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Abstract

Interest in normal bases over finite fields stems both from mathematical theory and practical

applications. There has been a lot of literature dealing with various properties of normal bases

(for finite fields and for Galois extension of arbitrary fields). The advantage of using normal bases

to represent finite fields was noted by Hensel in 1888. With the introduction of optimal normal

bases, large finite fields, that can be used in secure and efficient implementation of several cryp-

tosystems, have recently been realized in hardware. The present thesis studies various theoretical

and practical aspects of normal bases in finite fields.

We first give some characterizations of normal bases. Then by using linear algebra, we prove

that Fqn has a basis over Fq such that any element in Fq represented in this basis generates a

normal basis if and only if some groups of coordinates are not simultaneously zero. We show how

to construct an irreducible polynomial of degree 2n with linearly independent roots over Fq for

any integer n and prime power q. We also construct explicitly an irreducible polynomial in Fp[x]

of degree pn with linearly independent roots for any prime p and positive integer n. We give a new

characterization of the minimal polynomial of αt for any integer t when the minimal polynomial

of α is given. When q ≡ 3 mod 4, we present an explicit complete factorization of x2
n

− 1 over Fq

for any integer n.

The principal result in the thesis is the complete determination of all optimal normal bases

in finite fields, which confirms a conjecture by Mullin, Onyszchuk, Vanstone and Wilson. Finally,

we present some explicit constructions of normal bases with low complexity and some explicit

constructions of self-dual normal bases.
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Chapter 1

Introduction

In this chapter we explain why we are interested in normal bases and give a brief overview of

the thesis. We will assume that one is familiar with the basic concepts for field extensions; our

standard reference is Jacobson [69].

Let F be field and E be a finite Galois extension of F of degree n and Galois group G. A

normal basis of E over F is a basis of the form {σα : σ ∈ G} where α ∈ E. That is, a normal basis

consists of all the algebraic conjugates of some element with the property that they are linearly

independent over the ground field. For finite fields, let q be a prime power and n a positive integer.

Let Fq and Fqn be finite fields of q and q
n elements, respectively. The field Fqn is viewed as an

extension of Fq. The Galois group of Fqn over Fq is cyclic and is generated by the Frobenius map:

α 7→ αq for α ∈ Fqn . A normal basis of Fqn over Fq is thus of the form: {α, αq, . . . , αq
n−1} for

some α ∈ Fqn .

Interest in normal bases stems both from mathematical theory and practical applications. The

notion of normal bases appeared in the last century. A possible reason for the early interest in

normal bases may be the fact that Gauss [54] used normal bases to solve the problem of when a

regular polygon can be drawn with ruler and compass alone. Actually Gauss used normal bases

(which he called periods) to construct the subfields of a cyclotomic field. In general, normal bases

can be used to realize the Galois correspondence between intermediate fields of a finite Galois

extension of fields and the subgroups of its Galois group. We will dwell on this in the next

section.
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CHAPTER 1. INTRODUCTION 2

At the practical aspect, with the development of coding theory and the appearance of several

cryptosystems using finite fields, the implementation of finite field arithmetic, in either hardware

or software, is required. Work in this area has resulted in several hardware and software designs

or implementations [41, 45, 121, 145, 146, 151], including single-chip exponentiators for the fields

F2127 [152], F2155 [3], and F2332 [56], and an encryption processor for F2593 [114] for public key

cryptography. These products are based on multiplication schemes due to Massey and Omura [95]

and Mullin, Onyszchuk and Vanstone [105] by using normal bases to represent finite fields and

choosing appropriate algorithms for the arithmetic. Interestingly, the advantage of using a normal

basis representation was noticed by Hensel [61] in 1888, long before finite field theory found its

practical applications. The complexity of the hardware design of such multiplication schemes is

heavily dependent on the choice of the normal basis used.

1.1 Galois Correspondence

Let F be any field and E a finite Galois extension of F , with Galois group G. The main theorem

of Galois theory [48] guarantees that there is a bijective correspondence between the subgroups

of G and the intermediate fields of E over F : if H is a subgroup of G then the fixed subfield

EH = {α ∈ E : σ(α) = α, for all σ ∈ H}

of E relative to H is a subfield of E containing F such that

H = Aut(E/EH)

where Aut(E/EH) denotes the set of all automorphisms of E that fix EH . If K is an intermediate

field of E over F then Aut(E/K) is a subgroup of G and

K = EAut(E/K).

Moreover, for any subgroup H of G, we have

|H| = [E : EH ], [G : H] = [EH : F ]

and EH is normal over F if and only if H is normal in G.

The problem is to realize the correspondence constructively, that is, to find Aut(E/K) when

given K, and EH when given H. Here we assume that we are given the extension E of F
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and its Galois group G = Aut(E/F ). By “given E over F”, we mean that we have a basis

A = {α1, α2, · · · , αn} of E over F and the n2 cross products αiαj expressed as linear combinations

of A with coefficients from F . By “given G”, we mean that we know the matrix representation of

each automorphism in G under the same basis A.

We follow the approaches by Pohst and Zassenhaus [110, pp. 171-173] and van der Waerden

[141, pp. 169]. For the first part of the problem, suppose that K = F (β1, · · · , βk) where βi ∈ E is

expressed in the basis A for 1 ≤ i ≤ k. Then Aut(K/F ) simply consists of those automorphisms

σ in G such that σβi = βi for all i with 1 ≤ i ≤ k; for they will fix all rational functions of

β1, . . . , βk as well.

For the second part of the problem, we show in the sequel that normal bases offer an elegant

solution. Let N = {σα : σ ∈ G} be a normal basis of E over F and H be a subgroup of G. Let

n = [G : H] and let the right coset decomposition of G relative to H be

G =
n⋃
i=1

Hgi

where gi ∈ G. The Gauss periods of N with respect to H are defined to be

ζi =
∑
σ∈H

σgi α, i = 1, 2, · · · , n. (1.1)

Note that ζ1, ζ2, · · · , ζn are linearly independent over F since they are non-overlapping F -linear

combinations of N . For any element

ξ =
∑
σ∈G

uσ σα, uσ ∈ F,

of E, it is fixed by all elements in H if and only if it has constant coefficients on every right coset

of G relative to H. This implies that ζi ∈ EH and every element of EH is an F -linear combination

of ζ1, ζ2, · · · , ζn. Thus we have proved that the Gauss periods (1.1) form a basis of EH over F ,

i.e.

EH = Fζ1 ⊕ Fζ2 ⊕ · · · ⊕ Fζn. (1.2)

Moreover, if H is normal in G then the Gauss periods are conjugate to each other and thus they

form a normal basis for EH over F . This solves the second part of the problem if we know how

to construct a normal basis for E over F .
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Let us look at the special case of cyclotomic fields which were first studied by C.F. Gauss [54]

in connection with his investigation into the constructability of regular polygons. This is why the

elements in (1.1) are called Gauss periods. Let m be a prime number and β an mth primitive

root of unity in the field of complex numbers. Then

βm−1 + · · ·+ β + 1 = 0

and β generates the mth cyclotomic field

Em = Q(β),

where Q is the field of rational numbers. It can be proved that

N = {β, β2, · · · , βm−1}

is a normal basis of Em over Q. Let τ be a primitive element of Zm, i.e. τ is an integer such that

{1, 2, · · · ,m− 1} ≡ {τ, τ2, · · · , τm−1} mod m.

Then the Galois group of Em over Q is generated by the automorphism % which carries β to βτ ,

that is,

G =< % >= {1 = %0, %, %2, · · · , %m−2}.

For any factor n of m− 1, let m− 1 = nk. Then

H = {1, %n, %2n, · · · , %(k−1)n}

is a subgroup of G of index n. The Gauss periods of N with respect to H are

ζi =

k−1∑
j=0

%jn%i β =

k−1∑
j=0

βτ
jn+i

, 0 ≤ i ≤ n− 1, (1.3)

which form a normal basis of the unique subfield of Em of degree n over Q. If m − 1 has only

small prime factors then one can construct Em by building a sequence of subfields, where each of

them has a small degree over the preceding one, by using Gauss periods. This is the basic idea

that was used by C.F. Gauss [54] to determine when a regular polygon can be drawn with ruler

and compass alone. In particular, he discovered how to draw a regular 17-gon with ruler and

compass, which had remained as an unsolved problem for more than 2000 years.
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We will show in Chapter 4 that under certain conditions Gauss periods (1.3) give a family

of normal bases with low complexity in finite fields, including essentially all the optimal normal

bases. The definition for the complexity of normal bases and for optimal normal bases is given in

the next section. We mention that Gauss periods are also useful in integer factorization [12] and

construction of irreducible polynomials [1] (refer to section 4.3).

