ {∞},
π−1(x) ∈ E(F22n), the dynamics of g on E(F22n) covers that of f on F2n ∪{∞},
i.e. f is a Lattès map over fields of characteristic 2. We shall see below that this
will enable us to have a good understanding of the dynamics of g on E(F22n),
hence of f on F2n ∪ {∞}.

Throughout this paper, E will denote the elliptic curve as defined in (1),
End(E) denotes the ring of endomorphisms of E, E[m] indicates m-torsion
group of E over algebraic closure, and, for a field k, E(k)[m] represents E[m]∩
E(k). For a prime p, Ep(k) denotes p-subgroup of E(k), i.e., the order of any
elements in Ep(k) is a power of p.

3. Recurrence Relation of g on E and g−invariant subgroups of E

Since I and σ are endomorphisms of E, g(P +Q) = g(P ) + g(Q). One can
check that the minimum polynomial mσ(X) of σ is

mσ(X) = X2 +X + 2 ∈ Z[X],

1Observed by H.W. Lenstra, Jr.

5



and the minimum polynomial of g is mg(X) = X2 −X + 2 ∈ Z[X], i.e.,

g2 − g + 2 = 0 (3)

as a group homomorphism on E. Then we have the following recurrence relation:
for any t ≥ 1, (

gt

gt+1

)
=

(
0 1
−2 1

)(
gt−1

gt

)
.

Let

M =

(
0 1
−2 1

)
. (4)

Then, for any t ≥ 0 and P ∈ E,(
gt(P )
gt+1(P )

)
= M t

(
P
g(P )

)
. (5)

Thus, for t ≥ 0, gt(P ) = P if and only if

M t

(
P
g(P )

)
=

(
P
g(P )

)
. (6)

So, for a point P 6= O, P is cyclic if and only if there is a positive integer t
satisfying (6), and the smallest such t gives the cycle length of P under g.

Let ker g deonte the set of points P in E such that g(P ) = O. Then one can
check that ker g = {O, (0, 1)}. Moreover, (0, 1) is the only point in E of order
2. For any point P in E, the order of P ,denoted by |P |, is the smallest positive
integer such that mP = O.

Proposition 3.1. Suppose P ∈ E and |P | = m. Then

|g(P )| =

{
m if m is odd,
m
2 if m is even.

Proof. Note that since g is an endomorphism on E, for any P ∈ E,

n · g(P ) = O ⇔ g(nP ) = O ⇔ nP ∈ ker g ⇔ 2nP = O.

This completes the proof.

Note that E(F2n) is a finite abelian group. Thus it is decomposed as

E(F2n) = E2(F2n)
⊕
p 6=2

Ep(F2n).

As an immediate consequence of Proposition 3.1, we have the following corol-
lary:

Corollary 3.2. For each prime p, Ep(F2n) is g-invariant. Furthermore, g is a
2-to-1 map on E2(F2n) and g is an automorphism on Ep(F2n) for odd p.

Hence we may focus on the dynamics of g on the p-subgroups of E for each
prime p dividing #E(F2n). Before proceeding further, we need to understand
the group structure of Ep(F2n).
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4. Group Structure of E(F2n)

Note that E(F2n) = ker(σn − 1). Define the sequence an by a0 = 2, a1 = 1,
and an+1 = an − 2an−1 for all n ≥ 1. Then, by [15],

#E(F2n) = 2n + 1− an

By Theorem 3 in [23],
E2(F2n) ∼= Z/(2h2),

i.e., E2(F2n) is a cyclic group of order 2h2 for some integer h2. We will give more
details of the size of E2(F2n) in depth in Section 6. Now we focus on Ep(F2n)
for an odd prime p dividing #E(F2n). Theorem 3 in [23] also says

Ep(F2n) ∼= Z/(pep)× Z/(php−ep)

where 0 ≤ ep ≤ hp. The following lemma provides a basic tool to study the
group structure of E(F2n).

Lemma 4.1 ([23]). Let m be a positive odd integer. Then E[m] ⊆ E(F2n) if
and only if σn − 1 = m · w ∈ End(E) where w ∈ End(E).

Let End(E) be the endomorphism ring of E. We know that from [24] that

End(E) = Z[σ]. As σ2 + σ + 2 = 0, we may identify σ with −1+
√
−7

2 , so

σ = −1−
√
−7

2 . The factorization of a prime p in Z[σ] depends on
(
−7
p

)
. By the

quadratic reciprocity,
(p) ramifies in Z[σ] if and only if p = 7,

(p) splits in Z[σ] if and only if
(
p
7

)
= 1,

(p) stays prime in Z[σ] if and only if
(
p
7

)
= −1.

For our purpose, we denote νp(·) the valuation corresponding to a prime p in
Z[σ]. For a prime p and for any α+βσ ∈ Z[σ] with α, β ∈ Z, we define νp(α+βσ)
by

νp(α+ βσ) = min(νp(α), νp(β))

where νp(·) is the valuation of Z corresponding to p.

Lemma 4.2. Let p ∈ Z be a prime with p 6= 2. Suppose σn − 1 = pt · w ∈ Z[σ]
where p - w. Then

Ep(F2n) ∼= Z/(pt)× Z/(pt+ν)

with ν = νp(ww̄) where w̄ is the conjugate of w in Z[σ].

Proof. Suppose σn − 1 = pt · w ∈ Z[σ] where p - w. Then Lemma 4.1 implies
that E[pt] ⊆ E(F2n), but E[pt+1] 6⊆ E(F2n). From [24], we know that

E[pt] ∼= Z/(pt)× Z/(pt),
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and
#E(F2n) = (σn − 1)(σn − 1). (7)

Thus
#E(F2n) = (σn − 1)(σn − 1) = (pt · w)(pt · w) = p2t · ww. (8)

This implies that νp(#E(F2n)) = 2t + νp(ww). Since Ep(F2n) contains E[pt]
but not E[pt+1],

Ep(F2n) ∼= Z/(pt)× Z/(pt+ν)

where ν = ν(ww).

