
ABSOLUTE IRREDUCIBILITY OF POLYNOMIALS

VIA NEWTON POLYTOPES

SHUHONG GAO
DEPARTMENT OF MATHEMATICAL SCIENCES

CLEMSON UNIVERSITY
CLEMSON, SC 29634 USA

SGAO@MATH.CLEMSON.EDU

Abstract. A multivariable polynomial is associated with a polytope, called
its Newton polytope. A polynomial is absolutely irreducible if its Newton
polytope is indecomposable in the sense of Minkowski sum of polytopes. Two
general constructions of indecomposable polytopes are given, and they give
many simple irreducibility criteria including the well-known Eisenstein’s crite-
rion. Polynomials from these criteria are over any field and have the property
of remaining absolutely irreducible when their coefficients are modified arbi-
trarily in the field, but keeping certain collection of them nonzero.

1. Introduction

It is well-known that Eisenstein’s criterion gives a simple condition for a polyno-
mial to be irreducible. Over the years this criterion has witnessed many variations
and generalizations using Newton polygons, prime ideals and valuations; see for
examples [3, 25, 28, 38]. We examine the Newton polygon method and general-
ize it through Newton polytopes associated with multivariable polynomials. This
leads us to a more general geometric criterion for absolute irreducibility of multi-
variable polynomials. Since the Newton polygon of a polynomial is only a small
fraction of its Newton polytope, our method is much more powerful. Absolute irre-
ducibility of polynomials is crucial in many applications including but not limited
to finite geometry [14], combinatorics [47], algebraic geometric codes [45], permuta-
tion polynomials [23] and function field sieve [1]. We present many infinite families
of absolutely irreducible polynomials over an arbitrary field. These polynomials
remain absolutely irreducible even if their coefficients are modified arbitrarily but
with certain collection of them nonzero.

As in many standard algebra textbooks, Eisenstein’s criterion [5] is described as
follows.
Eisenstein’s criterion. Let R be a unique factorization domain and f = f0 +
f1X + · · ·+ fnX

n ∈ R[X]. If there is a prime p ∈ R such that all the coefficients
except fn of f are divisible by p, but f0 is not divisible by p2, then f is irreducible
in R[X].

Several people (Dumas [4], Kurschak [22], Ore [30, 31, 32], Rella [35]) have gen-
eralized this criterion by using Newton polygons. Assume that f0fn 6= 0. One can
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construct a polygon in the Euclidean plane as follows. Suppose that the coefficient
fi is divisible by pai but not any higher power, where ai ≥ 0 and ai is undefined
if fi = 0. Plot the points (0, a0), (1, a1), . . . , (n, an) in the Euclidean plane and
form the lower convex hull of these points. This results in a sequence of line seg-
ments starting at the y-axis and ending at the x-axis, called the Newton polygon
of f (with respect to the prime p). Dumas [4] determines the degrees of all the
possible nontrivial factors of f in terms of the widths of the line segments on the
Newton polygon of f . Consequently a simple criterion for the irreducibility of f is
established.
Eisenstein-Dumas criterion. Let R be a unique factorization domain and f =
f0 + f1X + · · · + fnX

n ∈ R[X] with f0fn 6= 0. Assume that f is primitive, i.e.,
f0, . . . , fn have no nontrivial common factor in R. If the Newton polygon of f with
respect to some prime p ∈ R consists of the only line segment from (0,m) to (n, 0)
and if gcd(n,m) = 1 then f is irreducible in R[X].

The condition on the Newton polygon means that ai ≥ (n− i)m/n for 0 ≤ i ≤ n
where pai exactly divides fi. When m = a0 = 1, this condition is the same
as in Eisenstein’s criterion. Hence Eisenstein-Dumas criterion generalizes that of
Eisenstein.

Eisenstein-Dumas criterion were originally proved for integer coefficients. Later
it was generalized to local fields or any field with valuations [3, 20, 25]. We are
interested in the case when R is a polynomial ring over a field. Let F be a field and
R = F [Y ] where Y is a new variable. Then Y is a prime in R and Eisenstein-Dumas
criterion can be applied in R[X] ∼= F [X,Y ]. We restate the criterion as follows.
Eisenstein-Dumas criterion (a special case). Let F be any field and f =
f0(Y ) + f1(Y )X + · · ·+ fn(Y )Xn ∈ F [X,Y ]. Assume that f0(Y ) 6= 0 and fn(Y ) is
a nonzero constant in F . If the Newton polygon of f (with respect to Y ) has only
one line segment from (0,m) to (n, 0) and gcd(n,m) = 1, then f is (absolutely)
irreducible over F .

A polynomial over a field F is called absolutely irreducible if it remains irre-
ducible over every algebraic extension of F . The same proof for the irreducibility
of f under the Eisenstein-Dumas condition also shows that f is absolutely irre-
ducible. The Eisenstein-Dumas criterion is also discovered by Wan [48].