1.2 Finite Field Arithmetic

Let q be a prime power and n a positive integer. Let Fq and Fqn be finite fields of q and q
n

elements, respectively. Let us first look at how addition and multiplication in Fqn can be done in

general. We view Fqn as a vector space of dimension n over Fq. Let α0, α1, . . . , αn−1 ∈ Fqn be

linearly independent over Fq. Then every element A ∈ Fqn can be represented as A =
∑n−1
i=0 aiαi

where ai ∈ Fq. Thus Fqn can be identified as Fnq , the set of all n-tuples over Fq, and A ∈ Fqn can

written as A = (a0, a1, . . . , an−1). Let B = (b0, b1, . . . , bn−1) be another element in Fqn . Then

addition is component-wise and is easy to implement. Multiplication is more complicated. Let

A · B = C = (c0, c1, . . . , cn−1). We wish to express the ci’s as simply as possible in terms of the

ai’s and bi’s. Suppose

αiαj =

n−1∑
k=0

t
(k)
ij αk, t

(k)
ij ∈ Fq. (1.4)

Then it is easy to see that

ck =
∑
i,j

aibjt
(k)
ij = ATkB

t, 0 ≤ k ≤ n− 1,

where Tk = (t
(k)
ij ) is an n × n matrix over Fq and B

t is the transpose of B. The collection of

matrices {Tk} is called a multiplication table for Fqn over Fq.

Observe that the matrices {Tk} are independent of A and B. An obvious implementation

of multiplication in Fqn is to build n circuits corresponding to the Tk’s such that each circuit

outputs a component of C = A ·B on input A and B. If n is big then this scheme is impractical.

Fortunately, there are many bases available of Fqn over Fq. For some bases the corresponding

multiplication tables {Tk} are simpler than others in the sense that they may have fewer non-zero

entries or they may have more regularity so that one may judiciously choose some multiplication
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algorithm to make a hardware or software design of a finite field feasible for large n. One example

is the bit-serial multiplication scheme due to Berlekamp [16], see also [97], and its generalizations

[101, 55, 57, 143, 63, 134] using a pair of (dual) bases. In the following we examine the Massey-

Omura scheme [95] which exploits the symmetry of normal bases.

A normal basis of Fqn over Fq is a basis of the form {α, αq, . . . , αq
n−1
} for some α ∈ Fqn . Let

N = {α0, α1, . . . , αn−1} be a normal basis of Fqn over Fq with αi = αq
i

for 0 ≤ i ≤ n− 1. Then

αq
k

i = αi+k for any integer k, where indices of α are reduced modulo n. Let us first consider the

operation of exponentiation by q. The element Aq has coordinate vector (an−1, a0, a1, . . . , an−2).

That is, the coordinates of Aq are just a cyclic shift of the coordinates of A, and so the cost of

computing Aq is negligible. Consequently, exponentiation using the repeated square and multiply

method can be speeded up, especially if q = 2. This is very important in the implementation of

such cryptosystems as the Diffie-Hellman key exchange [42] and ElGamal cryptosystem [44] where

one needs to compute large powers of elements in a fixed finite field.

Let the t
(k)
ij terms be defined by (1.4). Raising both sides of equation (1.4) to the q

−`-th power,

one finds that

t
(`)
ij = t

(0)
i−`,j−`, for any 0 ≤ i, j, ` ≤ n− 1.

Consequently, if a circuit is built to compute c0 with inputs A and B, then the same circuit with

inputs Aq
−`
and Bq

−`
yields the product term c`. (A

q−` and Bq
−`
are simply cyclic shifts of the

vector representations of A and B.) Thus each term of C is successively generated by shifting the

A and B vectors, and thus C is calculated in n clock cycles. The number of gates required in this

circuit equals the number of non-zero entries in the matrix T0. Clearly, to aid in implementation,

one should select a normal basis such that the number of non-zero entries in T0 is as small as

possible.

Let

ααi =

n−1∑
j=0

tijαj , 0 ≤ i ≤ n− 1, tij ∈ Fq. (1.5)

Let the n× n matrix (tij) be denoted by T . It is easy to prove that

t
(k)
ij = ti−j,k−j , for all i, j, k.

Therefore the number of non-zero entries in T0 is equal to the number of non-zero entries in T .

Following Mullin, Onyszchuk, Vanstone and Wilson [103], we call the number of non-zero entries
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in T the complexity of the normal basis N , denoted by cN . Since the matrices {Tk} are uniquely

determined by T , we call T the multiplication table of the normal basis N . The following theorem

gives us a lower bound for cN .

Theorem 1.2.1 (Mullin et al. [103]) For any normal basis N of Fqn over Fq, cN ≥ 2n− 1.

Proof: Let N = {α0, α1, . . . , αn−1} be a normal basis of Fqn over Fq. Then b =
∑n−1
k=0 αk =

Tr(α) ∈ Fq. Summing up the equations (1.5) and comparing the coefficient of αk we find

n−1∑
i=0

tij =

 b, j = 0,

0, 1 ≤ j ≤ n− 1.

Since α is non-zero and {ααi : 0 ≤ i ≤ n− 1} is also a basis of Fqn over Fq, the matrix T = (tij)

is invertible. Thus for each j there is at least one non-zero tij . For each j 6= 0, in order for each

column j of T to sum to zero there must be at least two non-zero tij ’s. So there are at least 2n−1

non-zero terms in T , with equality if and only if the element α occurs with a non-zero coefficient

in exactly one cross-product term ααi (with coefficient b) and every other member of N occurs

in exactly two such products, with coefficients that are additive inverses. �

A normal basis N is called optimal if cN = 2n− 1.

A major concern for a hardware implementation is the interconnections between registers

containing the elements A, B and C. The fanout of a cell is the number of connections to the

cell, and should be as small as possible. Agnew, Mullin, Onyszchuk and Vanstone [2] designed

a different architecture with a low fanout, and they successfully implemented the field F2593 in

hardware (see [114]). Since this scheme is more complicated, we omit its description here. We

only remark that the complexity of this scheme also depends on the number of non-zero entries

in T .

1.3 A Brief Overview

In Chapter 2, we investigate the structural properties of normal bases. We begin with some

characterizations of normal bases. We then use linear algebra to decompose Fqn into a direct sum

of subspaces over Fq such that an element α in Fqn generates a normal basis if and only if the
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projections of α in some subspaces are nonzero. This means that Fqn has a basis over Fq such that

any element in Fq represented in this basis generates a normal basis if and only if some groups of

coordinates are not simultaneously zero. In particular, we can obtain all the normal elements in

Fqn if we can factor x
n − 1 over Fq. We present an explicit complete factorization of x2

e

− 1 over

Fp when p ≡ 3 mod 4 is a prime.

In Chapter 3, we briefly survey various algorithms for constructing normal bases in finite fields,

where the complexity issue is ignored. We show that if xn − a, where a ∈ Fq, is irreducible over

Fq then ax
n − (x − 1)n is irreducible and has linearly independent roots over Fq. In particular,

if q ≡ 1 (mod 4) then ax2
n

− (x− 1)2
n

is irreducible with linearly independent roots over Fq for

any quadratic nonresidue a ∈ Fq and any integer n. When a prime p ≡ 3 (mod4), we show that

if x2 − bx− c ∈ Fp[x], with b 6= 2 and c a quadratic residue in Fp, is irreducible over Fp, then the

polynomial

(x− 1)2
k+1

− b(x− 1)2
k

x2
k

− cx2
k

is irreducible with roots being linearly independent over Fp for every integer k ≥ 0. For any prime

p and positive integer n, we construct explicitly an irreducible polynomial in fp[x] of degree p
n

with linearly independent roots. We give a new characterization of the minimal polynomial of αt

for any integer t when the minimal polynomial of α is given. When q ≡ 3 (mod 4), we present an

explicit complete factorization of x2
n

− 1 over Fq for any integer n, which enables us to compute

efficiently u ∈ Fp such that the roots of x2 − 2ux− 1 are quadratic nonresidues in Fq2 .

In Chapter 4, we completely determine all the optimal normal bases in finite fields, thus

confirming a conjecture by Mullin, Onyszchuk, Vanstone and Wilson. We show that there is an

optimal normal basis in Fqn over Fq if and only if either (i) n + 1 is a prime and q is primitive

in Zn+1 or (ii) q = 2
v for some integer v such that gcd(v, n) = 1, 2n+ 1 is a prime and Z∗2n+1 is

generated by 2 and −1.

Finally, in Chapter 5, we present some explicit constructions of normal bases with low com-

plexity and some explicit constructions of self-dual normal bases. For example, we show that, for

any β ∈ F ∗q with Trq|p(β) = 1, the polynomial x
p − xp−1 − βp−1 is irreducible over Fq and its

roots form a self-dual normal basis with complexity at most 3p − 2 of Fq over Fp where p is the

characteristic of Fq. We also prove that, for any divisor n of q− 1 and a = β(q−1)/n where β ∈ Fq

with multiplicative order t such that gcd(n, (q − 1)/t) = 1, the polynomial xn − β(x− a+ 1)n is
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irreducible over Fq and its roots constitute a normal basis with complexity at most 3n− 2 of Fqn

over Fq.

1.4 Some Notes

In this thesis we will focus our attention exclusively on normal bases in finite fields. For complete-

ness, we give a brief survey here on the results for normal bases in the general setting of Galois

extensions of arbitrary fields. We also mention some results on primitive normal bases in finite

fields which will not be discussed in the thesis.

Theorem 1.4.1 (The normal basis theorem) There is a normal basis for any finite Galois

extension of fields.

The normal basis theorem for finite fields was conjectured by Eisenstein [43] in 1850 and partly

proved by Schönemann [118] in 1850. The first complete proof was given by Hensel [61] in 1888.