Lemma 4.3. Suppose e ≥ 1 and p ⊆ Z[σ] is a prime ideal and n0 is the smallest
natural number such that νp(σn0 − 1) = e. Then νp(σn − 1) ≥ e if and only if
n0|n.

Proof. Write n as n = an0 + r where 0 ≤ r ≤ n0 − 1. Since σn0 ≡ 1 (mod pe),
we have

σn = σan0+r = (σn0)
a
σr ≡ σr (mod pe).

Thus σn ≡ 1 (mod p) if and only if σr ≡ 1 (mod p). Since n0 is the smallest
such that σn0 ≡ 1 (mod p), r = 0. Hence, n0|n.

Corollary 4.4. Suppose p ⊆ Z[σ] is a prime ideal above an odd prime p and
n0 is the smallest natural number such that νp(σn0 − 1) > 0. Then n0 is the
multiplicative order of σ modulo p and also the smallest natural number such
that p|#E(F2n0 ).

Proof. For p which ramifies or stays prime in Z[σ], it is obvious. So suppose
(p) = p·p ∈ Z[σ] and n0 is the smallest natural number such that νp(σn0−1) > 0.
Then, by the definition, n0 the multiplicative order of σ modulo p. It is also
true that n0 is also the smallest natural number such that νp(σn0 − 1) > 0.
Hence, from the equation (7), p|#E(F2n0 ) and n0 is the smallest.

Lemma 4.5. Suppose that m ≥ 1, p is an odd prime, and n0 is the smallest
natural number such that νp(σ

n0 − 1) = m. Then the smallest n > n0 such that
νp(σ

n − 1) > m is pn0. Moreover, νp(σ
pn − 1) = m+ 1.

Proof. Since νp(σ
n0 − 1) = m,

σn0 = 1 + cpm + c1p
m+1

where c, c1 ∈ Z[σ] with p - c. Then

σpn0 ≡ 1 + cpm+1 + c

(
p

2

)
p2m (mod pm+2). (9)

When m = 1, since p is odd,

p -
(

1 +
p(p+ 1)

2

)
,
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so νp(σ
pn0 − 1) = 2. When m > 1, from the equation (9),

σpn0 ≡ 1 + cpm+1 (mod pm+2),

so νp(σ
pn0 − 1) = m+ 1. Suppose n is the smallest such that νp(σ

n − 1) > m.
From Lemma 4.3, n = kn0 with 1 ≤ k ≤ n0. Note

σkn0 ≡ 1 + ck · pm (mod pm+2).

So νp(σ
kn0 − 1) > m if and only if p|k, i.e., k = p. Hence, n = pn0 and

νp(σ
pn0 − 1) = m+ 1.

Lemma 4.5 gives us the following useful corollary.

Corollary 4.6. Let p be an odd prime and n0 is the smallest natural number
such that p|(σn0 − 1). Suppose n = n0p

en′ where p - n′. Then νp(σ
n − 1) =

e+ νp(σ
n0 − 1).

Lemma 4.7. Suppose p ⊆ Z[σ] is a prime ideal above an odd prime p and n
is the smallest such that νp(σn − 1) = e with e ≥ 1. Then the smallest natural
number m such that νp(σm − 1) > e is m = p · n where p ∈ Z is a prime below
p. Moreover, for any n with νp(σn − 1) = e ≥ 1, if p does not ramify, then

νp(σpn − 1) = e+ 1,

and if p ramifies and νp(σn − 1) ≥ 3, then

νp(σpn − 1) = e+ 2.

Proof. From Lemma 4.3, we know that n|m. Let m = kn where k ≥ 2. Then

σm − 1 = σkn − 1 = (σn)k − 1 = (σn − 1)(σ(k−1)n + · · ·+ σn + 1).

Since σn ≡ 1 (mod p),

B = σ(k−1)n + · · ·+ σn + 1 ≡ k (mod p). (10)

Thus νp(B) > 0 if and only if νp(k) > 0, and the smallest such k is p.
Now let k = p and B ≡ p (mod p). Suppose p does not ramify. Then either

(p) = p or (p) = p · p, thus νp(p) = 1 in either case. If νp(σ
n − 1) = 1, then

σn = 1 + c where νp(c) = 1 and

σpn = (1 + c)p ≡ 1 + c · p+ c2
(
p

2

)
(mod p3).

As p is odd,
(
p
2

)
is divisible by p, so c2

(
p
2

)
≡ 0 (mod p3). Hence

σpn ≡ 1 + c · p (mod p3).

Since νp(p) = 1,
c · p ∈ p2 but c · p /∈ p3.
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Thus νp(σ
pn − 1) = 2. If νp(σn − 1) = e ≥ 2, then, in the equation (10), for

k = p,
B ≡ p (mod p2),

so νp(B) = 1. Thus

νp(σn − 1) = νp(σn − 1) + νp(B) = e+ 1.

Now suppose p ramifies, i.e., (p) = p2 in Z[σ] and e ≥ 3. Then B ≡ p (mod p3),
so νp(B) = 2. Hence

νp(σn − 1) = νp(σn − 1) + νp(B) = e+ 2.

This completes the proof.

For a prime p, let Ordp(α) denote the multiplicative order of α modulo p
where α can be an integer or integer matrix and, for an ideal I contained in a
ring R and an element α ∈ R, OrdI(α) indicates the multiplicative order of α
modulo I.

