
COMPUTING ROOTS OF POLYNOMIALS OVER FUNCTION FIELDS

OF CURVES

SHUHONG GAO AND M. AMIN SHOKROLLAHI

Abstract. We design algorithms for �nding roots of polynomials over function �elds

of curves. Such algorithms are useful for list decoding of Reed-Solomon and algebraic-

geometric codes. In the �rst half of the paper we will focus on bivariate polynomials, i.e.,

polynomials over the coordinate ring of the a�ne line. In the second half we will design

algorithms for computing roots of polynomials over the function �eld of a nonsingular

absolutely irreducible plane algebraic curve. Several examples are included.

1. Introduction

In this paper we will study the following problem: given a nonsingular absolutely ir-
reducible plane curve X over the �nite �eld Fq , a divisor G on X , and a polynomial H
de�ned over the function �eld of X , compute all zeros of H that belong to L(G). Our
interest in this problem stems mainly from recent list decoding algorithms [5, 9, 11] for
Reed-Solomon and algebraic geometric codes. Originally, those algorithms found the roots
of H by completely factoring it and looking for factors of degree one. This method is,
however, not very e�cient, especially if X is not a rational curve.

We will design more e�cient algorithms by utilizing the fact that we are interested
in roots of H rather than a complete factorization. For instance, suppose that X is the
projective line, L(G) is the space of univariate polynomials of degree � k over Fq , and
H(x; y) is a bivariate polynomial over Fq . The problem is then that of �nding polynomials
f of degree � k in the variable x such that H(x; f) = 0. For this problem we will design
an algorithm that runs in time O(k2b3) where b is the degree of H in the variable y.

In the next section we review some well-known facts on the running times for certain
operations on polynomials over �nite �elds and introduce an algorithm for computing roots
of bivariate polynomials and demonstrate its use by means of several examples. In Section 3
we will attack the more general problem stated at the beginning of the introduction.

2. Roots of Polynomials over Rational Function Fields

In this paper we will mainly deal with probabilistic algorithms. The measure of an
algorithm, usually called \time," will be the (expected) number of operations in Fq , and

usually we will use the \Soft O" notation to ignore logarithmic factors: g = ~O(n) means
that g = O(n logc n) for some constant c. The term \deterministic time" of an algorithm
is meant to imply that the algorithm in question is deterministic.

We brie
y recall some well-known results. Two polynomials of degree < n over Fq can

be multiplied in deterministic time ~O(n) [2, Th. 2.13]. The same is true for computing the
division with remainder [2, Cor. 2.26], and the gcd of two such polynomials [2, Th. 3.13]. In
particular, arithmetic operations in an extension �eld Fqd of Fq can be done in deterministic

time ~O(d). Furthermore, given two polynomials f and g, both of degree < n, and an

integer `, one can compute f ` mod g in deterministic time ~O(n log `) using the \binary

Date: First draft, August 11, 1998.

1

2 SHUHONG GAO AND M. AMIN SHOKROLLAHI

method" [2, pp. 3{4]. The roots of a polynomial of degree < n over Fq can be computed in

time ~O(n log q) [1, Theorem 5]. Without using fast algorithms, the running time for this
task is O(n2 log n log q). Moreover, for any given d one can �nd an irreducible polynomial
of degree d over Fq and hence construct the �eld Fqd via an algorithm that runs in time
~O(n2 log q) [1, Theorem 3].
In this section we present an algorithm which solves the following problem: given a

polynomial H(x; y) in two variables of degree m in x and degree b in y over a �nite �eld
Fq and a positive integer k, �nd all polynomials f in x of degree at most k such that

H(x; f (x)) � 0 mod xk+1. For simplifying assertions on the running time we will assume
the following.

Assumption 2.1. H is a bivariate polynomial whose degree b in y satis�es b � k. We
further assume that log q � k.

Our algorithm is a modi�cation of Kaltofen's [6] and is based on the following simple
idea: let H =

Pm
i=0Hi(y)x

i. We are looking for f0; : : : ; fk 2 Fq and 0; : : : ; k 2 Fq [y]
such that

(y � f0 � f1x� � � � � fkx
k)(0 + 1x+ � � �+ kx

k) = H0 +H1x+ � � �+Hkx
k mod xk+1:

(1)

f0 is found by factoring H0 over Fq . IfH0 is squarefree, then multiplying out and comparing

the \coe�cients" of xi for i = 0; : : : ; k will successively reveal f1; : : : ; fk.

Algorithm 2.2. On input a bivariate polynomial H =
Pm

i=0Hi(y)x
i over the �eld Fq such

that H0(y) is squarefree, and an integer k � 1, the algorithm outputs a list f (1); : : : ; f (s) of

polynomials of degree � k such that H(x; f (j)(x)) � 0 mod xk+1 for j = 1; : : : ; s.

(1) Find all roots of H0 in Fq . Call them �1; : : : ; �s. If s = 0, then terminate the
algorithm and output the empty set.