The normal basis theorem for Galois extension of arbitrary fields was proved by Noether [104]

in 1932 and Deuring [40] in 1933. This theorem is included in most algebra textbooks, see for

example, Albert [7], Bourbaki [27], Cohn [36], Hungerford [64], Jacobson [69], Lang [78], Rédei

[112] and van der Waerden [141]. For different proofs of the normal basis theorem, see Artin

[8], Berger and Reiner [15], Krasner [76], Waterhouse [149] and Childs and Orzech [33]. Lenstra

[86] generalizes the normal basis theorem to infinite Galois extensions. Bshouty and Seroussi [29]

and Scheerhorn [116] give generalizations of the normal basis theorem for finite fields in different

directions. Blessenohl and Johnsen [25] prove that for each finite Galois extension E of F there

exists an element α ∈ E that gives a normal basis over each intermediate field (see [24] for a

simpler proof).

For finite fields, there is another refinement of the normal basis theorem.

Theorem 1.4.2 For any prime power q and positive integer n, there is a primitive normal basis

in Fqn over Fq.

Here by a primitive normal basis of Fqn over Fq we mean a normal basis {α, αq, . . . , αq
n−1
}

such that α also generates the multiplicative group of Fqn . This result was proved by Carlitz
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[32] in 1952 for qn sufficiently large, by Davenport [38] in 1968 for the case that q is a prime

and by Lenstra and Schoof [87] in 1987 for the general case. For the construction of primitive

normal bases and primitive elements, see Cohen [34], Hachenberger [60], Shoup [129], Stepanov

and Shparlinskiy [131, 132, 133].

An important class of normal bases are self-dual normal bases. More generally, one has the

concept of self-dual bases, which is useful for construction of devices for arithmetic of finite fields

[16, 55, 142] and in applications to coding theory [47], cryptography [42] and the discrete Fourier

transform [18]. Let E be a finite Galois extension of F with Galois group G. The trace function

Tr : E 7→ F is defined as

Tr(α) =
∑
σ∈G

σα.

A basis {α0, α1, . . . , αn−1} of E over F is said to be dual to the basis {β0, β1, . . . , βn−1} if

Tr(αiβj) = δi,j (which by definition is equal to 0 if i 6= j, and 1 if i = j). It is easy to prove that

each basis in E over F has a unique dual basis and the dual basis of a normal basis is again a

normal basis. If a basis coincides with its dual basis then it is said to be self-dual, i.e., a basis

{α0, α1, . . . , αn−1} is called self-dual if Tr(αiαj) = δi,j . Existence results of self-dual bases can

be found in Serre [125] and Kahn [73, 74]. As to the existence of self-dual normal bases, we have

the following two theorems.

Theorem 1.4.3 Let E be a Galois extension of F of degree n. If n is odd then E has a self-dual

normal basis over F .

Theorem 1.4.4 Let E be a Galois extension of F of degree n and Galois group G. Assume that

G is Abelian.

(a) If Char(F ) 6= 2, then E has a self-dual normal basis over F if and only if n is odd.

(b) If Char(F ) = 2, then E has a self-dual normal basis over F if and only if the exponent of G

is not divisible by 4.

The exponent of a group G is defined to be the smallest integer m such that gm = 1 for all

g ∈ G. For finite fields, Theorem 1.4.4 says that Fqn has a self-dual normal basis over Fq if and

only if both n and q are odd or q is even and n is not divisible by 4.



CHAPTER 1. INTRODUCTION 11

The above two theorems are proved by Bayer-Fluckiger and Lenstra [13, 14]. Partial results

were obtained earlier by Lempel, and Weinberger [79, 80, 82], Imamura and Morii [67, 100], Beth,

Fummy and Mühlfeld [19], Kersten and Michaliček [75], Conner and Perlis [37]. For enumeration

of self-dual normal bases, see Lempel and Seroussi [81] and Jungnickel, Menezes and Vanstone

[72].

In designing finite field multipliers it is sometime useful to consider weakly self-dual bases

[20, 101, 143]. Let A = {α0, α1, . . . , αn−1} be a basis of E over F and let B = {β0, β1, . . . , βn−1}

be its dual basis. Then A is said to be weakly self-dual if there exists a γ ∈ E and a permutation π

of the indices {0, 1, . . . , n−1} so that βi = γαπ(i) for all i with 0 ≤ i ≤ n−1. Obviously self-dual

bases are weakly self-dual. The existence of weakly self-dual polynomial basis (by definition it is

of the form {1, α, α2, . . . , αn−1}) is determined by Geiselmann and Gollmann [57] (their argument

for finite fields is applicable to arbitrary fields). The existence of weakly self-dual normal bases is

determined by Lenstra [83]. To state this result, we need the notion of equivalence of bases. Two

Bases A and B of E over F are called equivalent if A = cB for some c ∈ F .

Theorem 1.4.5 Let E be a Galois extension of F of degree n and Galois group G. Assume that

G is Abelian. Then E has a weakly self-dual normal basis over F that is not equivalent to a

self-dual normal basis if and only if E =M(i) where [M,F ] is odd, i2 = −1 and i is not in F .

In particular, the field Fqn has a weakly self-dual normal basis over Fq that is not self-dual if

and only if n is exactly divisible by 2 and q ≡ 3 mod 4.



Chapter 2

Basics on Normal Bases

In this chapter, we will focus on the structural properties of normal bases, where the complexity

issue is usually ignored.

2.1 Introduction

For convenience, we first make some conventions and recall some definitions in this section.

In this thesis, we assume that p is a prime number, q is a power of p, and Fq denotes the

finite field of q elements. Thus the characteristic of Fq is p. The field Fqn is always considered as

an n-dimensional extension of Fq and is thus a vector space of dimension n over Fq. The Galois

group of Fqn over Fq is cyclic and is generated by the Frobenius mapping σ(α) = α
q, α ∈ Fqn .

A normal basis of Fqn over Fq is a basis of the form N = {α, αq, . . . , αq
n−1
}, i.e., a basis

consisting of all the algebraic conjugates of a fixed element. We say that α generates the normal

basis N , or α is a normal element of Fqn over Fq. In either case we are referring to the fact that

the elements α, αq, . . . , αq
n−1
are linearly independent over Fq.

In the following context, when we mention a normal basis {α0, α1, . . . , αn−1}, we always

assume that αi = α
qi for α ∈ Fqn with i = 0, 1, . . . , n− 1.

LetN = {α0, α1, . . . , αn−1} be a normal basis of Fqn over Fq. Then for any i, j, 0 ≤ i, j ≤ n−1,

12
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αiαj is a linear combination of α0, α1, . . . , αn−1 with coefficients in Fq. In particular,

α0


α0

α1
...

αn−1

 = T


α0

α1
...

αn−1

 (2.1)

where T is an n×n matrix over Fq. We call (2.1) or T the multiplication table of the normal basis

N . If α is a normal element, the multiplication table of the normal basis generated by α is also

referred to as the multiplication table of α. As in section 1.2, the number of non-zero entries in

T is called the complexity of the normal basis N , denoted by CN . If α generates N , CN is also

denoted as Cα.

We call a polynomial in Fq[x] an N-polynomial if it is irreducible and its roots are linearly

independent over Fq. The minimal polynomial of any element in a normal basis {α0, α1, . . . , αn−1}

is m(x) =
∏n−1
i=0 (x−αi) ∈ Fq[x], which is irreducible over Fq. The elements in a normal basis are

exactly the roots of an N-polynomial. Hence an N-polynomial is just another way of describing a

normal basis.

The trace function of Fqn over Fq is

Trqn|q(α) =

n−1∑
i=0

αq
i

.

The trace function is a linear functional of Fqn to Fq. For brevity, we sometimes denote the trace

function by Trqn|q or simply Tr if the fields are clear from context. The trace of an element over

its characteristic subfield is called the absolute trace.

If ᾱ = {α1, α2, . . . , αn} and β̄ = {β1, β2, . . . , βn} are bases of Fqn over Fq, β̄ is referred to as

the dual basis of ᾱ if

Tr(αiβj) = δij , 1 ≤ i, j ≤ n.

(δij denotes the Kronecker delta function, i.e., δij = 0 if i 6= j, and δij = 1 if i = j.) It is a

standard result that for any given basis ᾱ there exists a unique dual basis. If the dual basis of ᾱ

happens to be ᾱ itself, then ᾱ is called a self-dual basis.

We sometimes say that α is self-dual normal if α generates a self-dual normal basis.
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In this chapter, we are mainly concerned with the problem of which elements in Fqn generate

a normal basis over Fq. In section 2.2, we give some characterizations of normal elements and

also give a method to compute the element that generates the dual basis of a given normal basis.

In Section 2.3, we show how to construct normal bases from normal bases over smaller fields. In

Section 2.4, we determine how all the normal elements are distributed in the whole space, and

thus we show that Fqn has a basis over Fq such that any element in Fqn represented in this basis

generates a normal basis if and only if some groups of coordinates are not simultaneously zero.

In Section 2.5, we discuss when an irreducible polynomial is an N-polynomial, i.e., an irreducible

polynomial with linearly independent roots. In some special cases, one can tell immediately from

the coefficients of an irreducible polynomial whether it is an N-polynomial.