Theorem 4.8. For any odd prime p, let p be a prime ideal above p in Z[σ]
and n0 = Ordp(σ). Then p|#E(F2n) if and only if n0|n. Moreover, suppose
νp(σn0 − 1) = u and n = n0p

vn′ with p 6= n′. Then

(a) for p with
(
p
7

)
= −1,

Ep(F2n) ∼= Z/(pu+v)× Z/(pu+v)

(b) for p with
(
p
7

)
= 1,

Ep(F2n) ∼= Z/(pe0+v)× Z/(pu+v)

where e0 = νp(σ
n0 − 1),

(c) for p = 7, n0 = 6 with u = 1 and

E7(F2n) ∼= Z/(7v)× Z/(7v+1).

Proof. Suppose p is an odd prime. Let p ∈ Z[σ] be a prime ideal above p and
n0 = Ordp(σ). Then. by Lemma 4.3 and Corollary 4.4, p|#E(F2n) if and only
if n0|n. Let νp(σn0 − 1) = u and n = n0p

vn′ with p 6= n′. Suppose
(
p
7

)
= −1.

Then, since p stays prime in Z[σ], νp(ww) = 0 in (8). Thus, by Lemma 4.2 and
Corollary 4.6,

Ep(F2n) ∼= Z/(pu+v)× Z/(pu+v)

Suppose p is an odd prime with
(
p
7

)
= 1. Let e0 = νp(σ

n0 − 1). Then

σn0 − 1 = pe0 · w

where w ∈ Z[σ] with νp(w) = u− e0. Then, by Corollary 4.6,

νp(σ
n − 1) = e0 + v

10



and, by Lemma 4.7,
νp(σn − 1) = u+ v.

Thus, by Lemma 4.2,

Ep(F2n) ∼= Z/(pe0+v)× Z/(pu+v)

Suppose p = 7. Let p = (σ − 3, 7), the prime ideal above (7) in Z[σ]. Since
σ ≡ 3 (mod p) and Ordp(3) = Ord7(3) = 6, n0 = 6. Note that σ6 − 1 = (σ3 −
1)(σ3+1). Thus νp(σ6−1) = νp(σ3+1). From the minimum polynomial of σ, we
know that σ3+1 = −σ+3, which is not divisible by 7. Thus u = νp(σ6−1) = 1.
Now suppose 6|n. Then

σn − 1 = 7t · w

By Lemma 4.7, the smallest n such that νp(σn − 1) > 1 is 6 · 7. We need to
determine νp(σ6·7 − 1). Since σ6 ≡ 1 (mod p) but σ6 6≡ 1 (mod 7), there exist
c1 and c2 in Z[σ] where c2 /∈ p such that

σ6 = 1 + c17 + c2(σ − 3).

Then

σ6·7 = (1 + c17 + c2(σ − 3))
7

≡ 1 +

(
7

1

)
c17 +

(
7

1

)
c2(σ − 3) +

(
7

2

)
c2

2(σ − 3)2 (mod 72)

≡ 1 (mod p3).

Since c2 /∈ p, σ6·7 6≡ 1 (mod 72), i.e., σ6·7 6≡ 1 (mod p4). Thus

νp(σ6·7 − 1) = 3.

Lemma 4.7 tells us that νp(σn − 1) always increases by 2. Since νp(σ6 − 1) = 1
and νp(σ6·7 − 1) = 3, νp(σn − 1) is odd for all n divisible by 6. So, for such n,

σn − 1 = w′p2e+1 = w′7ep

where w′ ∈ Z[σ] with νp(w) = 0. Hence, for n = 6 · 7v · n′ where 7 - n′,

E7(F2n) ∼= Z/(7v)× Z/(7v+1).

5. Cycle Structures of the dynamics of g on E(F2n)

Let p be an odd prime and P ∈ Ep(F2). To determine the integer t in (4),
we need to know the intersection of the subgroup generated by P and g(P ),
respectively. From now on, for any point P ∈ E(F2), Clg(P ) denotes the cycle
length of P under g.
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Theorem 5.1. Let P ∈ Ep(F2n) with |P | = pe1 > 1. Suppose 〈P 〉 ∩ 〈g(P )〉 =
{O}. Then Clg(P ) = Ordpe1 (M) where M is as in (4) and Ord|P |(M) denotes
the multiplicative order of M modulo pe1 .

Proof. Since 〈P 〉 ∩ 〈g(P )〉 = {O},

M t

(
P
g(P )

)
=

(
P
g(P )

)
if and only if M t ≡ I (mod pe1). Hence Clg(P ) = Ordpe1 (M).

Next we need to know when the intersection is nontrivial.

Lemma 5.2. Let p be an odd prime. Suppose there is a point P ∈ Ep(F2) such
that |P | = pe1 > 1 and |〈P 〉 ∩ 〈g(P )〉| = pe2 > 1. Then there is an integer λ
such that

g(pe1−e2P ) = λpe1−e2P and λ2 − λ+ 2 ≡ 0 (mod pe2).

Hence X2 −X + 2 is reducible modulo p.

Proof. There are integers u and v such that

uP = vg(P ) and 〈P 〉 ∩ 〈g(P )〉 = 〈uP 〉 = 〈vg(P )〉. (11)

Since P and g(P ) have the same order pe1 , we have

νp(u) = pe1−e2 and νp(v) = pe1−e2 .

Let u = u1p
e1−e2 and v = v1p

e1−e2 where p - u1 and p - v1, and let

λ ≡ u1/v1 (mod pe2).

Then the equation (11) implies that

pe1−e2λP = pe1−e2g(P ).

Let Q = pe1−e2P . Then Q has the order pe2 and g(Q) = λQ. Since g2−g+2 = 0,
we have

g(g(Q))− g(Q)− 2Q = O,

hence
(λ2 − λ+ 2)Q = O.