In [36, Theorem 1B, p. 92], Schmidt describes another method for constructing
absolutely irreducible polynomials which he attributes to Stepanov [43, 44]. This
method can also be interpreted as a polygon method. Let f = f0(Y ) + f1(Y )X +
· · · + fn(Y )Xn ∈ F [X,Y ]. The upper Newton polygon of f with respect to Y is
defined to be the upper convex hull of the points (0, a0), (1, a1), . . . , (n, an) where
ai is the degree of fi(Y ) in Y and ai is not defined if fi(Y ) = 0.
Stepanov-Schmidt criterion. Let F be a field and f ∈ F [X,Y ] with degree n in
X. If the upper Newton polygon of f with respect to Y has only one line segment
from (0,m) to (n, 0) and gcd(n,m) = 1, then f is absolutely irreducible over F .

Note that the Eisenstein-Dumas and Stepanov-Schmidt criteria read exactly the
same except that they exploit “different parts” of the polynomials. This leads us to
considering the convex hull of the exponent vectors (i, j) of all the nonzero terms
cXiY j of a polynomial f and call the resulted convex set the Newton polytope
of f . Its boundary gives us a “whole” polygon that contains both the lower and
upper polygons used above. This concept of Newton polytopes associated with
polynomials is due to Ostrowski (1921) and is similarly defined for any multivari-
able polynomials. Ostrowski realizes that the factorization of polynomials implies
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the decomposition of polytopes in the sense of Minkowski sum. In the 1970s, Os-
trowski wrote two papers [33, 34] dealing with term ordering and irreducibility of
multivariable polynomials. His irreducibility criteria are, however, based mainly on
algebraic techniques (such as algebraic independence) and Puiseux developments.
We show that Newton polytopes carry a lot of information about the irreducibility
of polynomials. Indeed, the Eisenstein-Dumas and Stepanov-Schmidt criteria are
just very special cases of our reults.

More precisely, we study the irreducibility of multivariable polynomials through
the decomposability of their Newton polytopes. Our main contribution is in the
construction of indecomposable polytopes and thus give many classes of absolutely
irreducible polynomials over an arbitrary field. To get a glimpse of our results, we
give two examples here; more general results can be found in Section 4.

Example 1. Let F be any field and

f = aXn + bYm + cXuY v +
∑

cijX
iY j ∈ F [X,Y ]

with a, b, c nonzero. Suppose that the Newton polytope of f is the triangle with ver-
tices (n, 0), (0,m) and (u, v). If gcd(m,n, u, v) = 1 then f is absolutely irreducible
over F .

Example 2. Suppose that the Newton polytope of

f = a1X
` + a2Y

m + a3Z
n + a4X

uY vZw +
∑

cijkX
iY jZk ∈ F [X,Y, Z]

is the tetrahedron with vertices (`, 0, 0), (0,m, 0), (0, 0, n) and (u, v, w). Then f is
absolutely irreducible over F , provided gcd(`,m, n, u, v, w) = 1.

Our paper is organized as follows. In the next section, we define the decompos-
ability of polytopes with respect to Minkowski sums and discuss its relation with
the factorization of polynomials. A general irreducibility criterion is established.
Note our concept of decomposability of polytopes is incompatible with that in the
literature, say in Grünbaun’s book [13, Chapter 15]. In Section 3, we collect prop-
erties of Minkowski sums of polytopes, particularly on the decomposition of faces
of polytopes. In Section 4, we give two general constructions of indecomposable
polytopes and thus give many simple and explicit criteria for absolute irreducibil-
ity of multivariable polynomials. Many infinite families of absolutely irreducible
polynomials are described.

Related works. We should mention that Lipkovski [24] associates a polyno-
mial with a polyhedron (unbounded), called its Newton polyhedron, which is a
direct analogue of Newton polygon in higher dimension. Indecomposability of its
Newton polyhedron implies the analytic irreducibility of a polynomial at the origin
(i.e., irreducibility in the formal power series ring). To that extent, Lipkovski’s
method is local while our polytope method is somewhat global. Lipkovski discusses
indecomposability of polyhedra and gives several constructions of indecomposable
polyhedra. Filaseta [7] uses Newton polygon method to decide irreducibility of
Bessel polynomials. Wan [49] uses Newton polygon to study zeta functions and
L functions. Recently, Gao and Shokrollahi [10] use Newton polygon method to
compute roots of polynomials over function fields of curves. For a survey of Newton
polygon method, see Mott [28].

There are several other methods in the literature for proving absolute irreducibil-
ity. One is using singularity analysis: if a polynomial defines a smooth hypersur-
face then it is absolutely irreducible. This method is often used in algebraic ge-
ometry. Another method is presented by Janwa, McGuire and Wilson [15] using
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Bezout’s theorem on intersection multiplicity of curves. Noether’s irreducibility
forms [29] give yet another powerful method for proving irreducibility of polynomi-
als. Noether’s forms are carefully analysed by Schmidt [36] and greatly improved
by Kaltofen [19] and Gao [9]. For efficient algorithms for testing irreducibility of
multivariable polynomials, see von zur Gathen [11] and Kaltofen [17, 18].