(2) For ` = 1; : : : ; s do
(a) Set � := �`.
(b) For i = 0; : : : ; k compute hi := Hi(�).
(c) Set f0 := �, '0 := (y � �), 0 := H0=(y � �), �0 := H 0

0(�).
(d) For i = 1; : : : ; k compute

'i :=
hi � '1�i�1 � � � � � 'i�1�1

�0
;

 i :=
Hi � 'i 0 � � � � � '1 i�1

'0
;

�i := i(�);

fi := �'i:

Theorem 2.3. The above algorithm correctly computes its output in time O(k2b2).

Proof. Let us �rst prove correctness. Fix `. We will show by induction on i that0
@ iX

j=0

'jx
j

1
A
0
@ iX

j=0

 jx
j

1
A � H(x; y) mod xi+1:

The assertion is true for i = 0: '0 0 = H0. Suppose now that the assertion is true for i�1.
We only need to show that '0 i + � � �+ 'i 0 = Hi. But, since �0 6= 0 by the assumption

COMPUTING ROOTS OF POLYNOMIALS OVER FUNCTION FIELDS OF CURVES 3

of squarefreeness of H0, this is equivalent to

'i =
Hi(�) � '1�i�1(�) � � � � � 'i�1�1(�)

�0(�)

 i =
Hi � 'i 0 � � � � � '1 i�1

'0

which is exactly what is computed in the most inner loop of the algorithm. Stated in terms
of f , this result shows that

(y � f0 � f1x� � � � � fix
i)(0 + 1x+ � � �+ ix

i) � H(x; y) mod xi+1:

Hence, H(x; f) � 0 mod xi+1.
For assessing the running time, note �rst that computing the �i uses O(b

2 log b log q)
operations. Computation of the hi takes at most kb operations using Horner's rule. In
the inner loop (d) computing 'i uses O(i) operations, computing i uses O(bi) operations
(note that each Hi and each j is of degree at most b) and computing �i uses another O(b)

operations. Hence, steps (a) to (d) use O(k2b) operations, which shows that the cost of
Step (2) is O(k2b2). Since log q � k by our general assumption, the result follows. 2

Remark 2.4. Even if H0 is not squarefree, the above algorithm works for a particular root
� of H0 as long as � is a simple root. In that case, the algorithm �nds a solution f of
H(x; f) � 0 mod xk+1 with f (0) = � in time O(bk2).

We proceed with an example. Let

H(x; y) = x7 + y3x5 + y3x4 + (y4 + y2 + y + 1)x3 + (y3 + y2 + 1)x2 + (y2 + y)x +

y5 + y4 + y3 + y

=: H7x
7 +H6x

6 +H5x
5 +H2x

2 +H1x+H0

over the base �eld F2 . AsH0(y) is squarefree, we can apply the foregoing algorithm. We set
k := 3, i.e., we are looking for those polynomials f 2 F2 [x] such that H(x; f) � 0 mod x4.
One root of H0(y) over F2 is � := 0. Applying our algorithm we then obtain

'0 = y; 0 = y4 + y3 + y2 + 1; �0 = 1; f0 = 0;
'1 = 0; 1 = y + 1; �1 = 1; f1 = 0;
'2 = 1; 2 = y3; �2 = 0; f2 = 1;
'3 = 0; f3 = 0:

Hence, this setting of � yields the polynomial f = x2. Another root of H0 is 1. For this
root we obtain

'0 = y + 1; 0 = y4 + y2 + y; �0 = 1; f0 = 1;
'1 = 0; 1 = y; �1 = 1; f1 = 0;
'2 = 1; 2 = y3 + 1; �2 = 0; f2 = 1;
'3 = 1; f3 = 1;

which yields f = x3 + x2 + 1. In both these cases we have in fact H(x; f) = 0. Polynomial
division results in the factorization

H(x; y) = (y + x2)
�
y + (x3 + x2 + 1)

� �
y3 + y + (x2 + x+ 1)

�
:

Let us now consider the case when H0 is not squarefree. We will use the method of
Newton polygons. Since we seek solutions modulo an arbitrary power of x, it is natural
to work in the ring Fq [[x]] of formal power series in x. Denote by Fq [[x]][y] the ring of
polynomials in y with coe�cients in Fq [[x]], and by Fq [[x; y]] the ring of formal power series
in x and y. Note that Fq [x; y] � Fq [[x]][y] � Fq [[x; y]], and they are all unique factorization

4 SHUHONG GAO AND M. AMIN SHOKROLLAHI

HHHHHHHHH

@
@
@

rr

rr

r

rr

Figure 1. Newton Polygon of H

domains. For any H 2 Fq [[x; y]], its Newton polygon is de�ned to be the lower convex hull
of all points (i; j) with cij 6= 0 and the point (+1;+1) at in�nity in the real Euclidean

plane. For example, the Newton polygon of H = y5 + (y4 + y3)x2 + y5x4 + y3x6 + x8 + x9

is shown in Figure 1. A Newton polygon consists of (�nite) line segments with nonzero
slopes, called edges of the polynomial. For the above example, H has two edges with slopes
1 and 1=2 respectively. The de�nition of Newton polygon given here is equivalent to that
of Cassels [3, Sections 6.3 and 6.4] (note that Fq [[x]] is a complete local ring in which x
is a prime). Denote each edge by a pair (�; `) where � is its slope and ` its length on the
x-axis, and denote a Newton polygon by a list of pairs [(�1; `1); : : : ; (�t; `t)] of all the edges.
So the above Newton polygon is denoted by [(1; 2); (1=2; 6)]. The notation also implicitly
implies that we are interested in the Newton polygon only up to a translation in the real
Euclidean plane.