Therefore λ2 − λ+ 2 ≡ 0 (mod pe2).

12



5.1. Dynamics of g on E7(F2n)

Lemma 5.3. For any P ∈ E7(F2n),

|〈P 〉 ∩ 〈g(P )〉| = 1 or 7.

Proof. If |P | = 7, then it is obvious. Thus, for the rest of the proof, we assume
that |P | = 7e1 with e1 ≥ 2 and |〈P 〉 ∩ 〈g(P )〉| = 7e2 > 1. By the proof of
Lemma 5.2, there exists an integer λ such that g(7e1−e2P ) = λ7e1−e2P and
λ2 − λ + 2 (mod 7e2). Note that X2 − X + 2 = (X − 4)2 + 7(X − 2). Then
we see that X2 −X + 2 ≡ (X − 4)2 (mod 7), but X2 −X + 2 is not reducible
modulo 7e for e ≥ 2. This forces e2 = 1 and λ ≡ 4 (mod 7).

Theorem 5.4. Suppose P ∈ E7(F2n) with |P | = 7c and P 6= O. Then

Clg(P ) =


Ord7c(M) if |〈P 〉 ∩ 〈g(P )〉| = 1,

Ord7(4) if c = 1 and |〈P 〉 ∩ 〈g(P )〉| = 7,

Ord7c−1(M) if c > 1 and |〈P 〉 ∩ 〈g(P )〉| = 7.

Proof. By Theorem 5.1, if |〈P 〉 ∩ 〈g(P )〉| = 1, then Clg(P ) = Ord7c(M). Thus
we suppose that |〈P 〉 ∩ 〈g(P )〉| = 7. If c = 1, then 〈P 〉 = 〈g(P )〉 and, from the
proof of Lemma 5.3, we know g(P ) = 4 · P . Thus Clg(P ) = Ord7(4) = 3. Now
suppose c > 1. Then, from the proof of Lemma 5.3,

g(7c−1P ) = 4 · 7c−1P.

Let t = Ord7c−1(M) for c ≥ 2. Using the induction, one can show that

(M t − I) ≡
(

4 · 7c−1 6 · 7c−1
2 · 7c−1 3 · 7c−1

)
(mod 7c).

Thus

(M t − I)

(
P
g(P )

)
=

(
4 · 7c−1P + 6 · 7c−1g(P )
2 · 7c−1P + 3 · 7c−1g(P )

)
=

(
4 · 7c−1P + 3 · 7c−1P
2 · 7c−1P + 5 · 7c−1P

)
=

(
O
O

)
.

Since t is the smallest such that M t ≡ I (mod 7c−1), we have Clg(P ) =
Ord7c−1(M).

5.2. Dynamics of g on Ep(F2n) with p 6= 2, 7

Let p 6= 7 be an odd prime and P ∈ Ep(F2). If 〈P 〉 ∩ 〈g(P )〉 = {O}, the the
cycle length of P is determined by Theorem 5.1. So we only need to deal with
the case when 〈P 〉 ∩ 〈g(P )〉 6= {O}.
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Theorem 5.5. Let P ∈ Ep(F2n) with |P | = pe1 > 1. Suppose |〈P 〉 ∩ 〈g(P )〉| =
pe2 where 1 ≤ e2 ≤ e1. Then there exists an integer λ such that

g(pe1−e2P ) = λpe1−e2P

where λ is a root of X2 − X + 2 mod pe2 and λ can be lifted to any power of
p. Moreover, suppose that λ1 is a roof of X2 − X + 2 mod pe1 with λ1 ≡ λ
(mod pe2). Then

Clg(P ) = lcm(Ordpe1−e2 (M),Ordpe1 (λ1)).

Proof. For this theorem, we define Ordp0(M) = 1. By the proof of Lemma 5.2,
Q = pe1−e2P has order pe2 and there exists an integer λ such that g(Q) =
λQ and λ is also a root of X2 − X + 2 mod pe2 . Notice the other root of
mg(X) mod pe2 is 1 − λ. Since X2 − X + 2 has two distinct nonzero roots
modulo p, i.e. λ 6≡ 1

2 (mod p), and λ and 1− λ can be uniquely lifted to roots
of X2−X+2 modulo any power of p. Let λ1 be the root of X2−X+2 mod pe1

with λ1 ≡ λ (mod p). Notice the characteristic polynomial of M is X2−X+ 2,
thus M is diagonalizable modulo pe1 and can be written as

M ≡ U−1 ·D · U (mod pe1)

where D =
(
λ1 0
0 1−λ1

)
and U is invertible modulo pe1 . Let U =

(
a b
c d

)
. Then,

from the diagonalizaion of M ,

U ·M ≡ D · U (mod pe1),

i.e., (
a b
c d

)(
0 1
−2 1

)
≡
(
λ1 0
0 1− λ1

)(
a b
c d

)
(mod pe1).

We have (
−2b a+ b
−2d c+ d

)
≡
(

λ1a λ1b
(1− λ1)c (1− λ1)d

)
(mod pe1).

In particular

λ1b ≡ a+ b (mod pe1),

(1− λ1)d ≡ c+ d (mod pe1).

Hence

a ≡ (λ1 − 1)b (mod pe1),

c ≡ −λ1d (mod pe1).

Note that, since U is invertible modulo pe1 and λ1 6≡ 0, 12 (mod pe1), we see
that a, b, c, and d are not all equal to zero modulo p. Let

t = lcm(Ordpe1−e2 (M),Ordpe1 (λ1)).
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Then

(M t − I)

(
P
g(P )

)
= U−1(Dt − I)U

(
P
g(P )

)
= U−1(Dt − I)

(
aP + bg(P )
cP + dg(P )

)
. (12)

Since t is divisible by Ordpe1−e2 (M) = Ordpe1−e2 (D), there are integers α and
β such that

(Dt − I) =

(
αpe1−e2 0

0 βpe1−e2

)
=

(
α 0
0 β

)
pe1−e2 .