2.2 Characterization of Normal Elements

In this section, we give some characterizations of normal elements and show how to compute the

element that generates the dual basis of a given normal basis.

We begin with a characterization for a set of n elements in Fqn to form a basis of Fqn over Fq.

For this purpose, we define the discriminant ∆(α1, . . . , αn) of the elements α1, . . . , αn in Fqn by

the determinant:

∆(α1, . . . , αn) = det


Tr(α1α1) Tr(α1α2) · · · Tr(α1αn)

Tr(α2α1) Tr(α2α2) · · · Tr(α2αn)
...

...
...

Tr(αnα1) Tr(αnα2) · · · Tr(αnαn)

 ,

where Tr is understood to be Trqn|q. Obviously, ∆(α1, . . . , αn) ∈ Fq.

Theorem 2.2.1 (Theorem 2.37, [89]) For any n elements α1, . . . , αn in Fqn , they form a basis

of Fqn over Fq if and only if ∆(α1, . . . , αn) 6= 0.

Proof: First assume that α1, . . . , αn form a basis for Fqn over Fq. We prove that ∆(α1, . . . , αn) 6=

0 by showing that the row vectors of the matrix in the definition of ∆(α1, . . . , αn) are linearly

independent over Fq. For suppose that

c1Tr(α1αj) + · · ·+ cnTr(αnαj) = 0 for 1 ≤ j ≤ n,
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where c1, . . . , cn ∈ Fq. Then with β = c1α1 + · · · + cnαn we get Tr(βαj) = 0 for 1 ≤ j ≤ n,

and since α1, . . . , αn span Fqn , it follows that Tr(βα) = 0 for all α ∈ Fqn . However, this is only

possible if β = 0, and then c1α1 + · · ·+ cnαn = 0 implies that c1 = · · · = cn = 0.

Conversely, assume that ∆(α1, . . . , αn) 6= 0 and c1α1+· · ·+cnαn = 0 for some c1, . . . , cn ∈ Fq.

Then

c1α1αj + · · ·+ cnαnαj = 0 for 1 ≤ j ≤ n,

and by applying the trace function we get

c1Tr(α1αj) + · · ·+ cnTr(αnαj) = 0 for 1 ≤ j ≤ n.

But since the row vectors of the matrix in ∆(α1, . . . , αn) are linearly independent over Fq, it

follows that c1 = · · · = cn = 0. Therefore α1, . . . , αn are linearly independent over Fq. �

Corollary 2.2.2 The set of elements ᾱ = {α1, α2, . . . , αn} is a basis of Fqn over Fq if and only

if the matrix A is nonsingular where

A =


α1 α2 · · · αn

αq1 αq2 · · · αqn
...

...
...

αq
n−1

1 αq
n−1

2 · · · αq
n−1

n

 .

Proof: It suffices to note that ∆(α1, . . . , αn) = det(A
tA) = (detA)2. �

We need the the following standard result for the remaining part of this section.

Lemma 2.2.3 Let F be any field. For any n elements a0, a1, . . . , an−1 ∈ F , the n× n circulant

matrix

c[a0, a1, . . . , an−1] =



a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

...

a1 a2 a3 · · · a0


is nonsingular if and only if the polynomial

∑n−1
i=0 aix

i is relatively prime to xn − 1.
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Proof: Let A be the following n× n permutation matrix

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...
...
...

...
...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


.

Then it is easy to see that

c[a0, a1, . . . , an−1] =
n−1∑
i=0

aiA
i = f(A),

where f(x) =
∑n−1
i=0 aix

i. Note that the minimal polynomial of A is xn − 1. Assume that f(x)

and xn − 1 are relatively prime. Then there are polynomials a(x), b(x) such that

a(x)f(x) + b(x)(xn − 1) = 1,

and hence

a(A)f(A) = In,

as An − 1 = 0. This implies that f(A) is invertible and so nonsingular. Now assume that

gcd(f(x), xn − 1) = d(x) 6= 1. Let f(x) = f1(x)d(x) and x
n − 1 = h(x)d(x). Since deg h(x) < n,

we have h(A) 6= 0. As h(A)d(A) = 0, we see that d(A) is singular. Therefore f(A) = f1(A)d(A)

is singular. This shows that f(A) is nonsingular if and only if f(x) is relatively prime to xn − 1.

�

Theorem 2.2.4 (Hensel [61]) For α ∈ Fqn , α generates a normal basis of Fqn over Fq if and

only if the polynomial αq
n−1

xn−1 + · · ·+ αqx+ α ∈ Fqn [x] is relatively prime to xn − 1.

Proof: Note that α generates a normal basis if and only if the elements α, αq, . . . , αq
n−1
are

linearly independent over Fq. By Corollary 2.2.2, this is true if and only if
α αq αq

2

· · · αq
n−1

αq αq
2

αq
3

· · · α

...
...

...
...

αq
n−1

α αq · · · αq
n−2

 (2.2)
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is non-singular. Note that if we reverse the order of the rows in (2.2) from the second row to the

last row, we get the circulant matrix c[α, αq, . . . , αq
n−1
], which is non-singular if and only if (2.2)

is non-singular. By Lemma 2.2.3, c[α, αq, . . . , αq
n−1
] is non-singular if and only if xn − 1 and

αq
n−1

xn−1 + · · ·+ αqx+ α are relatively prime. �

Theorem 2.2.5 Let α ∈ Fqn , αi = αq
i

, and ti = Trqn|q(α0αi), 0 ≤ i ≤ n− 1. Then α generates

a normal basis of Fqn over Fq if and only if the polynomial N(x) =
∑n−1
i=0 tix

i ∈ Fq[x] is relatively

prime to xn − 1.

Proof: By Theorem 2.2.1, we know that α0, α1, . . . , αn−1 form a basis if and only if ∆(α0, . . . , αn−1) 6=

0. Since Tr(αiαi+j) = Tr(α0αj), we see that

∆(α0, . . . , αn−1) = det


t0 t1 . . . tn−1

tn−1 t0 . . . tn−2
...

...
...

t1 t2 . . . t0

 .

By Lemma 2.2.3, ∆(α0, . . . , αn−1) 6= 0 if and only if xn − 1 and N(x) =
∑n−1
i=0 tix

i are relatively

prime. �

Theorem 2.2.6 (Perlis [108]) Let N = {α0, α1, . . . , αn−1} be a normal basis of Fqn over Fq.

Then an element γ =
∑n−1
i=0 aiαi, where ai ∈ Fq, is a normal element if and only if the polynomial

γ(x) =
∑n−1
i=0 aix

i ∈ Fq[x] is relatively prime to xn − 1.

Proof: Note that 
γ

γq

...

γq
n−1

 =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2
...

...
...

...

a1 a2 a3 · · · a0




α0

α1
...

αn−1

 .

The n elements γ, γq, . . . , γq
n−1
are linearly independent if and only if the circulant matrix

c[a0, a1, . . . , an−1] is nonsingular, that is, if and only if the polynomial γ(x) =
∑n−1
i=0 aix

i ∈ Fq[x]

is relatively prime to xn − 1. �
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From this theorem we see that if there is a normal basis of Fqn over Fq then the number of

normal elements in Fqn over Fq is equal to the number of polynomials in Fq[x] of degree less than

n that are relatively prime to xn − 1.

Theorem 2.2.7 The dual basis of a normal basis is a normal basis.

Proof: Let ᾱ = {α, αq, αq
2

, . . . , αq
n−1
} be a normal basis of Fqn over Fq and β̄ = {β1, β2, . . . , βn}

its dual. Let

A =


α αq · · · αq

n−1

αq αq
2

· · · α

...
...

...

αq
n−1

α · · · αq
n−2

 , B =


β1 β2 · · · βn

βq1 βq2 · · · βqn
...

...
...

βq
n−1

1 βq
n−1

2 · · · βq
n−1

n

 .

Then, by definition, AB = In and so BA = In. Note that

(AB)T = BTAT = BTA = In,

since A is a symmetric matrix. From BA = In = B
TA we conclude that B = BT . It follows that

βi = β
qi−1

1 and hence that β̄ is a normal basis. �

The following theorem describes a method of computing the dual basis of a normal basis (which

by Theorem 2.2.7 is also a normal basis).

Theorem 2.2.8 Let N = {α0, α1, . . . , αn−1} be a normal basis of Fqn over Fq. Let ti =

Trqn|q(α0αi), and N(x) =
∑n−1
i=0 tix

i. Furthermore, let D(x) =
∑n−1
i=0 dix

i, di ∈ Fq, be the

unique polynomial such that N(x)D(x) ≡ 1(mod xn − 1). Then the dual basis of N is generated

by β =
∑n−1
i=0 diαi.

Proof: Note that

N(x)D(x) =
∑

0≤i,j≤n−1

tidjx
i+j

≡
n−1∑
i=0

n−1∑
k=0

dkti−kx
i (mod xn − 1).

It follows from N(x)D(x) ≡ 1(mod xn − 1) that

n−1∑
k=0

dkti−k =

 1, if i = 0,0, otherwise.
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Thus

Tr(αiβ
qj ) = Tr

(
αi(

n−1∑
k=0

dkαj+k)

)
=

n−1∑
k=0

dkTr(αiαj+k)

=

n−1∑
k=0

dkTr(α0αi−j−k) =

n−1∑
k=0

dkti−j−k

=

 1, if i = j,0, otherwise.