The Newton polygon of a power series H carries a lot of information about the factors
of H. The following result is from Cassels [3].

Lemma 2.5. Let H 2 Fq [[x]][y].

(i) If G 2 Fq [[x]][y] divides H then the slope of every edge of G is also a slope of H.
(ii) Suppose that the Newton polygon of H is of the form [(�1; `1); : : : ; (�t; `t)]. Then there

exist Gi 2 Fq [[x]][y] with Newton polygon of the form [(�i; `i)], 1 � i � t, such that
H = G1 � � �Gt.

In particular, each edge of H corresponds to a distinct factor of H. These factors may
still be reducible. To describe how they factor, we follow McCallum [7]. We need some
more terminology. Let w be a rational number. For a monomial xiyj , we de�ne its w-degree
to be i + wj. For a power seris H 2 Fq [[x; y]], its w-order is de�ned to be the minimum
w-degree of all nonzero terms of H, denoted by ow(H). For a polynomial H 2 Fq [x; y], its
w-degree is de�ned to be the maximum w-degree of all nonzero terms of H, denoted by
dw(H). A polynomial is called a w-form if all of its nonzero terms have the same w-degree.
Obviously, any polynomial can be written as a sum of w-forms. The initial w-form of H
is the w-form in H that has the smallest w-degree. It is straightforward to see that if � is
a slope of H and w = 1=�, then the edge with slope � corresponds exactly to the initial
w-form of H (see below). The next result from McCallum [7, Theorem 2.2] says that the
factors of the initial w-form give factors of H itself.

Lemma 2.6. Let w > 0 be a rational number and H 2 Fq [[x]][y]. Suppose that the initial
w-form h0 of H is not divisible by x. If h0 = f0g0 for f0; g0 2 Fq [x; y] and gcd(f0; g0) = 1

COMPUTING ROOTS OF POLYNOMIALS OVER FUNCTION FIELDS OF CURVES 5

then there exist F;G 2 Fq [[x]][y] such that H = FG, degy F = degy f0, and f0 (resp. g0) is

the initial w-form of F (resp. G).

We describe below more explicitly how an initial w-form factors. Let H 2 Fq [[x]][y].
Consider a typical edge of H, say from A = (t; h) to B = (t � u; h + v) where t � u > 0,
h � 0 and v > 0 are integers. The slope of the edge is � = v=u. Let ` = gcd(u; v), u1 = u=`,
v1 = v=` and w = 1=� = u=v = u1=v1. Any integral point on the edge AB must be of the
form A+ (�u1i; v1i) for some 0 � i � `. All the terms of H that lie on the edge have the
same w-degree t + wh. Any point above the egde has higher w-degree. Thus the initial
w-form of H is

H0 =
X̀
i=0

cix
t�uiiyh+v1i = xt�u � yh � xu

X̀
i=0

ci

�
yv1

xu1

�i

= xt�u � yh � xu ~H0(z)

for some ci 2 Fq , where z = yv1=xu1 and ~H0(z) =
P`

i=0 ciz
i. Note that xu ~H0(z) 2 Fq [[x]][y].

In the following, we call ~H0 the reduced polynomial of H0. Note that ~H0 has degree ` and
~H0(0) 6= 0, since H must have two nonzero terms corresponding to the vertices A and B
on its Newton polygon. If gcd(u; v) = 1 then there is no integral point on the edge AB
except the end points, and so AB is the shortest line segment with slope � = v=u. By

Lemma 2.5 (i), xu ~H0 can not factor (in Fq [[x]][y]). In this case xu ~H0 must be (absolutely)
irreducible and can be lifted to a factor ofH by Lemma 2.5. Now suppose ` = gcd(u; v) > 1.

Since ~H0 is a univariate polynomial, it factors into linear factors over an extension �eld of

Fq . Each linear factor z � � of ~H0 gives an absolutely irreducible factor yv1 � �xu1 of H0.

Lemma 2.7. Let H 2 Fq [[x]][y] with H(0; 0) = 0 and H not divisible by y. Then any
factor y � f (x) of H, where f (x) 2 Fq [[x]] and f (0) = 0, is of the form

y � (�xw + terms of higher degrees in x)

where w > 0 is an integer and � 2 Fq such that 1=w is a slope of the Newton polygon of H
and � is a root of the reduced polynomial of the initial w-form of H.

