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Abstract. An important component of the index calculus methods for finding
discrete logarithms is the acquisition of smooth polynomial relations. Gordon
and McCurley (1992) developed a sieve to aid in finding smooth Coppersmith
polynomials for use in the index calculus method. We discuss their approach
and some of the difficulties they found with their sieve. We present a new
sieving method that can be applied to any affine subspace of polynomials over
a finite field.

1. Introduction

The discrete logarithm problem in finite fields has been extensively studied in
the last decade or so, due to its importance in several public-key cryptosystems.
The fastest known algorithms for finding discrete logarithms are based on index
calculus methods [1, 2, 3, 5, 7, 8, 9, 12, 14]. An important component of an index
calculus algorithm for finite fields of small characteristic is the generation of smooth
polynomial relations, i.e., equivalences where both polynomials factor completely
over a small factor base, usually a set of all irreducibles up to a given degree. Special
types of polynomial equivalences have been found by Coppersmith [3], Semaev [13]
and Adleman [2]. More precisely, suppose that m(x) ∈ Fq [x] and H(x, y) ∈ Fq [x, y]
are some fixed polynomials. Let

A(x) = r(x)m(x) + s(x)(1)

and

B(x) = H(r(x), s(x))(2)

where r(x) and s(x) range over polynomials up to certain degree in Fq [x]. It is
desirable to find many or even all pairs of r(x) and s(x) such that both A(x) and
B(x) are smooth. However, it is too time-consuming if one factors each polynomial
and checks whether or not it is smooth. Thus we seek a different method to find
all smooth polynomials of a given form.

One approach to finding smooth relations is to use a sieve. This is similar to
Pomereance’s sieve [11] for finding smooth integers. Consider a subspace of poly-
nomials that are of a given form. We wish to determine which of these polynomials
factor completely over a small factor base. Once we have an enumeration or array
of these polynomials, we can keep track of the sum of degrees of known factors
of the polynomials to help us determine which of these are likely to be smooth.
To do this, we determine which of them are divisible by each irreducible g in our
factor base. Then we move through the array and add the degree of each g to the
positions corresponding to these polynomials.
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In a sieving approach to finding smooth elements, efficiency is based on the
fact that only a limited number of simple operations are performed to find initial
polynomials that are divisible by an element g in the factor base. Then the structure
of the array is used to determine all the polynomials that are divisible by g and
their corresponding positions in the array are appropriately marked. This is easily
illustrated in the integer case [11], as the integers that are divisible by a given
integer lie a fixed distance apart in sequential enumeration. The two main steps in
a polynomial sieve are:

1. Finding one polynomial that is divisible by an irreducible g
2. Stepping through other polynomials in the array that are also divisible by g.

The latter step is not as easy as the integer case, there seems no obvious way to
enumerate the polynomials in a subspace such that elements of a given residue class
lie a fixed distance apart. Gordon and McCurley [6] use a Gray code to step through
an array of polynomials. Their method works for a special class of polynomials such
as Coppersmith’s. Also, as Gordon and McCurley point out, their sieve may move
erratically throughout the array, which could affect the overall performance of the
approach. In the next section we describe their method. In section 3 we present
a sieving method that can be applied to more general forms of polynomials. In
addition, we show how to move smoothly throughout the array.

2. The Gordon and McCurley polynomial sieve

Gordon and McCurley’s method works for polynomials of the form (1) in F2 [x]
where both r(x) and m(x) are fixed and s(x) varies. The goal is to find all (or
many) s(x) ∈ F2 [x] up to a certain degree such that A(x) is smooth. In [6], Gordon
and McCurley applied this approach to a special case of these polynomials due to
Coppersmith [3]. Suppose that f(x) = xn+f1(x) ∈ F2 [x] is irreducible where f1(x)
has a small degree. Coppersmith uses equivalences in F2n

∼= F2 [x]/(f(x)) of the
form

B(x) ≡ A(x)2k mod f(x)(3)

where

A(x) = r(x)xh + s(x)(4)