That is, {β, βq, . . . , βq
n−1
} is the dual basis of N . �

Theorem 2.2.9 Let N and D(x) be as in Theorem 2.2.8. Let γ =
∑n−1
i=0 aiαi, where ai ∈ Fq, be

a normal element in Fqn and let δ(x) =
∑n−1
i=0 bix

i be the unique polynomial such that γ(x)δ(x) ≡ 1

(mod xn − 1), where γ(x) =
∑n−1
i=0 aix

i. Define

ci =
n−1∑
k=0

bkdi+k, 0 ≤ i ≤ n− 1.

Then δ =
∑n−1
i=0 ciαi generates the dual basis of the normal basis generated by γ.

Proof: Let {β0, β1, . . . , βn−1} be the dual basis of N . Then one can check, similar to the proof

of Theorem 2.2.8, that

δ =

n−1∑
i=0

b−iβi (2.3)

generates the dual basis of the normal basis generated by γ. By Theorem 2.2.8, β =
∑n−1
i=0 diαi.

Substituting β into (2.3), we obtain the theorem immediately. �

2.3 Composition of Normal Bases

It is reasonable to ask the following question: if we are given normal bases of some fields, say Fqt

over Fq and Fqv over Fq, how can we construct a normal basis of a larger field, say Fqvt over Fq?

We start with the opposite direction, that is, given a normal basis of Fqvt over Fq to construct a

normal basis for Fqt (or Fqv ) over Fq. The results are stated in terms of normal elements.
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Theorem 2.3.1 (Perlis [108]) Let t and v be any positive integers. If α is a normal element of

Fqvt over Fq then γ = Trqvt|qt(α) is a normal element of Fqt over Fq. Moreover, if α is self-dual

normal then so is γ.

Proof: The conjugates of γ =
∑v−1
i=0 α

qti are non-overlapping sums of the vt conjugates of α,

which are assumed to be linearly independent over Fq. So they must also be linearly independent

over Fq. The latter statement is easily checked directly. �

We remark that the multiplication table of the normal basis generated by γ in Theorem 2.3.1

is easily derived from that of α. Actually, assume that

ααq
i

=
vt−1∑
j=0

c(i, j)αq
j

, 0 ≤ i ≤ vt− 1.

Then

γγq
i

=

t−1∑
j=0

d(i, j)γq
j

, 0 ≤ i ≤ t− 1,

where

d(i, j) =

v−1∑
k=0

v−1∑
`=0

c(t(`− k) + i, j − tk).

Before we go to the next theorem, we prove a lemma which itself is interesting.

Lemma 2.3.2 Let gcd(v, t) = 1. Let A = {α1, α2, . . . , αv} be a basis of Fqv over Fq. Then A is

also a basis of Fqvt over Fqt .

Proof: We need to prove that α1, α2, . . . , αv are linearly independent over Fqt . Suppose there

are ai ∈ Fqt , 1 ≤ i ≤ v, such that

v∑
i=1

aiαi = 0. (2.4)

Note that for any integer j,(
v∑
i=1

aiαi

)qtj
=

v∑
i=1

aq
tj

i αq
tj

i =
v∑
i=1

aiα
qtj

i .
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Since gcd(v, t) = 1, when j runs through 0, 1, . . . , v−1 modulo v, tj also runs through 0, 1, . . . , v−1

modulo v. Note that since αi ∈ Fqv , we have α
qv

i = αi and thus α
qu

i = αq
k

i whenever u ≡ k

(mod v). So (2.4) implies that

v∑
i=1

aiα
qj

i = 0, for each j, 0 ≤ j ≤ v − 1,

that is, 
α1 α2 · · · αv

αq1 αq2 · · · αqv
...

...
...

αq
v−1

1 αq
v−1

2 · · · αq
v−1

v




a1

a2
...

av

 = 0. (2.5)

As α1, α2, . . . , αv are linearly independent over Fq, the coefficient matrix of (2.5) is nonsingular,

by Corollary 2.2.2. Thus a1, a2, . . . , av must be 0, which proves that α1, α2, . . . , αv are linearly

independent over Fqt . �

Theorem 2.3.3 (Pincin [109], Semaev [123]) Let n = vt with v and t relatively prime. Then,

for α ∈ Fqv and β ∈ Fqt , the element γ = αβ ∈ Fqn is a normal element of Fqn over Fq if and

only if α and β are normal elements of Fqv and Fqt , respectively, over Fq.

Proof: First assume that γ is a normal element of Fqn over Fq. Then by Theorem 2.3.1,

Trqn|qt(γ) = βTrqn|qt(α) = βTrqv|q(α)

is a normal element of Fqt over Fq. Note that Trqv|q(α) must not be zero (otherwise γ would not

be normal) and is in Fq. So β is a normal element of Fqt over Fq. Similarly, α is a normal element

of Fqv over Fq.

Now assume that both of α and β are normal elements of Fqv and Fqt , respectively, over Fq.

We prove that γ = αβ is a normal element of Fqn over Fq. As gcd(v, t) = 1, by the Chinese

remainder theorem, for any 0 ≤ i ≤ v − 1 and 0 ≤ j ≤ t− 1 there is a unique integer k such that

k ≡ i (mod v) and k ≡ j (mod t),

and hence

γq
k

= αq
i

βq
j

.
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Thus the conjugates of γ are:

αq
i

βq
j

: 0 ≤ i ≤ v − 1, 0 ≤ j ≤ t− 1. (2.6)

Now we prove that the elements of (2.6) are linearly independent over Fq. Suppose there are

aij ∈ Fq such that ∑
0≤i≤v−1
0≤j≤t−1

aijα
qiβq

j

= 0. (2.7)

Let bj =
∑v−1
i=0 aijα

qi , 0 ≤ j ≤ t− 1. Then bj ∈ Fqv and (2.7) implies that

t−1∑
j=0

bjβ
qj = 0.

But by Lemma 2.3.2, β, βq, . . . , βq
t−1
are linearly independent over Fqv , so bj = 0, 0 ≤ j ≤ t− 1.

However α, αq, . . . , αq
v−1
are linearly independent over Fq, and hence bj = 0 implies aij = 0 for

all i, j. Therefore the elements in (2.6) form a basis of Fqn over Fq and this completes the proof.

�

Theorem 2.3.4 (Semaev [123], Séguin [122], Jungnickel [70]) Let α, β and γ be as in The-

orem 2.3.3. Then

(a) the complexity of the normal basis generated by γ is equal to the product of the complexities

of those of α and β;

(b) the normal basis generated by γ is self-dual if and only if the normal bases generated by α

and β are both self-dual.

Proof: Let ᾱ be the column vector (α, αq, . . . , αq
v−1
)t and β̄ the column vector (β, βq, . . . , βq

t−1
)t.

Then the Kronecker product ᾱ⊗ β̄ is a column vector of length vt, consisting of the elements in

the normal basis generated by γ = αβ, ordered in a different way. Assume that

αᾱ = Aᾱ ββ̄ = Bβ̄,

where A and B are v × v and t × t matrices over Fq, respectively. Then by the property of

Kronecker product of matrices, we have

γγ̄ = αβ ᾱ⊗ β̄ = (αᾱ)⊗ (ββ̄)

= (Aᾱ)⊗ (Bβ̄) = (A⊗B)(ᾱ⊗ β̄).
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The number of nonzero entries in A ⊗ B is obviously equal to the product of those in A and B.

Part (a) is thus proved.

For part (b), Theorem 2.3.1 shows that if γ is self-dual normal over Fq then both α and β are

self-dual normal over Fq. Assume that α and β are self-dual normal over Fq. By Theorem 2.3.1,

we just need to prove that γ = αβ is self-dual. Note that, for any 0 ≤ i ≤ v− 1 and 0 ≤ j ≤ t− 1,

Trqvt|q(αβ α
qiβq

j

) = Trqv|q(αα
qi)Trqt|q(ββ

qj ) =

 1, if i = j = 0,0, otherwise.

That is, the normal basis generated by γ is self-dual. �

The proof of Theorem 2.3.3 shows that one can easily get a multiplication table of a normal

basis of Fqvt (with v and t relatively prime) from multiplication tables of normal bases of Fqv and

Fqt , respectively, over Fq. If we are given two N -polynomials of degree v and t, respectively, then

the following theorem tells us how to construct an N-polynomial of degree vt.

Theorem 2.3.5 Let f(x) =
∑v
i=0 aix

i, g(x) =
∑t
j=0 bjx

j ∈ Fq[x] be two N-polynomials of degree

v and t respectively, with v and t relatively prime. Let A, B be the companion matrices of f(x),

g(x) respectively, and let C = A⊗B be the Kronecker product of A and B. Then the characteristic

polynomial

det(Ix− C) = det

 t∑
j=0

bjx
jAt−j

 = det( v∑
i=0

aix
iBv−i

)

is an N-polynomial of degree vt over Fq.