Proof. Suppose f (x) = f1x + f2x
2 + � � � 2 Fq [[x]] and y � f (x) divides H. Let w > 0

be the smallest integer such that fw 6= 0. Then the Newton polygon of y � f (x) has
only one edge starting at (0; 1) and ending at (w; 0) whose slope is obviously 1=w. By
Lemma 2.5 (i), 1=w is also a slope of H. Note that the initial w-forms are multiplicative,
i.e., (FG)0 = F0G0 for F;G 2 Fq [[x]][y]. Let H0 be the initial w-form of H. As y � fwx

w

is the initial w-form of y� f (x), we see that y� fwxw divides H0. By the above argument,

fw is a root of the reduced polynomial ~H0 of H0. 2

Lemma 2.7 shows clearly how to �nd solutions for our problem. Let H = H0 +H1x +
� � � + Hmx

m 2 Fq [x; y]. We want to �nd all solutions f (x) 2 Fq [x] for (1). Suppose that
y = � is a root of H0 of multiplicity v > 1. Make a change of variables y1 = y � � and
G = H(x; y1+�). To lift y��, we need to �nd all factors ofG of the form y1�f1x�� � ��fkxk.
If y1 j G then y1 = y � � is a solution. In this case, we can divide out y1 in G and denote
the resulting polynomial by G0. If G0(0; 0) 6= 0 then G has no other factor of the form

y1 � f1x � � � � � fkx
k. So we may assume that G is not divisible by y1 and G(0; 0) = 0.

Thus G is of the form of H as in Lemma 2.7 with respect to x and y1. Compute the Newton
polygon of G (with respect to x and y1). We �nd all the egdes of G with slopes of the
form 1=w for some integers w. For each such edge, �nd all the linear factors y1 � �1x

w of

the initial w-form G0 of G where �1 2 Fq is a root of the reduced polynomial ~G0 of g0.

When G has no such edges or ~G0 has no roots in Fq then y1 = y � � can not be lifted to

a factor y � f (x) of H with f0 = �. If �1 is a simple root of ~G0, we will show below how

6 SHUHONG GAO AND M. AMIN SHOKROLLAHI

r

r

@
@
@
@@
Q
Q
Q
QQ r

r

r

rr

r

r

r

r

r

Figure 2. Newton Polygon of G

to lift such a partial solution. So suppose that �1 is a multiple root. Make another change
of variables y2 = y1 � �1x

w and let G1 = G(x; y2 + �1x
w). We can compute the Newton

polygon again for G1 and repeat the above procedure. For G1, we need only to consider the
edges of slopes 1=w1 with w1 > w, so that higher powers of x will be added in the changes
of variables. Since the w's increase at least by 1 each time and we only need powers of x
up to k, this procedure will stop after at most k iterations. As is described below, all such
partial solutions can be lifted to true solutions.

We illustrate this method by means of an example. Let H be as in the above example
and we compute over F2 . The �rst change of variables is not needed. H has two edges
of slopes 1 and 1=2 respectively. For the edge of slope 1, w = 1 and the initial w-form of
H equals H0 = y5 + y3x2 = y3(y2 + x2) = y3(y + x)2. So � = 1 is a multiple root. Let
y1 = y � x and

G = H(x; y1+x) = x9+x8+y2x7+(y3+1)x6+y4x5+y5x4+y2x3+(y4+y3)x2+y4x+y5

The Newton polygon of G is shown in Figure 2. Note that G has two edges of slopes 1
and 2=3 respectively, none of them is of the form 1=w1 with w1 an integer > w = 1. Hence
y�x can not be lifted to a factor y� f (x) of H with f0 = 0 and f1 = 1. Consider the edge
of H with slope 1=2. Then w = 2 and the intial w-form is G0 = y3x2 + x8 = x8(z3 + 1) =
x8(z + 1)(z2 + z + 1) where z = y=x2. As � = 1 is a simple root of z3 + 1, y + x2 can be
lifted to a factor of H. Therefore H has only one solution which is a lift of y + x2.

Algorithm 2.8. (Finding partial solutions) On input H 2 Fq [x; y] and an integer k > 1,
this algorithm compute a list L of all triples (w; �; g) where w is 1 or an integer > 0,

� 2 Fq , and g 2 Fq [x] is a polynomial such that if w =1 then H(x; g) � 0 mod xk+1, and
if w <1 then � is a simple root of the reduced initial w-form of H(x; y + g).

(0) Initialization: w := 0, g := 0, and L = fg.
(1) Compute the initial w-form H0 of H and write it in the reduced form ~H0 2 Fq [z].

Find all the roots � of ~H0 in Fq .
(2) For all roots � from Step 1, do the following:

(a) If � is a simple root then L := L [f(w; �; g)g;
(b) If � is a multiple root then compute

H := H(x; y + �xw) mod xk+1; and g := g + �xw:

If y divides H then L := L [(1; �; g) and set H := H=ya where a is the largest
integer such that ya j H.
(i) Compute the Newton polygon of H and the slopes of the edges.