B(x) = r(x)2kf1(x)xh2k−n + s(x)2k ,(5)

and both r(x), s(x) are arbitrary of degrees up to some bound. Their sieving ap-
proach finds, for a fixed r(x), all s(x) in a specified range such that A(x) is divisible
by a fixed irreducible g. Once this is done for each irreducible g in the factor base,
one can find which s(x) (coupled with the fixed r(x)) produce a smooth A(x). Then,
with a pair r(x), s(x) that produce a smooth A, the corresponding B polynomial
is tested for smoothness. If it is smooth, we factor both polynomials and thus have
a smooth polynomial relation. One can execute this sieve for a subrange of the
polynomials r(x) until we have found enough smooth relations. In computational
experiments that were done in [6], the sieve enabled Gordon and McCurley to com-
plete most of the computations for the index calculus method in fields of order 2n

for various values of n up to around 500.
For a fixed r(x), A(x) is uniquely determined by s(x). Gordon and McCurley

consider the mapping A(x) 7→ s(2) as an enumeration of all A(x) with s(x) of degree
less than t. Each polynomial corresponds to a position in the array of 2t elements.
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Let g be an irreducible in a factor base. An initial s(x) such that A(x) is divisible
by g is s(x) = r(x)m(x) mod g. Once this s(x) is located in the array, a Gray
code is used to step through to the next s(x) such that A(x) ≡ 0 mod g. This is
accomplished by setting s(x) := s(x) + xl(i)g, where l(i) is the position of the least
significant bit in the binary representation of i, which is used as the counter for this
loop. For each such s(x), we will add deg(g) to the position s(2). Once we do this
for all g in our factor base, we have an array whose positions correspond to the sum
of the degrees of known factors (not counting multiplicities) of A(x) for the fixed
r(x) and the range of s(x). If the entry in a position is large, the corresponding
A(x) is likely to be smooth.

Gordon and McCurley point out that the memory access patterns for the sieve
seem somewhat chaotic, as consecutive s(x) from the Gray code may not lie closely
or in an increasing order in the array. It may jump back and forth in a random
fashion. This could affect the performance of the sieve on certain types of proces-
sors. Also, it is not obvious how this sieve work for polynomials other than A(x)
with r(x) and m(x) fixed. Gordon and McCurley remark that a sieve for the Cop-
persmith polynomials B(x) in (5) would require taking roots of polynomials, which
may be too expensive.

3. A general polynomial sieve

The Gordon and McCurley sieve leads our interest into finding a more general
polynomial sieve. In particular, we wish to develop a sieving method that will work
for any affine subspace of polynomials, not just the Coppersmith polynomials.

Let φ0(x), φ1(x), . . . , φb(x) denote fixed (not necessarily distinct) polynomials in
Fq [x]. Consider the polynomial

A(x) = φ0(x) + a1φ1(x) + a2φ2(x) + · · ·+ abφb(x).(6)

where ai ∈ Fq , 1 ≤ i ≤ b. Note that these polynomials A(x) form an affine linear
space of dimension b, and any affine linear space is of this form. When m(x) is fixed,
the polynomial r(x)m(x) + s(x) is a special case of (6), as also are the polynomials
of Coppersmith [3] and Semaev [13]. In practice, we want to find all smooth A(x).
Let g be an element of the factor base with deg(g) = t. Essentially, we wish to
determine the conditions on the ai such that

A(x) = φ0(x) + a1φ1(x) + a2φ2(x) + · · ·+ abφb(x) ≡ 0 mod g(x).(7)

Reduce each φi(x) modulo g(x), say

φi(x) ≡
t−1∑
j=0

gijx
j mod g,(8)

where gij ∈ Fq . Then

A(x) ≡
b∑
i=0

ai

t−1∑
i=0

gijx
j ≡

t−1∑
j=0

(
b∑
i=0

aigij

)
xj mod g,(9)

where a0 = 1. Now (9) implies

b∑
i=0

aigij = 0, 0 ≤ j ≤ t− 1.(10)
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Since we know each of the gij (as the φi are fixed), we can find all A(x) that are
divisible by g by solving the linear system (10). Note that this system has t equa-
tions and b unknowns. In cases where t < b this system will be underdetermined,
so the solutions can be expressed in terms of arbitrary parameters, say α1, . . . , αv.
Thus there are qv such polynomials A(x) that are divisible by g. Running through
all of the choices for α1, . . . , αv will give us these polynomials.