We should also mention that Newton polytopes have been used extensively to
study toric ideals and solutions of systems of (multivariable) polynomial equations;
see Gel’fand et al [12], Khovanskĭı [21], Sturmfels [46] and the references there.

2. Polytope method

We assume that the reader is familiar with the basic properties of polytopes; see
Ewald [6], Grünbaun [13], Webster [50] and Ziegler [52]. For the convenience of the
reader, we review some basic concepts that will be needed in the sequel.

Let R be the set of real numbers and n a positive integer. A subset S ⊆ R
n is

called convex if, for any two points a, b ∈ S, the line segment from a to b is also
contained in S, that is,

a+ λ(b− a) = (1− λ)a+ λb ∈ S, ∀0 ≤ λ ≤ 1.

For any subset S ⊆ Rn , conv(S) denotes the smallest convex set in Rn that contains
S. It is straightforward to check that

conv(S) =

{
t∑
i=1

λiai : ai ∈ S, λi ≥ 0,
t∑
i=1

λi = 1

}
.

When S = {a1, . . . , ak} is a finite set, denote conv(S) by conv(a1, . . . , ak), which
is called the convex hull of a1, . . . , ak. The convex hull of finitely many points is
called a polytope. A point of a polytope is called a vertex if it is not on the line
segment of any other two points of the polytope. It is well known that a polytope
is always the convex hull of its vertices.

We consider polynomials with n variables X1,X2, · · · ,Xn. Let F be any field
and f =

∑
fi1i2···inX

i1
1 X

i2
2 · · ·X

in
n ∈ F [X1,X2, · · · ,Xn]. An exponent vector

(i1, i2, · · · , in) of f can be considered as a point in R
n . The Newton polytope of f ,

denoted by Pf , is defined to be the convex hull in Rn of all the points (i1, i2, · · · , in)
with fi1i2···in 6= 0.

For two sets A and B in R
n , define A + B = {a + b : a ∈ A, b ∈ B}, which is

called the Minkowski sum of A and B.

Lemma 2.1 (Ostrowski [33]). Let f, g, h ∈ F [X1,X2, · · · ,Xn] with f = gh. Then
Pf = Pg + Ph.

Proof. This result is well known in the literature. For the sake of completeness,
we give a simple proof here. By multiplication of polynomials, it is obvious that
Pf ⊆ Pg + Ph. To prove the other inclusion, let v be any vertex of Pg + Ph. We
show that there are unique points v1 ∈ Pg and v2 ∈ Ph such that v = v1 + v2.
Since v ∈ Pg +Ph, the existence is no problem. Suppose that there is another pair
v′1 ∈ Pg and v′2 ∈ Ph such that

v = v1 + v2 = v′1 + v′2. (1)

Then

v =
1

2
(v1 + v′2) +

1

2
(v′1 + v2).
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Since v1 + v′2,v
′
1 + v2 ∈ Pg + Ph and v is a vertex of Pg + Ph, one must have

v1 + v′2 = v′1 + v2. (2)

Subtracting (2) from (1) yields

v2 − v′2 = v′2 − v2, i.e., 2(v2 − v′2) = 0.

Hence v2 = v′2 and v1 = v′1.
Since v is a vertex of Pg +Ph, v1 and v2 must be vertices of Pg and Ph, respec-

tively. There is a unique term in the expansion of g · h that has v as its exponent
vector. Hence v ∈ Pf . This proves that all the vertices of Pg + Ph are in Pf .
Consequently, Pf ⊇ Pg + Ph as a polytope is the convex hull of its vertices.

A point in Rn is called integral if its coordinates are integers. A polytope in Rn

is called integral if all of its vertices are integral. Certainly, Newton polytopes of
polynomials are integral. An integral polytope C is called integrally decomposable
if there exist integral polytopes A and B such that C = A+ B where both A and
B have at least two points. Otherwise, we say that C is integrally indecomposable.
Note that our concept of indecomposability is different from that in Grünbaun’s
book [13, Chapter 15]; see the comments at the end of the paper. Since we will not
encounter any other type of decomposability in this paper, the word “integrally”
will be freely omitted in the sequel.

Irreducibility criterion. Let F be any field and f ∈ F [X1,X2, · · · ,Xn] a nonzero
polynomial not divisible by any Xi. If the Newton polytope of f is integrally inde-
composable then f is absolutely irreducible over F .

Proof. First note that f has no factor with only one term. Suppose that f factors
nontrivially over some algebraic extension of F , say f = gh where both g and h
have at least two nonzero terms. Then the Newton polytopes of g and h have at
least two points. By Lemma 2.1, Pf = Pg + Ph, contradicting to our assumption
that Pf is integrally indecomposable.