COMPUTING ROOTS OF POLYNOMIALS OVER FUNCTION FIELDS OF CURVES 7

(ii) For each slope of the form 1=d with d > w where d is a positive integer, set
w := d and go to Step (1).

(3) Return the list L.

It is important to note that Step (2) of the algorithm is executed in parallel for all roots
�. This means that the algorithm traverses the computation tree in a breadth-�rst fashion.
A partial solution is built up on each path separately. One can implement the algorithm
more e�ciently in a depth-�rst fashion.

The algorithm returns two types of partial solutions (w; �; g). For w <1, we will show
below how to lift g to a solution f modulo any power of x. For w = 1, g is already a
solution modulo xk+1. In the latter case, however, g may not in general be liftable to a
solution modulo a higher power of x.

Theorem 2.9. Algorithm 2.8 returns all partial solutions correctly in time O(b3k2).

Proof. The correctness follows from the discussion above. On the running time, the
dominant cost is at Step (2b) for updating H and computing Newton polygons. Since H

has at most bk nonzero terms, H(x; y + �xw) mod xk+1 can be computed by Horner's rule
(on y) in time O(b2k), and the Newton polygon of H can also be computed in this time.
Each � here represents a term in a potential solution. Since H has at most b solutions
and each one has at most k terms, Step (2b) is executed at most bk times. So the whole
algorithm runs in time as claimed. 2

Remark. When the degree b in y of H is large, Algorithm 2.8 can be improved by the
following strategy. By Lemma 2.5, each edge of H corresponds to a factor of H. Only the
factors of edges with slopes of the form 1=w with w an integer can have factors linear in
y. Hence one can factor H at each stage according to the edges of the Newton polygon.
Then for each factor of an edge with slope 1=w, make a translation of variables and repeat
the same procedure to the new polynomial. Since the degree in y of the factors decreases
at each stage, this modi�ed version of Algorithm 2.8 will be faster.

Finally, we show how to lift the partial solutions (w; �; g), w <1, returned by Algorithm
2.8. McCallum [7] discusses a more general case. Since we are dealing with linear factors,
the algorithm here will be much simpler and in fact it will be exactly Algorithm 2.2. Let
G = H(x; y + g), which is computed at Step 2.b in Algorithm 2.8. Write G into a sum of
w-forms

G = Gu +Gu+1 + � � �+Gu+v

where u = ow(G), u + v = dw(G), and Gi is either zero or a w-form of w-degree i for
u � i � u+ v. So Gu is the initial w-form of G. Note that Gi is of the form

Gi = xi
X̀
j=0

cj

� y

xw

�j

for some integer `, where cj 2 Fq . Let

~Gi =
X̀
j=0

cjz
j 2 Fq [z]

where z = y=xw . Then

G = xu(~Gu + ~Gu+1x+ � � �+ ~Gu+vx
v):

Note that ~Gu is equal to the reduced polynomial of Gu up to a factor of a power of y. By

the design of Algorithm 2.8, � is a simple root of ~Gu and y � �xw is a factor of Gu. We

8 SHUHONG GAO AND M. AMIN SHOKROLLAHI

want to �nd f0 = �; f1; : : : ; fk�w 2 Fq such that

(y � f0x
w � f1x

w+1 � � � � � fk�wx
k) � G mod xk+1 (2)

for some 2 Fq [x; y]. Since ow(G) = u and ow(y � f (x)) = w, we have ow() = u � w. If
we write into a sum of w-forms and use the reduced form as we did for G, then we have

 = xu�w(~ 0 + ~ 1x+ � � �+ ~ k�wx
k�w)

where ~ i 2 Fq [z] of approriate degrees. Now divide the equation (2) on both sides by xu,
we have

(z � f0 � f1x � � � � � fk�wx
k�w)(~ 0 + ~ 1x+ � � �+ ~ k�wx

k�w) �

~Gu + ~Gu+1x+ � � �+ ~Gu+vx
v mod xk+1�u:

This is exactly the type of the equation (1) we started with. Since � is a simple root of ~Gu,

Algorithm 2.2 can be applied to �nd a solution f (x) = f0 + f1x+ � � �+ fk�wx
k�w 2 Fq [x]

with f0 = � for the above equation. Then g + xwf (x) is a solution for the equation (1).

Theorem 2.10. Algorithms 2.2 and 2.8 �nd all solutions of the Equation (1) in time
O(b3k2).