To represent all the polynomials A(x) in an array, we assume that each element
of Fq is represented as an integer between 0 and q− 1. This array has qb elements.
A polynomial A(x) in (6) corresponds to the position j where

j = a1 + a2q + · · ·+ abq
b−1 = (abab−1 · · · a2a1)q.

So ab is the most significant digit. As we proceed through the array by assigning
the parameters, we can add t to the position in the array corresponding to these
polynomials. Table 1 presents a brief outline of this approach when used for all
irreducibles in a factor base of degree up to b. Obviously, if b is large then we can

Table 1. The general polynomial sieve algorithm

Initialize array: s[i] := 0 for 0 ≤ i ≤ qb − 1.
for each irreducible g, say of degree t in the factor base

compute φi ≡
t−1∑
j=0

gijx
j mod g, 0 ≤ i ≤ b

solve the linear system
b∑
i=0

aigij = 0, 0 ≤ j ≤ t− 1

for each solution A = (abab−1 · · · a1a0)q set s[A] := s[A] + t

set the sieve to go over a certain range of possibilities (e.g., fix some of the ai).
This will allow us to sieve over any subspace of polynomials. So it is easy to use
parallel or distributed computer networks to sieve a large space.

Also, most of the steps involved in this sieve are relatively simple. The reductions
modulo g are not too costly as the degree of g will be small. The linear system we
need to solve will always have at most t rows and should be easy to solve, as t is
small.

We need to specify the order in which the sieve proceeds through the array.
Recall that the ai are really digits in the base q representation of a position in the
array. By choosing the ai with the largest indices (most significant bits) to be the
arbitrary parameters, as we run through all possibilities for the ai we will always
increase our position (index) in the array. This is best illustrated by an example.
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Example 3.1. Let q = 2 and let φi(x) ∈ F2 [x] be given by

φ0(x) = 0

φ1(x) = x7 + x5 + 1

φ2(x) = x21 + x16 + x12 + x4 + x3 + x2

φ3(x) = x33 + x29 + x28

φ4(x) = x5 + x4 + x2 + x+ 1

φ5(x) = x11 + x6 + x5 + x4 + 1

φ6(x) = x25 + x20 + x15

φ7(x) = x19 + x17 + x13 + x11 + x7 + x5 + x3

φ8(x) = x42 + 1.

Denote A = (a1, a2, . . . , a8). Let g = x4 + x3 + 1. Reducing each φi mod g we
have the following system of linear equations:

1 1 0 1 1 0 0 0
0 1 1 0 0 0 1 1
1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0

AT = 0.(11)

When performing Gaussian elimination, we always pivot on the leftmost available
column at each step. The row-reduced form of the coefficient matrix is

1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 1
0 0 0 1 1 0 0 0

(12)

which leads to solutions of the form

a1 = a5

a2 = a5

a3 = a5 + a7 + a8

a4 = a5

where a5, a6, a7, a8 are arbitrary in F2 .

To step through the array, recall that position j in the array corresponds to the
binary representation a8a7 · · · a2a1 of j. Table 2 illustrates how we would proceed
through the array in regards to the previous example. We simply run through the
integers from 0 to 24 − 1 in order to assign values to the four parameters.

In general it is easy to see that choosing the most significant bits to be the
arbitrary parameters will ensure that we always step ‘to the right’ in the array.
This avoids the chaotic memory-access patterns that arise in using Gray code as in
Gordon and McCurley’s sieve. As long as the parameters are chosen in this way,
we will have this smooth movement.