When Pf is decomposable, f can be either reducible or irreducible. For example,
if f = 1 + Y +XY + X2 + Y 2 then Pf is decomposable (equal to the sum of the
triangle (0, 0)–(1, 0)–(0, 1) with itself). Over a field F of characteristic different
from two, it can be verified directly that f is absolutely irreducible. Over a field F
of characteristic two, however, we have

f = (1 +X + ωY )(1 +X + ω2Y )

where ω is an element of order 3 (so f is irreducible over F if ω 6∈ F ).
It remains to show that indecomposable Newton polytopes exist, thus absolutely

irreducible polynomials can be constructed via the irreducibility criterion above.
This will be our main focus in Section 4. We conclude this section with some
comments.

Remarks. 1. One can change the coefficients of a polynomial f arbitrarily
and its Newton polytope will remain the same provided the coefficients of all the
terms of f that correspond to vertices are nonzero. If the Newton polytope of f is
indecomposable then f will remain absolutely irreducible when its coefficients are
modified arbitrarily but with those of vertices nonzero. This gives great freedom in
choosing suitable polynomials in applications. For all the examples in the sequel,
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we often give polynomials with coefficients fixed at 1, but one may change the
coefficients to any nonzero elements in the ground field.

2. In [33], Ostrowski uses the term “baric polyhedron” in place of the “Newton
polytope” of a polynomial. Lemma 2.1 is proved for more general polynomials called
algebraic polynomials where the exponents of variables may be rational numbers.
Ostrowski mentions that he gave a talk at a German Mathematical Society meeting
in 1921 about baric polyhedron and its applications to the irreducibility problem.
In his sequel paper [34], Ostrowski discusses irreducibility of polynomials in details.
It is surprising, however, that the concept of decomposability of polytopes does not
arise there. Ostrowski develops irreducibility criteria using mainly algebraic tools
(such as algebraic independence and conjugates) and the Puiseux developments.

3. For the case of polynomials with three variables, the concept of Newton
polytope also appears in Shanok’s paper [39]. Shanok develops irreducibility criteria
for polynomials by projecting a Newton polytope from R

3 into planes.
4. As mentioned in the introduction, Lipkovski [24] develops an analogue of the

Newton polygon method in higher dimension for formal power series. Lipkovski
associates a power series f of n variables with a Newton polyhedron Pf + R

n
0

where Pf is defined similarly as for polynomials and R0 is the set of nonnegative
real numbers. A Newton polyhedron is unbounded and, when n = 2, its finite
edges form the Newton polygon. Lipkovski defines the decomposability of Newton
polyhedra and gives several constructions of indecomposable Newton polyhedra.
For a polynomial of two variables, the only indecomposable Newton polyhedron
is that corresponding to the Newton polygon as described in Eisenstein-Dumas
criteria. We will see, however, that there are many indecomposable polytopes in
dimension two or higher.

3. Some properties of polytopes

To further discuss the decomposability of polytopes, we need more properties
about Minkowski sums of polytopes, particularly on the decomposition of their
faces. Minkowski sums of convex sets have been extensively studied in the literature,
see for example Schneider [37].

Let P be a polytope in R
n . A face of P is by definition the intersection of P

with a supporting hyperplane to P . In another word, a face of P is the set of all the
points in P that maximize some linear function. A vertex is a just face of dimension
0. A face of dimension 1 is a line segment, called an edge of P . A face of dimension
one less than that of P is called facet of P .

The next result describes how faces decompose in a Minkowski sum of polytopes;
for its proof, see Ewald [6, Theorem 1.5], Grünbaun [13, Theorem 1, p. 317], or
Schneider [37, Theorem 1.7.5].

Lemma 3.1. Let A and B be polytopes in R
n and C = A+B.

(a) Each face of C is a Minkowski sum of unique faces of A and B.
(b) Let C1 be any face of C and c1, c2, . . . , ck all of its vertices. Suppose that

ci = ai + bi where ai ∈ A and bi ∈ B for 1 ≤ i ≤ k. Let

A1 = conv(a1, a2, . . . , ak), B1 = conv(b1, b2, . . . , bk).

Then A1 and B1 are faces of A and B, respectively, and C1 = A1 +B1.

Note that part (b) is the constructive version of part (a) and it says that the
decomposition of all the faces are determined by the decomposition of vertices alone.
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This is extremely useful in applications. Part (a) can be strengthened as follows.
Let C1 be any face of C. Suppose that A1 and B1 are any convex subsets of A and
B, respectively, such that C1 = A1 +B1. Then A1 and B1 must be faces of A and
B, respectively. The proof is a little subtle and will be given elsewhere.

A polytope is associated naturally with a graph consisting of its vertices and
edges.

Lemma 3.2 (Balinski [2]). The graph of a polytope of dimension n is n-connected.

A convex cone with a vertex v is defined to be a convex set S in Rn such that v
is an extreme point of S and, for any a ∈ S, v + λ(a− v) ∈ S for all real numbers
λ ≥ 0. The next result must be known in the literature, but we could not find a
convenient reference, so a proof is included.