Proof. Since Algorithm 2.2 lifts a partial solution in time O(bk2) and there are at most
b solutions, all the solutions of (1) can be found in time O(b3k2). 2

Example. Consider the polynomial

H = x6 + (y + 1)x5 + x4 + x3 + (y3 + y)x2 + y2x+ (y4 + y3)

over F2 . H0 = y3 + y4 = y3(y + 1) has a simple root y = 1 and a triple root y = 0. The
�rst one can be lifted to a true solution by Algorithm 2.2. To lift the second one, we need
to �nd the Newton polygon of H, which happens to have only one edge of slope 1. So let
w = 1. The initial w-form of H is

h0 = y3 + y2x+ yx2 + x3 = x3(
y

x
+ 1)3:

Thus � = 1 is a triple root of ~h0. Make a translation of variables y1 = y � x. Then

G = H(x; y1+x) = x5y1+x
2y31+y

2
1x

3+x4y1+y
3+y41 = y1(x

5+x2y21+y1x
3+x4+y21+y

3
1):

Hence y1 = y + x is a solution of H (modulo any power of x). Let G1 = G=y1. Its Newton
polygon has one edge of slope 1=2. Let w = 2. Then the initial w-form of G1 is

g0 = y21 + x4 = x4(y1=x
2 + 1)2:

So � = 1 is a double root of ~g0. Make another translation of variables y2 = y1 � x2 and

G2 = G1(x; y2 + x2) = x4y2 + y2x
3 + y22 + y32 = y2(x

4 + x3 + y2 + y22):

So y2 = y1 � x2 = y � x� x2 is solution (modulo any paower of x). The Newton polygon
of G3 = G2=y2 has an edge of slope 1=3. Let w = 3. Then the initial w-form of G3 is
y2 + x3 = x3(y2=x3 + 1) for which � = 1 is a simple root. So y2 � x3 = y � x � x2 � x3

can be lifted to a solution modulo any power of x. In total there are four solutions: y � x,
y � x� x2, and lifts of y � 1 and y � x� x2 � x3.

COMPUTING ROOTS OF POLYNOMIALS OVER FUNCTION FIELDS OF CURVES 9

3. The General Case

In this section we assume familiarity with basic concepts from the theory of algebraic
curves. (See, e.g., [10].) Let X be a nonsingular curve given as the zeroset of an absolutely
irreducible polynomial F 2 Fq [x; y] and let R := Fq [x; y]=(F) denote its coordinate ring.
Let G be a divisor on X de�ned over Fq and let L(G) denote the linear space of G. Assume
that we are given a basis '1; : : : ; '` of L(G) such that each 'i 2 R. We are interested in
computing the roots in L(G) of a polynomial

H(T) = ubT
b + � � �+ u1T + u0

with coe�cients ui 2 R. The algorithm we will present below is a generalization and
simpli�cation of that stated in [9] for polynomials of degree b = 2.

Assumption 3.1. For the rest of this section we will assume that deg F =: D � 3, that
k := degG � 2D2, that the basis functions 'i of L(G) are represented modulo F as bivariate
polynomials of degree � B, and that the functions ui are represented modulo F as bivariate
polynomials of degree � C. Furthermore, we assume that b; log q � k.

The �rst step of the algorithm to be presented below consists of �nding an Fqd -rational

solution p = (a; b) of F (x; y) = 0 where d > k and where either a or b is a primitive element
of the extension Fqd =Fq . We call p an (a�ne) point of X (or of F) of degree d over Fq .

Algorithm 3.2. On input an irreducible nonsingular bivariate polynomial F (x; y) over Fq
of degree D and an integer d � 2D2 the algorithm computes an a�ne point p of the zeroset
of F of degree d over Fq .

(1) Construct the �eld Fqd .

(2) Randomly select an element � of Fqd until a primitive element of Fqd=Fq is found.

(3) Test whether g(�; y) has a zero y0 in Fqd . If yes, then output p = (�; y0). If not, then

test whether g(x; �) has a zero x0 in Fqd . If yes, then output p = (x0; �). If not, then

go back to Step (2).

Theorem 3.3. The above algorithm correctly computes its output in time

~O(d2D log q + d3):

Proof. Let Ni denote the number of solutions in F
2
qi

of F (x; y) = 0. We �rst prove that

jNi � qij � D2qi=2: (3)

Since F is nonsingular, the genus g of the zeroset of F is (D � 1)(D � 2)=2 [4, Chap. 8,

Prop.5]. The number ~Ni of Fqi -rational points of the zeroset X of F in the projective plane

over Fq satis�es j ~Ni � qi � 1j � 2gqi=2 by the Hasse-Weil inequality. Let ~F (X;Y;Z) be
the homogenized version of F . The number of Fqi -rational points of X in the projective
plane over Fqi which have Z = 0 is obviously upper bounded by 2D. As a result we have
~Ni � Ni + 2D, which gives us

qi + 1� (D � 1)(D � 2)qi=2 � 2D � Ni � qi + 1 + (D � 1)(D � 2)qi=2 � qi +D2qi=2:

It remains to show that qi+1�(D�1)(D�2)qi=2�2D � qi�D2qi=2: A simple manipulation

leads to the equivalent condition qi=2 � (2D�1)=(3D�1) which is trivially true, as D � 3
by Assumption 3.1.