Thus, by (12),

(M t − I)

(
P
g(P )

)
= U−1

(
α 0
0 β

)(
ape1−e2P + bg(pe1−e2P )
cpe1−e2P + dg(pe1−e2P )

)
= U−1

(
α 0
0 β

)(
aQ+ bg(Q)
cQ+ dg(Q)

)
= U−1

(
α 0
0 β

)(
aQ+ bλ1Q
cQ+ dλ1Q)

)
= U−1

(
α 0
0 β

)(
b(2λ1 − 1)Q

O

)
(13)

As Ordpe1 (λ1)|t, λt1 ≡ 1 (mod pe1), so α ≡ 0 (mod pe2). Hence, in (13),

αb(2λ1 − 1)Q = O, (14)

therefore, Clg(P )|t.
Now we want to show t = Clg(P ). Let t0 = Clg(P ). Then

(M t0 − I)

(
P
g(P )

)
=

(
O
O

)
.

Let

(M t0 − I) =

(
a1 + a2p

e1−e2 b1 + b2p
e1−e2

c1 + c2p
e1−e2 d1 + d2p

e1−e2

)
Then we have

a1P + b1g(P ) + a2Q+ b2g(Q) = O,
c1P + d1g(P ) + c2Q+ d2g(Q) = O.

Since Q, g(Q) are in 〈P 〉 ∩ 〈g(P )〉, we have

a1P = −b1g(P )− a2Q− b2g(Q) ∈ 〈P 〉 ∩ 〈g(P )〉.

Hence a1P = u1Q = u1p
e1−e2P for some integer u1. So a1 ≡ 0 (mod pe1−e2).

Similarly, b1, c1, d1 ≡ 0 (mod pe1−e2). Hence

(M t0 − I) ≡ 0 (mod pe1−e2).
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Thus t0 is divisible by Ordpe1−e2 (M). This implies that

Dt0 − I =

(
α0 0
0 β0

)
pe1−e2

for some integers α0 and β0. Then, by (12),

(M t0 − I)

(
P
g(P )

)
= U−1

(
α0b(2λ1 − 1)Q

O

)
.

Since t0 = Clg(P ),
α0b(2λ1 − 1)Q = O,

i.e.
α0b(2λ1 − 1) ≡ 0 (mod pe2).

Recall that λ1 6≡ 1
2 (mod pe1) and b 6≡ 0 (mod p). Thus α0 ≡ 0 (mod pe2).

This imiplies that

λt0 = 1 + α0p
e1−e2 ≡ 1 (mod pe1).

Thus t0 is divisible by Ordpe1 (λ1). Since t0 is the smallest such integer,

t0 = lcm(Ordpe1−e2 (M),Ordpe1 (λ1)) = t.

This completes the proof.

6. Tree Structure of g on E(F2n)

From Section 3, we know that the tree structure of the dynamics of g on
E(F2n) solely depends on the dynamics of g on E2(F2n). Recall that E(F2n)
can be decomposed as

E(F2n) = E2(F2n) +
⊕
p 6=2

Ep(F2n) (15)

where E2(F2n) ∼= Z/(2h2). Since g is p-invariant and gh2(P ) = O for any
P ∈ E2(F2n) by Proposition 3.1, the equation(15) is equivalent to

E(F2n) = ker gh2 + Imgh2 . (16)

Then Proposition 3.1 tells us that the dynamics of g on E2(F2n) is a complete
binary tree with height h2. Thus we need to determine h2.

Theorem 6.1. Suppose n = 2r · n′ with n′ odd. Then #E2(F2n) = 2r+2.

To prove this theorem, we need the following lemma.

Lemma 6.2. Suppose a sequence αi ∈ F2, i ≥ 1, satisfies the following:

α1 = 0, α2 = 1, and αi = αi+1 + α−1i+1 for all i ≥ 2. (17)

Then αi ∈ F22i−2 \ F22i−3 for all i ≥ 3.
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Proof. We will prove it by induction. Note that α1 = 0 and α2 = 1. Let
Ri(x) = x + αi and R∗i (x) = xRi(x + x−1) = x2 + αix + 1 for i ≥ 2. Since
R2(x) = x + α2 = x + 1 is irreducible over F2 and Tr2|2(1) = 1 6= 0, so is
R∗2(x) = x2 + x + 1 by Theorem 3.10 in [17]. But, since R∗2(x) is a quadratic
polynomial, R∗2(x) is reducible over F22 , i.e., α3, a root of R∗2(x), is in F22 \ F2.
Thus the claim is true for i = 3. Assume that the claim is true for 3 ≤ i ≤ n.
Then

Tr22n−2 |2(α−1n ) = Tr22n−3 |2

(
Tr22n−2 |22n−3 (α−1n )

)
= Tr22n−3 |2

(
Tr22n−2 |22n−3 (αn−1 + αn)

)
= Tr22n−3 |2

(
Tr22n−2 |22n−3 (αn−1) + Tr22n−2 |22n−3 (αn)

)
.

By the induction hypothesis, αn−2 ∈ F22n−2 , i.e., Tr22n−2 |22n−3 (αn−1) = 0 and,

by the definition of R∗n(x), Tr22n−2 |22n−3 (αn) = αn−1. Thus, by the induction

hypothesis,
Tr22n−2 |2(α−1n ) = Tr22n−3 |2(αn−1) 6= 0.

Hence, by Theorem 3.10 in [17], R∗n(x) is also irreducible over F22n−2 and αn+1,
a root of R∗n is in F22n−1 \ F22n−2 . This completes the proof.