Lemma 3.3. Let C be a convex cone with vertex v and H a hyperplane in R
n with

v 6∈ H. Suppose that Q = C ∩H is nonempty and bounded. Then, for any r ∈ Rn ,
either C ∩ (r +H) is empty or there exists a real number t ≥ 0 such that

C ∩ (r +H) = v + t(Q− v) = {v + t(a− v) : a ∈ Q}.

Proof. Choose α ∈ Rn and β ∈ R such that

H = {x ∈ Rn : α · x = β} and α · v > β.

We show that for every point a ∈ C with a 6= v,

α · a < α · v. (3)

Suppose on the contrary that α · a ≥ α · v for some a ∈ C. Let b ∈ Q = C ∩H be
any fixed point. Then

α · b = β < α · v ≤ α · a.

Let a1 = λ1a+ (1− λ1)b where λ1 = (α · v− β)/(α · a− β) > 0. Since λ1 ≤ 1 and
C is convex, we have a1 ∈ C and

α · a1 = α · v. (4)

For any t ≥ 0,

b+ t(a1 − v) = v + (t+ 1)

((
t

t+ 1
a1 +

1

t+ 1
b

)
− v

)
belongs to C, as a1, b ∈ C and C is a convex cone with vertex v. By (4), α · (b +
t(a1 − v)) = α · b = β. Hence b+ t(a1 −v) ∈ H and b+ t(a1 − v) ∈ C ∩H = Q for
all t ≥ 0, contradicting to the boundness of Q (note that a1 6= v). Therefore (3)
holds.

For any r ∈ Rn and any a ∈ C with a 6= v, consider the intersection of the ray

{v + λ(a− v) : λ ≥ 0} (5)

with the hyperplane

r +H = {r + x ∈ Rn : α · x = β} = {x ∈ Rn : α · x = α · r + β}. (6)

Note that α ·(v+λ(a−v)) = α ·r+β implies that λ = (α ·v−β−α ·r)/(α ·v−α ·a).
Since α · v − α · a > 0 by (3), λ ≥ 0 iff α · r ≤ α · v − β. In the latter case, r +H
intersects every ray (5) at a unique point determined by λ above.

For r = 0, since α · v − β > 0 = α · r, each ray (5) intersects H, thus Q, at a
unique point. Hence we may index all the rays (5) by a ∈ Q. Now suppose that
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α · r ≤ α · v − β. Then for each a ∈ Q, the ray (5) intersects r + H at the point
b = v + λ0(a− v) where

λ0 =
α · v− β − α · r

α · v− β
.

Therefore the lemma holds with t = λ0.

4. Indecomposable polytopes and absolutely irreducible polynomials

We now proceed to construct indecomposable polytopes in R
n . Each type of

indecomposable polytopes gives us a family of absolutely irreducible polynomials.
When a polytope has only one point we say that it is trivial. We examine several
types of simple nontrivial polytopes such as line segments, triangles, tetrahedrons,
pyramids, etc. We show how to construct indecomposable polytopes from a given
polytope.

We need more terminology. A line segment conv(v1,v2) is simply denoted by
v1v2. For an integral point or vector v = (a1, . . . , an), we write gcd(v) to mean
gcd(a1, . . . , an), i.e. the greatest common divisor of the components in v. Similarly,
for several points v1, . . . ,vk, gcd(v1, . . . ,vk) means the gcd of all the components
in v1, . . . ,vk together. For example, if v1 = (n, 0), v2 = (0,m) and v3 = (u, u),
then gcd(v1,v2,v3) = gcd(n, 0, 0,m, u, u) = gcd(n,m, u). For any two integral
vectors v1 and v2, we have gcd(v1,v2) = gcd(v1,v2 − tv1) for any integer t.

Lemma 4.1. Let v0 and v1 be two distinct integral points in Rn . Then the number
of integral points on the line segment v0v1, including v0 and v1, is equal to gcd(v0−
v1) + 1. Furtherly, if v2 is any integral point on v0v1, then

|v2 − v0|

|v1 − v0|
=

gcd(v2 − v0)

gcd(v1 − v0)

where |v| denotes the Euclidean length of a vector v.

Proof. All the points on the line segment v0v1 are of the form

v = v0 + t(v1 − v0), 0 ≤ t ≤ 1.

Since v0 is integral, v is integral iff t(v1 − v0) is integral. But the components of
v1 − v0 are all integers, so t must be rational. Let

t =
i

k
, for some 0 < i < k with gcd(k, i) = 1.

Then t(v1−v0) is integral iff k| gcd(v1−v0). Hence if v is an integral point different
from v0 and v1, then t must be of the form

t =
i

d
, 0 < i < d

where d = gcd(v1 − v0) ≥ 1. The number of choices for i is d − 1. So the total
number of integral points v on v0v1 is d− 1 + 2 = d+ 1.