Next, we compute a lower bound for the number N of those solutions (a; b) of F (a; b) = 0

such that a or b is primitive. Obviously, N = Nd�
P

`jd;`<dN` � Nd�
Pbd=2c

`=1 N`, since an

10 SHUHONG GAO AND M. AMIN SHOKROLLAHI

element of Fqd is primitive i� it does not belong to any proper sub�eld of Fqd . Use of (3)
yields

N � qd �D2qd=2 � q
qd=2 � 1

q � 1
�p

qD2 q
d=4 � 1
p
q � 1

� qd � qd=2(D2 + q +
p
qD2q�d=4):

The number of primitive elements of Fqd is q
d�
P

`jd;`<d q
` � qd�

Pbd=2c
`=1 q` � qd�qd=2+1. As

a result, a random element in Fqd is primitive over Fq with at most a constant probability.

This shows that Step (2) is performed, on average a constant number of times. After
this step we will have obtained a uniform randomly chosen primitive element of Fqd . The
probability p that a random primitive element of Fqd is either the x- or the y-coordinate of

a solution of F (x; y) = 0 satis�es

p �
1� q�d=2(D2 + q +

p
qD2q�d=4)

1� q�d=2+1
� 1� q�d=2(2D2 + q)

1� q�d=2+1
:

(Note that q�d=4 < q�1=2.) Now observe that 2D2 � d � qd=4 and that (2D2 + q) � 2qd=4.
This implies

p � 1� 2q�d=4

1� q�d=2+1
:

Hence, Step (3) is performed on average a constant number of times.

Let us now focus on the running time. Step (1) uses ~O(d2 log q) operations. Testing

primitivity of an element � is done by computing 1; �; : : : ; �d�1 in the polynomial basis

(~O(d2) operations), and testing linear independence of these elements as vectors (O(d3)
operations). So, Step (2) uses O(d3) operations. Each iteration of Step (3) consists of com-

puting F (�; y) (or F (x; �)) which uses O(D2) operations over Fqd , i.e.,
~O(dD2) operations

over Fq , and of computing the roots of a univariate polynomial of degree � D over Fqd

which takes ~O(D log qd) operations over Fq , i.e., ~O(d2D log q) Fq -operations. 2

Remark 3.4. The assumption d � 2D2 in Algorithm 3.2 is related to applications in
coding theory where one assumes that k = degG > 2g � 2, where g is the genus of the
curve. It can be weakened at the expense of a more tedious analysis. However, we remark
that points of degree d may not exist for all values of d. For instance, the Hermitian curve
x3 = y2 + y does not have any points of degree 2 over F4 .

The �nal algorithm now follows.

Algorithm 3.5. Given an irreducible algebraic nonsingular bivariate polynomial F , a divi-
sor G of the zeroset of F de�ned over Fq , basis functions '1; : : : ; '` of L(G) and functions
u0; : : : ; ub 2 Fq [x; y]=(F) satisfying the conditions in Notation 3.1, the algorithm computes

a list f (1); : : : ; f (s) of at most b functions in L(G) which includes any f 2 L(G) such that
H(f) = 0, where H =

P
i=0 uiT

i.

(1) Using Algorithm 3.2 compute an a�ne point p of degree d = k + 1 over Fq of the
zeroset of F .

(2) Compute the values '1(p); : : : ; '`(p) and represent them as d-dimensional vectors
v1; : : : ;v` over Fq .

(3) Compute the values u0(p); : : : ; ub(p).

(4) Compute the zeros �1; : : : ; �s of the polynomial u0(p) + u1(p)x + � � �+ ub(p)x
b in the

�eld Fqd and represent them as d-dimensional vectors b1; : : : ;bs over Fq .

COMPUTING ROOTS OF POLYNOMIALS OVER FUNCTION FIELDS OF CURVES 11

(5) Compute vectors hi = (h1;i; : : : ; h`;i)
? 2 F

`
q , i = 1; : : : ; s such that

(v1 j � � � j v`) (h1 j � � � j hs) = (b1 j � � � j bs)
over Fq and output f (i) = h1;i'1 + � � �+ h`;i'`.

Theorem 3.6. The above algorithm correctly computes its output in time

~O(k2D log q + k3 + k2B2 + kbC2 + k2b log q):

Proof. We �rst prove correctness. If f 2 L(G) is such that H(f) = 0, then we have thatPb
i=0 ui(p)f (p) = 0, i.e., f (p) is one of the �i. Writing f =

P
i hi'i, we see that h1; : : : ; h`

satisfy the equations in Step (5). We now prove that, for each i, the solution to this system
is unique. Indeed, two solutions would give rise to functions f; g 2 L(G) de�ned over Fq
such that (f � g)(p) = 0. But then (f � g)(p�) = 0 for all the d di�erent automorphisms
� of Fqd=Fq . This shows that f � g has more zeros than poles, which implies that f = g.

We infer that f is one of the f (i)'s.