Proof: Let α be a root of f(x) and β a root of g(x). Then α is a normal element of Fqv over Fq

and β a normal element of Fqt over Fq. Note that α, α
q, . . . , αq

v−1
are the eigenvalues of A and

β, βq, . . . , βq
t−1
are the eigenvalues of B. It is easy to see that the eigenvalues of C = A⊗B are

αq
i

βq
j

, i = 0, 1, . . . , v − 1, j = 0, 1, . . . , t− 1. therefore

det(Ix− C) =
∏

0≤i≤v−1
0≤j≤t−1

(x− αq
i

βq
j

),

and it is an N -polynomial by Theorem 2.3.3. We prove that det(xI − C) = det(
∑v
i=0 aix

iBv−i);

the other equation is proved similarly. Denote αi = α
qi for 0 ≤ i ≤ v − 1. Let D be the diagonal
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matrix

D =


α1

α2
. . .

αv

 .

Then there is an invertible matrix P such that A = PDP−1 and thus

det(xIvt − C) = det(xIvt − (PDP
−1)⊗B)

= det(xIvt − (P ⊗ It)(D ⊗B)(P
−1 ⊗ It))

= det((P ⊗ It)(xIvt −D ⊗B)(P ⊗ It)
−1)

= det(xIvt −D ⊗B)

= det


(xIt − α0B)

(xIt − α1B)

. . .

(xIt − αv−1B)


=

v−1∏
i=0

det(xIt − αiB) = det
v−1∏
i=0

(xIt − αiB)

= det(
v∑
i=0

aix
iBv−i),

as required. �

2.4 Distribution of Normal Elements

In this section we will show how normal elements are distributed in the whole space. We prove that

there is a basis of Fqn over Fq such that, with respect to this basis representation, normal elements

are just the elements with some groups of the coordinates not simultaneously zero. Consequently

one can easily count the total number of normal elements and hence the number of normal bases

of Fqn over Fq.

We view Fqn as a vector space of dimension n over Fq. Recall that the Frobenius map:

σ : η 7→ ηq, η ∈ Fqn
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is a linear transformation of Fqn over Fq. This linear transformation plays an essential role in the

following context.

Before proceeding we review some concepts from linear algebra. Our standard reference to

linear algebra is Hoffman and Kunze [62]. Let T be a linear transformation on a finite-dimensional

vector space V over a (arbitrary) field F . A polynomial f(x) =
∑m
i=0 aix

i in F [x] is said to

annihilate T if amT
m + · · · + a1T + a0I = 0, where I is the identity map and 0 is the zero

map on V . The uniquely determined monic polynomial of least degree with this property is

called the minimal polynomial for T . It divides any other polynomial in F [x] annihilating T .

In particular, the minimal polynomial for T divides the characteristic polynomial for T (Cayley-

Hamilton Theorem).

A subspaceW ⊆ V is called T -invariant if Tu ∈W for every u ∈W . For any vector u ∈ V , the

subspace spanned by u, Tu, T 2u, . . . is a T -invariant subspace of V , called the T -cyclic subspace

generated by u, denoted by Z(u, T ). It is easily seen that Z(u, T ) consists of all vectors of the

form g(T )u, g(x) in F [x]. If Z(u, T ) = V , then u is called a cyclic vector of V for T .

For any polynomial g(x) ∈ F [x], g(T ) is also a linear transformation on V . The null space (or

kernel) of g(T ) consists of all vectors u such that g(T )u = 0; we also call it the null space of g(x).

On the other hand, for any vector u ∈ V , the monic polynomial g(x) ∈ F [x] of smallest degree

such that g(T )u = 0 is called the T -Order of u (some authors call it the T -annihilator, or minimal

polynomial of u). We denote this polynomial by Ordu,T (x), or Ordu(x) if the transformation

T is clear from context. Note that Ordu(x) divides any polynomial h(x) annihilating u (i.e.,

h(T )u = 0), in particular the minimal polynomial for T or the characteristic polynomial for T . It

is not difficult to see that the degree of Ordu,T (x) is equal to the dimension of Z(u, T ).

Next we summarize the results we need from linear algebra in the following lemma. The proof

is direct, so omitted.

Lemma 2.4.1 Let T be a linear transformation on a finite-dimensional vector space V over a

field F . Assume that the minimal and characteristic polynomials for T are the same, say f(x).

(i) Let g(x) ∈ F [x] and W be its null space. Let d(x) = gcd(f(x), g(x)) and e(x) = f(x)/d(x).

Then the dimension of W is equal to the degree of d(x) and

W = {u ∈ V | d(T )u = 0} = {e(T )u | u ∈ V }.
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(ii) Let f(x) have the following factorization

f(x) =

r∏
i=1

fdii (x),

where fi(x) ∈ F [x] are the distinct irreducible factors of f(x). Let Vi be the null space of f
di
i (x).

Then

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr.

Furthermore, let Ψi(x) = f(x)/f
di
i (x). Then, for any uj ∈ Vj , uj 6= 0,

Ψi(T )uj

 6= 0, if i = j,= 0, otherwise.

Returning to our subject, we consider Fqn as a vector space of dimension n over Fq and the

Frobenius map σ is a linear transformation.

Lemma 2.4.2 The minimal and characteristic polynomial for σ are identical, both being xn − 1.

Proof: We know that σnη = ηq
n

= η for every η ∈ Fqn . So σn − I = 0. We prove that xn − 1 is

the minimal polynomial of σ.

Assume there is a polynomial f(x) =
∑n−1
i=0 fix

i ∈ Fq[x] of degree less than n that annihilates

σ, that is,

n−1∑
i=0

fiσ
i = 0.

Then, for any η ∈ Fqn , (
n−1∑
i=0

fiσ
i

)
η =

n−1∑
i=0

fiη
qi = 0,

i.e., η is a root of the polynomial F (x) =
∑n−1
i=0 fix

qi . This is impossible, since F (x) has degree

at most qn−1 and cannot have qn > qn−1 roots in Fqn . Hence the minimal polynomial for σ is

xn − 1.

Since the characteristic polynomial of σ is monic of degree n and is divisible by the minimal

polynomial for σ, they must be identical, both being xn − 1. �
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Our objective is to locate the normal elements in Fqn over Fq. Let α ∈ Fqn be a normal

element. Then α, σα, . . . , σn−1α are linearly independent over Fq. So there is no polynomial of

degree less than n that annihilates α with respect to σ. Hence the σ-order of α must be xn − 1,

that is, α is a cyclic vector of Fqn over Fq with respect to σ. So an element α ∈ Fqn is a normal

element over Fq if and only if Ordα,σ(x) = x
n − 1.

Recall that p denotes the characteristic of Fq. Let n = n1p
e with gcd(p, n1) = 1 and e ≥ 0.

For convenience we denote pe by t. Suppose that xn − 1 has the following factorization in Fq[x]:

xn − 1 = (ϕ1(x)ϕ2(x) · · ·ϕr(x))
t, (2.8)

where ϕi(x) ∈ Fq[x] are the distinct irreducible factors of x
n − 1. We assume that ϕi(x) has

degree di, i = 1, 2, . . . , r. Let

Φi(x) = (x
n − 1)/ϕi(x) (2.9)

and

Ψi(x) = (x
n − 1)/ϕti(x) (2.10)

for i = 1, 2, . . . , r. Then we have a useful characterization of the normal elements in Fqn .

Theorem 2.4.3 (Schwarz [119]) An element α ∈ Fqn is a normal element if and only if

Φi(σ)α 6= 0, i = 1, 2, . . . , r. (2.11)

Proof: By definition, α is normal over Fq if and only if αi = α
qi = σi(α), i = 0, 1, . . . , n− 1, are

linearly independent over Fq, that is, the σ-order of α is equal to x
n − 1. This is true if and only

if no proper factor of xn − 1 annihilates α, hence if and only if (2.11) holds. �

Corollary 2.4.4 (Perlis [108]) Let n = pe. Then α ∈ Fqn is a normal element over Fq if and

only if Trqn|q(α) 6= 0.

Proof: When n = pe, xn − 1 = (x − 1)n. So, in (2.8), r = 1, ϕ1(x) = x − 1 and Φ1(x) =

xn−1 + · · ·+ x+ 1. By Theorem 2.4.3, α ∈ Fqn is a normal element over Fq if and only if

Φ1(σ)α =

n−1∑
i=0

αq
i

= Trqn|q(α) 6= 0. �

The following theorem decomposes Fqn into a direct sum of subspaces, half of which are

σ-invariant subspaces. The theorem enables us to see where the normal elements of Fqn lie.
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Theorem 2.4.5 Let Wi be the null space of ϕ
t
i(x) and W̃i the null space of ϕ

t−1
i (x). Let Wi be

any subspace of Wi such that Wi =Wi ⊕ W̃i. Then

Fqn =

r∑
i=1

Wi ⊕ W̃i

is a direct sum where Wi has dimension di and W̃i has dimension (t − 1)di. Furthermore, an

element α ∈ Fqn with α =
∑r
i=1(αi + α̃i), αi ∈Wi, α̃i ∈ W̃i, is a normal element over Fq if and

only if αi 6= 0 for each i = 1, 2, . . . , r.

Proof: The first statement follows from Lemma 2.4.1. We only need to prove the second state-

ment. Note that if i 6= j then ϕtj(x)|Φi(x). Hence for any αj ∈Wj , Φi(σ)αj = 0. So

Φi(σ)α = Φi(σ)(αi + α̃i) = Φi(σ)αi +Φi(σ)α̃i = Φi(σ)αi,

as Φi(x) = Ψi(x)ϕ
t−1
i (x) is divisible by ϕ

t−1
i (x). Therefore, by Theorem 2.4.3, α is a normal

element over Fq if and only if Φi(σ)αi 6= 0 for each i = 1, 2, . . . , r.