Proof of Theorem 6.1. Let Pi = (αi, βi) ∈ E(F2) for i ≥ 0 be any sequence of
points such that

P0 = O and g(Pi+1) = Pi for i ≥ 0.

We want to see in which field Pi lies for i ≥ 0. It is easy to see that αi satisfies
the equation (17) in Lemma 6.2. Since g(Pi) = Pi−1, from the equqation (2),
for all i ≥ 3,

βi−1 = α2
i + 1 +

1

α2
i

+ βi

(
1 +

1

α2
i

)
,

βi =
α2
iβi−1 + α4

i + α2
i + 1

α2
i + 1

. (18)

Hence βi lies in the same subfield that contains αi and βi−1. So we just need
to know whether αi is contained in F2n . One can check that P1 = (0, 1) and
P2 = (1, 0) or (1, 1), i.e., P1 and P2 are in F2. Note that for i ≥ 3, that the
largest subfield of F2n of the form F22i−2 is F22r . Then Lemma 6.2 says αi ∈ F2n

for 1 ≤ i ≤ r + 2. Hence, the largest i such that Pi ∈ E(F2n) is r + 2, which
implies #E2(F2n) = 2r+2.

Hence, the dynamics of g on E2(F2n) is the complete binary tree of height
r + 1 attached to O which is the only fixed point under g.
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7. Dynamics of x 7→ x + x−1 on F2n ∪ {∞}

In this section, we study the dynamics of f on F2n ∪ {∞} using the infor-
mation from that of g on E(F22n). For each x ∈ F2n , there are two points
(x, y) ∈ E(F22n) and the values of y are in F22n . Let the subset S of E(F22n) be

S = {P = (x, y) ∈ E(F22n) : x ∈ F2n} ∪ {O}.

Suppose |P | = 2cpc11 · · · pcmm where pi’s are odd primes for 1 ≤ i ≤ m. Then P
can be written as

P = P0 + P1 + P2 + . . .+ Pm (19)

where P0 ∈ E2(F22n) and Pi ∈ Epi(F22n) for 1 ≤ i ≤ m.

Cycles - In the equation (19), we compute the orbit length of each Pi for
1 ≤ i ≤ m. The tail length of P is c and P is attached to a cycle whose cycle
length is lcm(Clg(P1), . . . ,Clg(Pm)).

Theorem 7.1. Suppose P = (x, y) ∈ S with Clg(P ) = m > 1. Then

Clf (x) =

{
m if m is odd,
m
2 if m is even.

Proof. Note that π(P ) = π(Q) for P,Q ∈ E(F22n) if and only if P = ±Q. Thus
Clf (x) < Clg(P ) if and only if P satisfies gm

′
(P ) = −P for some 1 ≤ m′ < m.

Suppose that m is odd and there exists m′ such that gm
′
(P ) = −P . Then

g2m
′
(P ) = gm

′
(−P ) = −gm

′
(P ) = P,

which is contradiction to thatm is odd. Thus, ifm is odd, then Clg(P ) = Clf (x).
Suppose that m = 2m′ for some m′. Then

(gm − I)(P ) = (g2m
′
− I)(P ) = (gm

′
− I) · (gm

′
+ I)(P ) = O.

Since (gm
′ − I)(P ) 6= O, gm

′
(P ) = −P . Hence, Clf (x) = m′ = m/2.

Trees - Note that ker g2 \ ker g = {(1, 0), (1, 1)}. The points in S have the
following properties.

Lemma 7.2. Suppose (x, y) ∈ S \E(F2n) and P = (1, 0)+(x, y). Then π(P ) /∈
F2n , but π(g(P )) ∈ F2n .

Proof. Note that, for P = (1, 0) + (x, y) ∈ E,

π(P ) =
x3 + xy + 1

1 + x2
+

y

1 + x
+ 1 + x =

x3 + y + 1

1 + x2
+ 1 + x. (20)

Note that since y ∈ F22n \ F2n and xF2n , we have (π(P ))
2n 6= π(P ). Thus

π(P ) ∈ F22n \ F2n . Now apply g to P . Then

g(P ) = g((1, 0)) + g((x, y)) = (0, 1) + (x+ x−1, y′)
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where y′ = x2 + y + 1 + y+1
x2 . So,

π(g(P )) =
(y′ + 1)2

(x+ x−1)2
+

y′ + 1

x+ x−1
+ x+ x−1 =

1

x+ x−1
.

Hence π(g(P )) ∈ F2n .

Lemma 7.3. Suppose (x, y) ∈ S \E(F2n) and P = (1, 1)+(x, y). Then π(P ) /∈
F2n , but π(g(P )) ∈ F2n .

Proof. The same argument with the previous lemma will work.

Lemma 7.4. For any P ∈ E(F22n) \ E2(F22n),

π((1, 0) + P ) 6= π((1, 1) + P ).

Proof. Let P = (x, y). Then

π((1, 0) + (x, y)) =
y2

1 + x2
+

y

1 + x
+ 1 + x (21)

and

π((1, 1) + (x, y)) =
1 + y2

1 + x2
+

1 + y

1 + x
+ 1 + x. (22)

Thus the equation (21) is equal to the equation (22) if and only if x = 0, i.e.,
P = (0, 1) ∈ E2(F22n). This contradicts that P /∈ E2(F22n), which completes
the proof.

Lemma 7.5. Suppose P ∈ S \ E(F2n) and P is periodic with the cycle length
bigger than 1. Then, for any n ≥ 1, gn(P ) ∈ S \ E(F2n).