When we are done with this particular g, we then move on to the next element
of the factor base and proceed the same way. Setting g = x5 + x2 + 1, we arrive at
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Table 2. Stepping through the array for g = x4 + x3 + 1

integer a8a7a6a5 a8a7a6a5a4a3a2a1 position
0 0000 00000000 0
1 0001 00011111 31
2 0010 00100000 32
3 0011 00111111 63
4 0100 01000100 68
5 0101 01011011 91
6 0110 01100100 100
7 0111 01111011 123
8 1000 10000100 132
9 1001 10011011 155
10 1010 10100100 164
11 1011 10111011 187
12 1100 11000000 192
13 1101 11011111 223
14 1110 11100000 224
15 1111 11111111 255

new conditions on the ai, in particular

a1 = a5

a2 = a6 + a8

a3 = a5 + a6

a4 = a5

a7 = a8.

Hence we will let a5, a6, a8 be arbitrary in F2 . Table 3 gives the same sort of
procession as Table 2, only with the new conditions. Again it is important to note

Table 3. Stepping through the array for g = x5 + x2 + 1

integer a8a6a5 a8a7a6a5a4a3a2a1 position
0 000 00000000 0
1 001 00011101 29
2 010 00100110 38
3 011 00111011 59
4 100 11000010 194
5 101 11011111 223
6 110 11100100 228
7 111 11111001 249

the smooth progression through the array.
Another important implementation note in the case where q = 2 is that deter-

mining the dependent ai from the arbitrary parameters can be thought of as simply
a series of exclusive-or operations on binary vectors. Consider an implementation
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of the sieve where we arrive at the set of solutions

a0 = a3 + a5 + a6

a1 = a3 + a4 + a5

a2 = a4 + a5 + a6.

Note that we can write this as the matrix equationa0

a1

a2

 =

1 0 1 1
1 1 1 0
0 1 1 1



a3

a4

a5

a6

(13)

or as a0

a1

a2

 = a3

1
1
0

+ a4

0
1
1

+ a5

1
1
1

+ a6

1
0
1

 .(14)

Thus when we are ready to determine the vector v = [a0, a1, a2]T , we can do
so by adding scalar multiples of the vectors in (14). Since everything is binary,
adding vectors is equivalent to the XOR operation (denote this operation by ⊕).
Thus, when we increment the integer that corresponds to our selection of arbitrary
parameters, we need only XOR v with the vectors whose coefficients have changed
from the previous integer, i.e., the vectors whose coefficients are bits that get toggled
in the incrementing of the integer. For example, note that if we start at the integer
5, we have

a6a5a4a3 bits a2a1a0

5 0101 - 100
6 0110 a3, a4 100⊕ 011⊕ 110 = 001
7 0111 a3 001⊕ 011 = 010

This allows for an even more efficient way of proceeding through the array.
We comment on how to sieve polynomials of the form H(r(x), s(x)) where

H(x, y) ∈ Fq [x, y] is a fixed polynomial. In general, the equation

H(r(x), s(x)) ≡ 0 mod g(15)

is not a system of linear equations in the coefficients of r(x) and s(x). One needs
special methods to find some initial solutions. Suppose that r0(x) and s0(x) are
found such that H(r0(x), s0(x)) ≡ 0 mod g. since H(x, y) is a polynomial, for any
r(x) and s(x) such that

r(x) ≡ r0(x) mod g(16)

s(x) ≡ s0(x) mod g(17)

we have that (15) holds. Note that (16) and (17) are just special cases of (6). So
our method can be applied to step through to all r(x), s(x) pairs that satisfy (16)
and (17).

Finally, Gordon [4] points out that one important practical improvement they
used was Odlyzko’s idea of forcing factors into A(x) and B(x). They did that by
solving linear equations. This method fits nicely into our method: one just adds
more equations to the system for each g that forces the polynomials A(x) and B(x)
being divisible by small elements in the factor base. That idea is similar to Pollard’s
lattice sieve for integers [10].
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4. Conclusions

We have developed a polynomial sieve for finding smooth relations. It works
for any affine linear space of polynomials over finite fields, including those arising
in the algorithms of Adleman, Coppersmith and Semaev. We showed how to step
smoothly through the array in the sieving process. The method is suitable for
parallel and distributed computer networks. A carefull implementation is needed
to determine how well this sieve performs in practice, as well as how it compares
to Gordon and McCurley’s sieve. It should be mentioned that our sieve will not
affect the asymptotic running time of the index calculus methods in [2, 3, 13].
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