Now we prove that Φi(σ)αi 6= 0 if and only if αi 6= 0. Obviously, if Φi(σ)αi 6= 0 then αi 6= 0.

Conversely, let αi 6= 0. Then αi ∈Wi \ W̃i, whence

ϕti(σ)αi = 0

and

ϕt−1i (σ)αi 6= 0.

As Ψi(x) and ϕi(x) are relatively prime, there exist polynomials a(x) and b(x) in Fq[x] such that

a(x)ϕi(x) + b(x)Ψi(x) = 1.

Hence

αi = a(σ)ϕi(σ)αi + b(σ)Ψi(σ)αi,

and so

ϕt−1i (σ)αi = a(σ)ϕti(σ)αi + b(σ)ϕ
t−1
i (σ)Ψi(σ)αi

= b(σ)Φi(σ)αi

= b(σ)(Φi(σ)αi).
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Since ϕt−1i (σ)αi 6= 0, one must have that Φi(σ)αi 6= 0. This completes the proof. �

If we have a basis for each of the subspaces Wi and W̃i, then by putting them together we

have a basis for Fqn over Fq with the properties that an element in Fqn represented in this basis

generates a normal basis if and only if its coordinates corresponding to the subspace Wi are not

simultaneously zero for each i. Since the dimension of the subspace Wi is di ≥ 1, the following

corollary is another immediate consequence from Theorem 2.4.5.

Corollary 2.4.6 (Normal Basis Theorem for Finite Fields) There always exists a normal

basis of Fqn over Fq.

As another consequence of Theorem 2.4.5, we count the number of normal elements, and thus

the number of normal bases of Fqn over Fq.

Corollary 2.4.7 (Hensel [61], Ore [106]) The total number of normal elements in Fqn over

Fq is

v(n, q) =
r∏
i=1

qdi(t−1)(qdi − 1),

and the number of normal bases of Fqn over Fq is v(n, q)/n.

Proof: The first statement is obvious from Theorem 2.4.5 and the second one follows from the

fact that every element in a normal basis generates the same basis. �

We remark that computing v(n, q) does not require the factorization of xn−1. The only thing

one needs is the degrees of all the irreducible factors. Write n = n1p
e as above. Then it is shown

in [5] and [52] that

v(n, q) = qn−n1
∏
d|n1

(qτ(d) − 1)φ(d)/τ(d),

where the product is over all divisors d of n1 with 1 ≤ d ≤ n1, τ(d) is the order of q modulo d,

and φ(d) is the Euler totient function.

In the special case that n and q are relatively prime, we have t = 1, W̃i = {0} and Wi = Wi

in Theorem 2.4.5. We restate this as a corollary.
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Corollary 2.4.8 (Pincin [109], Semaev [123]) Let gcd(n, q) = 1 and let

xn − 1 = ϕ1(x)ϕ2(x) · · ·ϕr(x)

be a complete factorization in Fq[x]. Let Wi be the null space of ϕi(x). Then

Fqn = W1 ⊕W2 ⊕ · · · ⊕Wr (2.12)

is a direct sum of σ-invariant subspaces; the dimension of Wi equals the degree of ϕi(x). Further-

more α =
∑r
i=1 αi ∈ Fqn , αi ∈ Wi, is a normal element of Fqn over Fq if and only if αi 6= 0 for

each i.

Assume now that gcd(n, q) = 1. Note that each Wi in the decomposition (2.12) in Corol-

lary 2.4.8 is a σ-invariant subspace and every element in Wi is annihilated by ϕi(σ). As ϕi(x) is

irreducible, Wi has no proper σ-invariant subspaces. In this case, we say that Wi is an irreducible

σ-invariant subspace. The decomposition (2.12) is unique in the sense that if Fqn is decomposed

into a direct sum of irreducible σ-invariant subspaces

Fqn = V1 ⊕ V2 ⊕ · · · ⊕ Vs,

then s = r and, after rearranging the order of Vi’s if necessary, Vi = Wi for i = 1, 2, . . . , r. As

an application of this observation, we look at a special case of the degree n when there exists an

element a ∈ Fq such that xn − a is irreducible over Fq.

We first introduce some notation. A cyclotomic coset mod n with respect to q that contains

an integer ` is the set

M` = {`, `q, . . . , `q
m−1} mod n

where m is the smallest positive integer such that `qm ≡ `(mod n). Let S be a subset of

{0, 1, . . . , n− 1} such that M`1 and M`2 are disjoint for any `1, `2 ∈ S, `1 6= `2, and

{0, 1, . . . , n− 1} =
⋃
`∈S

M`.

Any subset S satisfying this property is called a complete set of representatives of all the cyclotomic

cosets mod n.
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Theorem 2.4.9 (Semaev [123]) Let gcd(n, q) = 1, and assume that there exists a ∈ Fq such

that xn−a is irreducible over Fq. Let α be a root of xn−a and S a complete set of representatives

of all the cyclotomic cosets mod n. For ` ∈ S, let V` be the subspace of Fqn spanned over Fq by

the elements of the set {αm | m ∈M`}. Then

Fqn =
∑
`∈S

V` (2.13)

is a direct sum of irreducible σ-invariant subspaces. Therefore an element θ =
∑
`∈S θ`, θ` ∈ V`,

is a normal element if and only if θ` 6= 0 for each ` ∈ S.

Proof: As {1, α, . . . , αn−1} is a basis of Fqn over Fq, (2.13) is a direct sum. Obviously, each V`

is σ-invariant. We just need to prove that V` is irreducible. Let n` be the cardinality of M`. Note

that the number of irreducible factors of xn − 1 of degree m is equal to the number of ` ∈ S such

that n` = m. If f`(x) is the characteristic polynomial of σ on V`, then

xn − 1 =
∏
`∈S

f`(x).

Hence, the polynomials f`(x) are irreducible over Fq. Therefore (2.13) is an irreducible σ-invariant

decomposition. �

2.5 Characterization of N-Polynomials

In Section 2.1 we saw that irreducible polynomials with linearly independent roots are called

N-polynomials and the construction of normal bases is equivalent to the construction of N-

polynomials. A natural problem is: when is an irreducible polynomial an N-polynomial? This

section is devoted to the discussion of this problem.

A direct way to verify whether an irreducible polynomial f(x) is an N-polynomial is as fol-

lows. Let α be a root of f(x). Then 1, α, . . . , αn−1 form a polynomial basis of Fqn over Fq and

α, αq, . . . , αq
n−1
are all the roots of f(x) in Fqn . Express each α

qi , 0 ≤ i ≤ n−1, in the polynomial

basis:

αq
i

=

n−1∑
j=0

bijα
j , bij ∈ Fq. (2.14)
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If the n × n matrix B = (bij) is nonsingular then α, αq, . . . , αq
n−1
are linearly independent, and

hence f(x) is an N-polynomial.

This does give us a polynomial-time algorithm to test if f(x) is an N-polynomial. However

(2.14) requires a lot of computations. A natural question is whether there is a simple criterion to

identify N-polynomials. The answer is yes in certain cases.

Actually, Theorem 2.4.3 gives us another way to check if an irreducible polynomial is an N-

polynomial. Noting that c(σ)α =
∑m
i=0 ciα

qi for any polynomial c(x) =
∑m
i=0 cix

i ∈ Fq[x], we

can restate Theorem 2.4.3 as follows.

Theorem 2.5.1 (Schwarz [119]) Let f(x) be an irreducible polynomial of degree n over Fq and

α a root of it. Let xn − 1 factor as in (2.8) and let Φi(x) be as in (2.9). Then f(x) is an

N-polynomial over Fq if and only if

LΦi(α) 6= 0 for each i = 1, 2, . . . , r,

where LΦi(x) is the linearized polynomial, defined by LΦi(x) =
∑m
i=0 tix

qi if Φi(x) =
∑m
i=0 tix

i.

In general, checking the conditions in Theorem 2.5.1 is equivalent to computing (2.14). But,

in certain cases, the conditions in Theorem 2.5.1 are very simple, as indicated by the following

four corollaries.

Corollary 2.5.2 (Perlis [108]) Let n = pe and f(x) = xn+ a1x
n−1+ · · ·+ an be an irreducible

polynomial over Fq. Then f(x) is an N-polynomial if and only if a1 6= 0.

Proof: It follows from Corollary 2.4.4 by noting that a1 = −Trqn|q(α) for any root of f(x). �

Corollary 2.5.3 Let f(x) = x2 + a1x+ a2 be an irreducible quadratic polynomial over Fq. Then

f(x) is an N-polynomial if and only if a1 6= 0.

Proof: Note that x2 − 1 = (x− 1)(x+ 1) and apply Theorem 2.2.4. �

Corollary 2.5.4 (Pei, Wang and Omura [107]) Let r be a prime different from p. Suppose

that q is a primitive element modulo r. Then an irreducible polynomial f(x) = xr+a1x
r−1+· · ·+ar

is an N-polynomial over Fq if and only if a1 6= 0.
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Proof: Note that

xr − 1 = (x− 1)(xr−1 + · · ·+ x+ 1).