Suppose v2 = v0 + i/d(v1 − v0) is any integral point on v0v1 with 0 ≤ i ≤ d
where d = gcd(v1−v0). Note that (v1−v0)/d is integral and gcd((v1−v0)/d) = 1.
Hence gcd(v2 − v0) = gcd(i · (v1 − v0)/d) = i. Also

|v2 − v0| = i|(v1 − v0)/d|, |v1 − v0| = d|(v1 − v0)/d|.

Therefore the equation in the lemma holds.
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Theorem 4.2. Let Q be any integral polytope in R
n contained in a hyperplane H

and v ∈ Rn an integral point lying outside of H. Suppose that v1,v2, . . . ,vk are
all the vertices of Q. Then the polytope conv(v, Q) is integrally indecomposable iff

gcd(v− v1,v− v2, . . . ,v− vk) = 1.

Proof. Let C = conv(v, Q) as depicted in Figure 1. Suppose that C = A + B
for some integral polytopes A and B in R

n . By appropriately shifting A and B,
we may assume that v ∈ A and 0 ∈ B. Note that v,v1, . . . ,vk are all the vertices
of C, and vv1, . . . ,vvk are edges of C. By Lemma 3.1, there are unique vertices
ai ∈ A and bi ∈ B such that

vi = ai + bi, 1 ≤ i ≤ k,

and

vvi = vai + 0bi, 1 ≤ i ≤ k.

Since 0 ∈ 0bi, the line segment vai coincides with part of vvi starting at v; see
Figure 1. Now take any two vertices, say v1 and v2 that are connected by an edge

H

Q

v

v
1

v

v

a

3

k

a a
a

v
2

k

2

3
1

3

Figure 1. Indecomposable pyramid

in Q. Then v1v2 is also an edge of C. Again Lemma 3.1 (b) implies that

v1v2 = a1a2 + b1b2.

So the line segment a1a2 (possibly a point) is parallel to the edge v1v2. This means
that the triangle conv(v,a1,a2) is similar to the larger triangle conv(v,v1,v2).
Hence

|a1 − v|

|v1 − v|
=
|a2 − v|

|v2 − v|
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where |v| means the Euclidean length of a vector v in Rn . By Lemma 4.1, we have

gcd(a1 − v)

gcd(v1 − v)
=

gcd(a2 − v)

gcd(v2 − v)
. (7)

By Lemma 3.2, the graph of a polytope is connected. Since the equation (7) holds
for any two adjacent vertices, we see that

|ai − v|

|vi − v|
=

gcd(ai − v)

gcd(vi − v)
= t, 1 ≤ i ≤ k, (8)

where t is a constant 0 ≤ t ≤ 1. This common value t must be a rational number,
say m/d where d ≥ 1, d ≥ m ≥ 0 and gcd(m, d) = 1. Then d divides gcd(vi − v)
for 1 ≤ i ≤ k.

Suppose that gcd(v − v1,v− v2, . . . ,v− vk) = 1. Since

gcd(v− v1,v− v2, . . . ,v− vk) = gcd(gcd(v1 − v), gcd(v2 − v), . . . , gcd(vk − v)),

we see that d must be 1. Hence m = 0 or 1, and so t = 0 or 1. If t = 0 then
(8) implies that ai = v for 1 ≤ i ≤ k; so A = {v}. If t = 1 then (8) implies that
ai = vi for 1 ≤ i ≤ k; so A = C and B = {0}. Therefore C is indecomposable.

Suppose that gcd(v − v1,v − v2, . . . ,v − vk) = d > 1. Let ui = 1
d
(vi − v) for

1 ≤ i ≤ k. Then ui’s are integral points in R
n . Define

A = conv(v,v1 − u1,v2 − u2, . . . ,vk − uk), B = conv(0,u1,u2, . . . ,uk).

Then it is straightforward to check that A + B = C. Since d > 1, ui 6= 0 and
vi − ui 6= v for 1 ≤ i ≤ k. So both A and B have at least two points, and thus C
is decomposable.

For example, Let f be the polynomial 1 + Xn + Y m + XnY m + XiY jZk ∈
F [X,Y, Z] where n,m, k > 0 and i, j ≥ 0. Then the Newton polytope of f
is the pyramid with vertices (0, 0, 0), (n, 0, 0), (n,m, 0), (0,m, 0) and (i, j, k). If
gcd(n,m, i, j, k) = 1 then the pyramid is indecomposable and thus f is absolutely
irreducible over F . Of course, f remains absolutely irreducible if it is added any
number of terms whose exponent vectors lie inside the pyramid.

The following corollaries specialize to the simple cases when Q is an integral
point, a line segment or a triangle.

Corollary 4.3. Let v0 and v1 be two distinct integral points in R
n . Then the line

segment v0v1 is integrally indecomposable iff gcd(v0 − v1) = 1.

Corollary 4.4 (Ostrowski [34, Theorem IX]). A two-term polynomial

aXi1
1 · · ·X

ik
k + bX

ik+1

k+1 · · ·X
in
n ∈ F [X1, . . . ,Xn], a, b ∈ F \ {0}

is absolutely irreducible over F iff gcd(i1, . . . , in) = 1.