Proof. It suffices to show g(P ) has the same property with P . Let P = (x, y)
and g(P ) = (u, v). Then u = x + x−1. Since x ∈ F2n , so is u. From the
equation (2),

v = x2 + y + 1 +
y + 1

x2
.

Since v2
n

= x2 + y2
n

+ 1 + y2
n
+1

x2 , v ∈ F2n if and only if(
y2

n

+ y
)(

1 +
1

x2

)
= 0. (23)

Since y ∈ F22n \ F2n , the equation (23) is true if and only if x = 1, i.e., g(P ) =
(1, 0) ∈ E2(F22n). This contradicts that P is periodic, which completes the
proof.

Lemma 7.5 implies that periodic points in the same cycle have the same
described property. Let n = 2s ·n′ with 2 - n′. Then, from Section 6, E2(F22n) ∼=
Z/(2s+3) and any tree in the dynamics of g on E(F22n) is identical to the tree
attached to O which is a complete binary tree of height s+ 2 due to the group
decomposition of E(F22n). For our purpose, we view a single point as a tree of
height 0. To study the tree structure of the dynamics of f on F2n ∪ {∞}, we
consider these cases separately:
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(a) Structure of the tree attached to ∞.

(b) Structure of trees projected down from trees attached to periodic points
which are in E(F2n).

(c) Structure of trees projected down from trees attached to periodic points
which are in S \ E(F2n).

Theorem 7.6. Suppose that n = 2s · n′ where 2 - n′. Then the tree attached to
0 is a complete binary tree of height s.

Proof. By the definition of f , ker f = {∞, 0} and 0 maps to ∞ which is the
only fixed point of f . Then, by Theorem 6.1, E2(F22n) ∼= Z/(2s+3). Thus the
dynamics of g on E(F22n) is a complete binary tree of height s + 2, which is
attached to O. From the proof of Theorem 6.1, we know that for P ∈ E2(F22n),
P ∈ S if and only if P ∈ ker gs+2. Note that (1, 0), (1, 1) ∈ ker g2 \ ker g and
g((1, 0)) = g((1, 1)) = (0, 1). Thus two complete binary trees of height s are
attached to (0, 1). Since π(1, 0) = π(1, 1) = 1, those two trees of height s will
be projected by π to one binary tree of height s which is attached to 0 in the
dynamics of f on F2n ∪ {∞}.

Lemma 7.7. Suppose that n is defined as in Theorem 7.6 and P = (x, y) ∈
E(F2) where x ∈ F2n , but y /∈ F2n . Then the tree attached to x is a tree of
height 0.

Proof. Suppose that P ∈ S \ E(F2n) and P is periodic. Then, by Lemma 7.2
and Lemma 7.3,

π((1, 0) + P ), π((1, 0) + P ) /∈ F2n ,

but
π(g((1, 0) + P )), π(g((1, 0) + P )) ∈ F2n .

This implies that for any point Q ∈ E(F22n) such that gm(Q) = (1, 0) + P or
(1, 1) + P for some m ≥ 1, Q /∈ S. Note that g((1, 0) + P ) = g((1, 1) + P ) =
(0, 1)+g(P ), whose tail length is 1. Hence, the projected tree is of height 0.

Lemma 7.8. Suppose that P ∈ E(F2n) and Q ∈ E2(F22n) \ E2(F2n). Then
P +Q /∈ S, i.e., x-coordinate of P +Q is not in F2n .

Proof. Let P +Q = (x, y) and g(P ) + g(Q) = (u, v). Suppose that P +Q ∈ S,
i.e., x ∈ F2n . Since Q ∈ E2(F22n) \ E2(F2n), then g(Q) ∈ E2(F2n) ⊆ E(F2n) by
Lemma 6.2 and Theorem 6.1. Since P is E(F2n), so is g(P ). Thus g(P )+g(Q) ∈
E(F2n). From 2, y is in a field containing both x and v, i.e., y ∈ F2n . This
implies that P+Q ∈ E(F2n), but since Q ∈ E2(F22n)\E2(F2n), P+Q /∈ E(F2n),
which is a contradiction. This completes the proof.

Lemma 7.9. Suppose that n is defined as in Theorem 7.6 and P = (x, y) ∈
E(F22n). Then the tree attached to x is a complete binary tree of height s+ 1.
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Proof. Suppose P ∈ E(F2n) is a periodic point under g. From the decomposition
of E(F22n) in 16, for any point Q in a tree in the dynamics of g on E(F22n)
attached to P , Q can be written as

Q = Q2 +Qc

where Q2 ∈ E2(F22n) and Qc ∈ E(F2n) is periodic with cycle length bigger than
one. Then, by Lemma 7.8, π(Q)F2n if and only if Q2 ∈ ker gs+2. This implies
that the height of the projected tree by π to F2n ∪ {∞} is one less than that of
the tree in E(F22n). Hence, the structure of a tree projected from a tree in the
dynamics of g on E(F22n) attached to a periodic point which is in E(F2n) is a
complete binary tree of s+ 1.

Suppose that x is periodic of cycle length bigger than 1 in the dynamics of f
on F2n ∪{∞}. Since g is 2−cover of f , the point above x is also periodic. Since
O is the only fixed point of g and there is no cycle of length 2 in the dynamics
of g on F22n , with Lemma 7.7 and Lemma 7.9, we have the following theorem
which explains the structures of trees attached to cycles of length bigger than
one.

Theorem 7.10. In the dynamics of f on F2n∪{∞}, structures of trees attached
to a cycle of length bigger than 1 are identical and they are complete trees of
height either 0 or s+ 1.