Step (1) of the algorithm uses ~O(d2D log q) operations in Fq by Theorem 3.3. Each 'i

is represented by a bivariate polynomial of degree � B. So, computing 'i(p) uses, in the

worst case, O(B2) operations in Fqd , i.e.,
~O(dB2) = ~O(kB2) operations in Fq . Since there

are ` of these functions and ` � k+1, Step (2) requires O(k2B2) time. Similarly, computing

the ui(p) uses ~O(bkC2) Fq -operations. Step (4) uses ~O(b log qd) = ~O(db log q) operations in
Fqd , i.e., it requires

~O(k2b log q) Fq -operations. The cost of Step (5) is O(b2k): it consists
of reducing a d� 2s-matrix to echelon form using row operations, and s � b. 2

Remark 3.7. (1) In applications to coding theory one usually has a �xed divisor G (cor-
responding to �xing the code) and one wants to compute zeros in L(G) for di�erent
polynomials H. In this case one can compute the point p and the evaluation of the 'i

at p in advance. Neglecting the cost of this preconditioning, the running time of the
algorithm would then be ~O(kbC2+ b2k+k2b log q). Assuming that b is a constant and
that C; log q � k (both reasonable assumptions in list decoding scenarios), this gives a

running time of ~O(k3).
(2) If the functions ui and 'i are not polynomials in x and y, it is still possible (though

tedious) to analyze the running time of the algorithm. The only major change in the
algorithm is to ensure that the point p found has the property that the functions ui
can be evaluated at it.

(3) The assumption that the curve X has a nonsingular plane model was only needed to
bound the number of solutions of F (x; y) over extensions of Fq . One can also bound
these numbers without this assumption [8] and can obtain similar (though a little
worse) results.

As was pointed out in Remark 3.4, the assumption d � 2D2 for the existence of points
of degree d can be weakened. In the next example, we will �nd a point of degree 6 of the
degree 5 Hermitian curve over F2 given by the equation x5 = y4+y. Let Q be the common
pole of x and y. We are interested in zeros of the polynomial

H(T) = T 3 + (x+ y + 1)T 2 + (x2 + y)T + (x2y + x3 + xy + x2) =: T 3 + u2T
2 + u1T + u0

among the elements of L(5Q) = h1; x; yi. The �rst step consists of �nding a point of
degree 6. We represent F26 as F2 (�) with �

6 + � + 1 = 0. Applying Algorithm 3.2, we �nd
p = (�2 + �; �4 + �2).

The next step of the algorithm is to �nd the zeros of the polynomial

T 3 + u2(p)T
2 + u1(p)T + u0(p) = T 3 + (�4 + � + 1)T 2 + �3

12 SHUHONG GAO AND M. AMIN SHOKROLLAHI

in F26 . They turn out to be �1 = �2+�, �2 = �2+�+1, and �3 = �4+�. Now we represent
elements of F26 with respect to the Fq -basis 1; �; : : : ; �

5 and solve the system of equations
given in Step (5): 0

BBBBBBBB@

1 0 0
0 1 0
0 1 1
0 0 0
0 0 1
0 0 0
0 0 0

1
CCCCCCCCA

0
@ h1;1 h1;2 h1;3

h2;1 h2;2 h2;3
h3;1 h3;2 h3;3

1
A =

0
BBBBBBBB@

0 1 0
1 1 0
1 1 0
0 0 0
0 0 1
0 0 0
0 0 0

1
CCCCCCCCA
:

Solving this system yields the solutions (0; 1; 0)?, (1; 1; 0)?, and (0; 1; 1)? for (h1; h2; h3)
?

which leads to the functions f (1) = x, f (2) = x+ 1, and f (3) = x+ y.

References

[1] M. Ben-Or. Probabilistic algorithms in �nite �elds. In Proceedings of the 22nd IEEE Symposium on

Foundations of Computer Science, pages 394{398, 1981.

[2] P. B�urgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory, volume 315 of

Grundlehren der Mathematischen Wissenschaften. Springer Verlag, Heidelberg, 1996.

[3] J. W. S. Cassels. Local Fields. Number 3 in London Mathematical Society Student Texts. Cambridge

University Press, London, 1986.

[4] W. Fulton. Algebraic Curves. Addison-Wesley, 1989.

[5] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric codes.

Preprint, 1998.

[6] E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral polynomial

factorization. SIAM J. Comput., 14:469{489, 1985.

[7] S. McCallum. On testing a bivariate polynomial for analytic reducibility. J. Symbolic Computation,

24:509{535, 1997.

[8] W.M. Schmidt. Equations over Finite Fields: An Elementary Approach. Number 536 in Lecture Notes

in Mathematics. Springer-Verlag, Berlin, 1976.

[9] M.A. Shokrollahi and H. Wasserman. Decoding algebraic-geometric codes beyond the error-correction

bound. Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 241{248,

1998.

[10] H. Stichtenoth. Algebraic Function Fields and Codes. Universitext. Springer Verlag, 1993.

[11] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. J. Compl., 13:180{193,

1997.

Shuhong Gao

Department of Mathematical Sciences

Clemson University

Clemson, SC 29634 USA

sgao@math.clemson.edu

M. Amin Shokrollahi

Bell Labs 2C-353

700 Mountain Avenue

Murray Hill, NJ 07974-0636

amin@research.bell-labs.com