For examples, Xn + Y m is absolutely irreducible over F iff gcd(n,m) = 1; simi-
larly, Y i +XjZk is absolutely irreducible over F iff gcd(i, j, k) = 1.

Corollary 4.5. Let v0,v1,v2 be three integral points in R
n , not all on one line.

Then the triangle conv(v0,v1,v2) is integrally indecomposable iff

gcd(v0 − v1,v0 − v2) = 1.

Corollary 4.6. Let f = aXn + bYm + cXuY v +
∑
cijX

iY j ∈ F [X,Y ] with a, b, c
nonzero. Suppose that the Newton polytope of f is the triangle with vertices (n, 0),
(0,m) and (u, v). If gcd(m,n, u, v) = 1 then f is absolutely irreducible over F .
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The Newton polytope of the polynomial f in the corollary is the triangle with
vertices (n, 0), (0,m) and (u, v) provided that un+mv 6= mn and if cij 6= 0 then

d(mi+ nj −mn) ≥ 0, −d(vi+ (n− u)j − vn) ≥ 0, d((v −m)i− uj + um) ≥ 0,

where d = mu+ nv −mn.

Corollary 4.7. Let v0,v1,v2,v3 be four integral points in R
n , not all contained

in one plane. Then the tetrahedron conv(v0,v1,v2,v3) is integrally indecomposable
iff

gcd(v0 − v1,v0 − v2,v0 − v3) = 1.

Corollary 4.8. Suppose that the Newton polytope of

f = a1X
` + a2Y

m + a3Z
n + a4X

uY vZw +
∑

cijkX
iY jZk ∈ F [X,Y, Z]

is the tetrahedron with vertices (`, 0, 0), (0,m, 0), (0, 0, n) and (u, v, w). If

gcd(`,m, n, u, v, w) = 1

then f is absolutely irreducible over F .

Corollary 4.9. Let Q be any integral polytope in R
n contained in a hyperplane H

and v ∈ R
n an integral point lying outside of H. If Q has one edge v1v2 such

that gcd(v1 − v2) = 1 or a vertex v1 such that gcd(v − v1) = 1 then the polytope
conv(v, Q) is integrally indecomposable.

Corollary 4.10. Let f = g(X) + h(X1, . . . ,Xn) where g ∈ F [X] of degree r and
h ∈ F [X1, . . . ,Xn] of total degree m. If gcd(r,m) = 1 then f is absolutely irre-
ducible over F .

Proof. By a translation of the variable X, we may assume that the constant of f
is nonzero. So the Newton polytope of f is a pyramid with the Newton polytope of h
as its base. Since h has total degree m, it has a term cXk1

1 · · ·X
kn
n of degree m such

that its exponent vector (0, k1, . . . , kn) = v1 is a vertex of Ph. Since g has degree
r, Xr has a nonzero coefficient in f and its exponent vector (r, 0, . . . , 0) = v is a
vertex of the pyramid outside its base. Since gcd(m, r) = 1 and k1 + · · ·+ kn = m,
we have

gcd(v − v1) = gcd(r, k1, . . . , kn) = 1.

By the above corollary, Pf is indecomposable and so f is absolutely irreducible over
F .

Theorem 4.11. Let Q be an indecomposable integral polytope in R
n that is con-

tained in a hyperplane H and has at least two points, and let v ∈ Rn be a point
(not necessarily integral) lying outside of H. Let S be any set of integral points in
the polytope conv(v, Q). Then the polytope conv(S,Q) is integrally indecomposable.

Proof. Let C = conv(S,Q) as depicted in Figure 2. Note that Q = C∩H, so Q is
a face of C. If C = A+B for some integral polytopes A and B then, by Lemma 3.1,
A and B have unique faces A1 and B1, respectively, such that Q = A1 +B1. Since
Q is indecomposable, A1 or B1 must have only one point, say A1. By appropriately
shifting A and B, we may assume that A1 = {0} and B1 = Q. We want to show
that A = A1 = {0}. This is geometrically “clear” from Figure 2, as any shift r+Q,
r 6= 0, of Q can not be contained in the cone conv(v, Q), not to mention in C. We
prove it algebraically.
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S

H

Q

V

Figure 2. C = conv(S,Q)

Fix any r ∈ A. Then r +Q ⊆ r +B ⊆ C. Since Q ⊆ H, we have

r +Q ⊆ C ∩ (r +H). (9)

Let C1 be the cone generated by v as its vertex and all points in Q. Then

C1 ⊇ conv(v, Q) ⊇ C and C1 ∩H = Q. (10)

By (9),

r +Q ⊆ C1 ∩ (r +H), (11)

so the latter is nonempty. By Lemma 3.3, there exists a number t ≥ 0 such that

(r +H) ∩C1 = v + t(Q− v). (12)