Suppose that we want to study the dynamics of f on F25 ∪ {∞}. Then we
study that of g on E(F210) and project it to F25 ∪ {∞}. Figure 2 shows how
we project the dynamics of g on E(F22n) to that of f on E(F2n). Notice that
in the dynamics of g on E(F210), points with dotted edges are the points whose
x−coordinates are not in F25 and T represents a binary tree of height 2. Since
5 = 5 · 20, trees in the dynamics of g on E(F210) are of height 2. Thus trees in
the dynamics of f on F25 ∪{∞} are height of either 0 or 1. We also see that two
components are projected to one component, cycles of length 5 are projected to
a cycle of the same length, and a cycle of length 10 is projected to a cycle of
length 5. These are consistent with our results.

8. Conclusion

In this paper, we have analyzed the dynamics of f(x) = x+ x−1 over F2n ∪
{∞} by lifting to that of an isogeny g = I + σ on Koblitz curve E : y2 + xy =
x3 + 1 over F2 whose dynamics is much simpler to understand. Although finite
coverings provide us a great tool to study dynamics of maps, it is generally
difficult to decide the existence of a suitable finite covering for a general map. It
is interesting to investigate which maps can be studied with this methodology
and what would be the exact conditions for a map to have a finite covering.
Since there are numerous applications of discrete dynamics such as reverse-
engineering problems [16], modeling of gene regulatory networks [1, 4], and
building secure cryptosystems [11], studying discrete dynamics over finite fields
is both interesting and challenging.
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Figure 2: Dynamics of g on E(F210 ) and that of f(x) = x+ x−1 on F25 ∪ {∞}.

[1] R. Albert and H.G. Othmer. The topology of the regulatory interactions
predicts the expression patterns of the segment polarity genes in drosophila
melanogaster. Journal of Theoretical Biology, 223:1–18, 2003.

[2] A. Barta and P. Morton. Algebraic dynamics of polynomial maps on the
algebraic closure of a finite field,I. Rocky Mountain Journal of Mathematics,
24:(2) 453–481, 1994.

[3] A. Barta and P. Morton. Algebraic dynamics of polynomial maps on the al-
gebraic closure of a finite field,II. Rocky Mountain Journal of Mathematics,
24:(3) 905–932, 1994.

[4] F. Celada and P.E. Seiden. A computer model of cellular interactions in
the immune system. Immunology today, 13(2), 1992.

[5] O. Colón-Reyes, A.S. JarrahR., R. Laubenbacher, and B. Sturmfels. Mono-
mial dynamical systems over finite fields. Complex Systems, 16, 2006.

[6] R.L. Devaney. An Introduction to Chaotic Dynamical System. Westview
Press, second edition, 2003.

[7] B. Elspas. The theory of autonomous linear sequential networks. IRE
Transactions on Circuit Theory, CT-6(1), March 1959.

[8] M. Fried. Galois groups and complex multiplication. Transactions of the
American Mathematical Society, 235, 1978.

[9] C.L. Gilbert, J.D. Kolesar, C.A. Reiter, and J.D. Stroey. Function digraphs
of quadratic maps modulo p. The Fibonacci Quarterly, 39, 2001.

22



[10] R.M. Guralnick, P. Müller, and J. Saxl. The rational function analogue
of a question of Schur and exceptionality of permutation representations.
1999.

[11] T. Habutsu, Y. Nishio, I. Sasase, and S. Mori. A secret key cryptosystem
by iterating a chaotic map. Eurocrypt, 1991.

[12] R.A. Hernandez-Toledo. Linear finite dynamical systems. Communications
in Algebra, 33, 2005.

[13] A.S. Jarrah, R. Laubenbacher, and P. Vera-Licona. An efficient algorithm
for finding the phase space structure of linear finite dynamical systems,
2006. preprints.

[14] A.S. Jarrah, R. Laubenbacher, and A. Veliz-Cuba. The dynamics of con-
junctive and disjunctive boolean networks. Bulletin of Mathematical Biol-
ogy, 72(6), 2010.

[15] N. Koblitz. Cm-curves with good cryptographic properties. In J. Feigen-
baum, editor, Advances in Cryptology - Proceedings of CRYPTO 1991,
LNCS, volume 576, pages 279–287, London, UK, 1991. Springer-Verlag.

[16] R. Laubenbacher and B. Stigler. A computational algebra approach to
the reverse-engineering of gene regulatory networks. Journal of Theoretical
Biology, 229, 2004.

[17] A.J. Menezes, I.F. Blake, S. Gao, R.C. Mullin, S.A. Vanstone, and T.
Yaghoobiann. Applications of Finite Fields. Kluwer Academic Publishers,
1992.

[18] J. Milnor. On Lattès maps. ArXiv:math.DS/0402147. Stony Brook IMS
Preprint #2004/01.

[19] P. Müller. Arithmetically exceptional functions and elliptic curves. London
Mathematical Society Lecture Note Series, 256, 1998.

[20] J.W. Park. Algebraic properties of the digraph generated by the iteration
of quadratic mapping x 7→ x2 − 2 (mod p), 2003. manuscript.

[21] C. Robinson. Dynamical Systems - Stability, Symbolic Dynamics, and
Chaos. CRC, 1998.

[22] T.D. Rogers. The graph of the square mapping on the prime fields. Discrete
Mathematics, 148, 1996.

[23] H.G. Rück. A note on elliptic curve over finite fields. Mathematics of
Computation, 179, 1987.

[24] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.

[25] J.H. Silverman. The Arithmetic of Dynamical Systems. Springer, 2007.

23



[26] T. Vasiga and J. Shallit. On the iteration of certain quadratic maps over
GF (p). Discrete Mathematics, 277, 2004.

[27] G. Xua and Y.M. Zoub. Linear dynamical systems over finite rings. Journal
of Algebra, 321(8), 2009.

[28] M.E. Zieve. Cycles of polynomial mappings. PhD thesis, University of
California at Berkeley, 1996.

24