We show that t ≤ 1. Take any a ∈ Q. Then r + a ∈ C1 ∩ (r +H). By (12), there
exists b ∈ Q such that r + a = v + t(b − v). Also, since r + a ∈ C ⊆ conv(v, Q),
there is b1 ∈ Q such that r + a = v + t1(b1 − v) for some 0 ≤ t1 ≤ 1. Hence

t(b− v) = t1(b1 − v). (13)

Assume that H is defined by α ∈ Rn and β ∈ R, i.e., H = {x ∈ Rn : α · x = β}.
Since b, b1 ∈ Q ⊆ H, we have α · b = α · b1. The equation (13) implies that
t(β − α · v) = t1(β − α · v). Since v 6∈ H, α · v 6= β. Therefore t = t1 and so
0 ≤ t ≤ 1.

Now the equations (11) and (12) imply that r +Q ⊆ v + t(Q− v), i.e.,

Q ⊆ tQ+ a (14)

where a = (1− t)v− r ∈ Rn . For any integer k > 0, applying (14) k times yields

Q ⊆ tkQ+ (tk−1 + · · ·+ t+ 1)a. (15)
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If 0 ≤ t < 1 then (15) can be written as

Q ⊆ tkQ+
tk − 1

t− 1
a.

Since Q is bounded, when k →∞, we have

Q ⊆ {0}+
−1

t− 1
a =

{
−1

t− 1
a

}
,

contradicting to the assumption that Q has at least two points. Therefore t = 1.
Then (14) is the same as

r +Q ⊆ Q. (16)

For any integer k > 0, applying (16) k times yields kr+Q ⊆ Q. This is impossible
if r 6= 0, as Q is bounded. Therefore r = 0 and so A = {0}. The theorem is
proved.

For an example with n = 3, Figure 3 (d) shows a polytope contained in the
tetrahedron with vertices (0, 0, 0), (n, 0, 0), (0,m, 0) and (0, 0, u) for some number
u. It is indecomposable if gcd(n,m) = 1. For the polynomial f = 1 +Xn + Y m +
XuZv + Y iZj +Zw, its Newton polytope is of type (d) if u < n and i < m. Hence
f is absolutely irreducible for any choice of v, w and j, provided u < n and i < m.

The next corollary deals with the case n = 2.

Corollary 4.12. Let f = aXm + byn +
∑
cijX

iY j ∈ F [X,Y ] with a, b nonzero
and (i, j) different from (m, 0), (0, n). Suppose that the Newton polytope of f is
contained in the triangle with vertices (m, 0), (0, n) and (u, v) for some point (u, v) ∈
R

2 . If gcd(m,n) = 1 then f is absolutely irreducible over F .

This corollary includes Eisenstein-Dumas and Stepanov-Schmidt criteria as spe-
cial cases, as shown in Figure 3 (a)–(c). The case (a) corresponds to the Eisenstein-
Dumas criterion. In this case, Pf has only one point on the dotted vertical line
(which means that f has degree n in X and the coefficient of Xn is a constant in
F ), so Pf is contained in a triangle with two vertices on the y-axis. The case (b)
corresponds to the Stepanov-Schmidt criterion. In the case (c), the dotted triangle
can be at any position, so (a) is a special case of it. For an example, the polynomial
f = X2 + y3 + aX3Y + bX4y6 + cX11Y 10 has a Newton polytope of type (c), so
is absolutely irreducible over F for any values of a, b, c. For another example, the
polynomial f = Xn + Y m + Xn+uY v + XiYm+j has a Newton polytope of type
(c) whenever

gcd(n,m) = 1,
j

i
<
v

u
,

where i, u ≥ 1 and j, v ≥ 0. So f is absolutely irreducible.
We should emphasize that Theorems 4.2 and 4.11 can be used to build many

types of indecomposable polytopes in higher dimensions iteratively from lower di-
mensions. Thus one can obtain many types of absolutely irreducible polynomials
over any given field.

Finally, we briefly discuss the relationship of our decomposability to that of
Grünbaun [13, Chapter 15]. Let P,Q be polytopes in Rn (not necessarily integral).
Q is said to be homothetic to P if there is a real number t > 0 and a vector a ∈ Rn

such that

Q = tP + a = {tb+ a : b ∈ P}.
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Figure 3. Indecomposable polytopes

A polytope Q is called homothetically indecomposable if Q = P1 + P2 for any
polytopes P1 and P2 then either P1 or P2 is homothetic to Q. Otherwise, Q is
called homothetically decomposable. Indecomposable polytopes in this sense have
been extensively studied in the literature [8, 16, 26, 27, 40, 41, 42].

Homothetic decomposability is not comparable with integral decomposability.
On the one hand, a triangle is always homothetically indecomposable, but an in-
tegral triangle is integrally indecomposable iff the condition in Corollary 4.5 is
satisfied. On the other hand, any polygon with more than 3 edges in the plane is
homothetically decomposable, while Figure 3 shows many integrally indecompos-
able polygons!
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