Since q is primitive modulo r, xr−1+· · ·+x+1 is irreducible over Fq. Hence, in (2.8), ϕ1(x) = x−1

and ϕ2(x) = x
r−1+ · · ·+x+1. Thus Φ1(x) = ϕ2(x) and Φ2(x) = ϕ1(x). Let α be a root of f(x).

By Theorem 2.5.1, f(x) is an N-polynomial if and only if

Φ1(σ)α = αq
r−1

+ · · ·+ αq + α = Trqr|q(α) = −a1 6= 0 (2.15)

and

Φ2(σ)α = αq − α 6= 0. (2.16)

But (2.16) is obviously true, since α 6∈ Fq. �

Corollary 2.5.5 Let n = per where r is a prime different from p and q is a primitive element

modulo r. Let f(x) = xn + a1x
n−1 + · · · + an be an irreducible polynomial over Fq and α a root

of f(x). Let u =
∑pe−1
i=0 αq

ir

. Then f(x) is an N-polynomial if and only if a1 6= 0 and u 6∈ Fq.

Proof: In this case, the following factorization is complete:

xn − 1 = (xr − 1)p
e

= (x− 1)p
e

(xr−1 + · · ·+ x+ 1)p
e

.

Hence

Φ1(x) =
xn − 1

x− 1
=
n−1∑
i=0

xi,

and

Φ2(x) =
xn − 1

xr−1 + · · ·+ x+ 1
= (x− 1)

xp
er − 1

xr − 1

= (x− 1)

(
pe−1∑
i=0

xir

)

=

pe−1∑
i=0

xir+1 −
pe−1∑
i=0

xir.

It follows that

LΦ1(α) = Trqn|q(α) = −a1,
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and

LΦ2(α) =

(
pe−1∑
i=0

αq
ir

)q
−
pe−1∑
i=0

αq
ir

= uq − u.

Note that uq−u 6= 0 if and only if u 6∈ Fq. The result now follows immediately from Theorem 2.5.1.

�



Chapter 3

Construction of Normal Bases

In this Chapter, we present various algorithms for constructing normal bases. We also construct

explicitly some families of irreducible polynomials with linearly independent roots.

3.1 Randomized Algorithms

We begin with a brief discussion of randomized algorithms. The simplest algorithm which comes

to mind for constructing a normal basis is to repeatedly select a random element α in Fqn until

{α, αq, . . . , αq
n−1
} is a linearly independent set over Fq. This is a probabilistic polynomial-time

algorithm since von zur Gathen and Giesbrecht [56] have shown that the probability, κ, that α is

normal over Fq satisfies κ ≥ 1/34 if n ≤ q4, and κ > (16 logq n)
−1 if n ≥ q4.

A better probabilistic algorithm is based on the following theorem.

Theorem 3.1.1 (Artin [9]) Let f(x) be an irreducible polynomial of degree n over Fq and α a

root of f(x). Let

g(x) =
f(x)

(x− α)f ′(α)
.

Then there are at least q − n(n− 1) elements u in Fq such that g(u) is a normal element of Fqn

over Fq.

35
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Proof: Let σi be the automorphism θ → θq
i

, θ ∈ Fqn , for i = 1, . . . , n. Then αi = σi(α) is also

a root of f(x), 1 ≤ i ≤ n . Let

gi(x) = σi(g(x)) =
f(x)

(x− αi)f ′(αi)
,

and note that σiσj(g(x)) = σi+j(g(x)). Then gi(x) is a polynomial in Fqn [x] having αk as a root

for k 6= i and gi(αi) = 1. Hence

gi(x)gk(x) ≡ 0 (mod f(x)), for i 6= k. (3.1)

Note that

g1(x) + g2(x) + · · ·+ gn(x)− 1 = 0, (3.2)

since the left side is a polynomial of degree at most n − 1 and has α1, α2, . . . , αn as roots.

Multiplying (3.2) by gi(x) and using (3.1) yields

(gi(x))
2 ≡ gi(x) (mod f(x)). (3.3)

We next compute the determinant, D(x), of the matrix

D = [σiσj(g(x))], 1 ≤ i, j ≤ n.

From (3.1), (3.2) and (3.3), we see that the entries of DTD modulo f(x) are all 0, except on the

main diagonal, where they are all 1. Hence

(D(x))2 = det(DTD) ≡ 1 (mod f(x)).

This proves that D(x) is a non-zero polynomial of degree at most n(n−1). Therefore D(x) has at

most n(n− 1) roots in Fq. The proof is completed by noting that, by Theorem 2.2.2, for u ∈ Fq,

g(u) is a normal element of Fqn over Fq if and only if D(u) 6= 0. �

Now the algorithm is very simple. Choose u ∈ Fq at random, and let θ = g(u). Then test if θ

is a normal element of Fqn over Fq. Theorem 3.1.1 tells us that if q > 2n(n−1), then θ is a normal

element with probability at least 1/2. The entire computation takes O((n + log q)(n log q)2) bit

operations, as shown by Bach, Driscoll and Shallit [11].

Frandsen [46] shows that when q > 2n(n−1), an arbitrary element in Fqn is a normal element

with probability ≥ 1/2. In general, he proves that a random element in Fqn is a normal element

with probability at least (1− q−1)/(e(1 + logq(n))).
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3.2 Deterministic Algorithms

Next we turn to deterministic algorithms for constructing normal bases for Fqn over Fq. We will

assume that an irreducible polynomial f(x) of degree n over Fq is given. Let α be a root of f(x).

Then {1, α, . . . , αn−1} is a basis of Fqn over Fq. Thus we may compute the matrix representation

of the Frobenius map σ : x→ xq, x ∈ Fqn . Von zur Gathen and Shoup [53] give an efficient way

to do this.

An obvious deterministic algorithm follows from Theorem 2.4.5. One first factors xn−1 over Fq

to get the factorization (2.8). Then one computes a basis for each subspace in the decomposition

of Fqn in Theorem 2.4.5. Thus one obtains a basis for the whole space Fqn over Fq and normal

elements are just those whose coordinates corresponding to each Wi are not simultaneously zero.

One advantage of this algorithm is that it produces all the normal elements. However it is not

efficient, since there is currently no deterministic polynomial time algorithm known to factor xn−1

when p is large.

In the following we will present two deterministic polynomial time algorithms due to Lüneburg

[92] and Lenstra [85]. As shown by Bach, Driscoll and Shallit [11], both algorithms have the same

complexity. In both algorithms we need to find the σ-Order Ordθ(x) of an arbitrary element θ in

Fqn . Note that the degree of Ordθ(x) is the least positive integer k such that σ
kθ belongs to the Fq-

linear span of {σiθ | 0 ≤ i < k}. If σkθ =
∑k−1
i=0 ciσ

iθ for that k, then Ordθ(x) = x
k −

∑k−1
i=0 cix

i.

This shows that Ordθ(x) can be computed in polynomial time (in n and log q).

Lüneburg’s algorithm is very simple. For each i = 0, 1, . . . , n − 1, compute the σ-Order

fi = Ordαi(x). Then x
n − 1 = lcm(f0, f1, . . . , fn−1). Now apply factor refinement [11] to the

list of polynomials f0, f1, . . . , fn−1. This will give pairwise relatively prime polynomials g1, g2,

. . . , gr and integers eij , 0 ≤ i ≤ n− 1, 1 ≤ j ≤ r, such that

fi =
∏
1≤j≤r

g
eij
j , i = 0, 1, . . . , n− 1.

For each j, 1 ≤ j ≤ r, find an index i(j) for which eij is maximized. Let

hj = fi(j)/g
ei(j)j
j ,

and take βj = hj(σ)α
i(j). Then

β =

r∑
j=1

βj
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is a normal element of Fqn over Fq. The reason is that the σ-Order of βj is g
ei(j)j
j for j = 1, . . . , r.

As g1, g2, . . . , gr are pairwise relatively prime, the σ-Order of β must be

r∏
j=1

g
ei(j)j
j = xn − 1,

that is, β is a normal element. Bach, Driscoll and Shallit show that this algorithm takes O((n2 +

log q)(n log q)2) bit operations.

Lenstra’s algorithm is more complicated to describe, but has more of a linear algebra flavour.

Its complexity is the same as Lüneburg’s algorithm. Before proceeding to describe this algorithm,

we need two lemmas.

Lemma 3.2.1 Let θ ∈ Fqn with Ordθ(x) 6= xn − 1. Let g(x) = (xn − 1)/Ordθ(x). Then there

exists β ∈ Fqn such that

g(σ)β = θ. (3.4)

Proof: Let γ be a normal element of Fqn over Fq. Then there exists f(x) ∈ Fq[x] such that

f(σ)γ = θ. Since Ordθ(σ)θ = 0, we have (Ordθ(σ)f(σ))γ = 0. So Ordθ(x)f(x) is divisible by

xn − 1. Therefore f(x) is divisible by g(x). Let f(x) = g(x)h(x). Then

g(σ)(h(σ)γ) = θ.

This proves that β = h(σ)γ is a solution of (3.4). �

Lemma 3.2.2 Let θ ∈ Fqn with Ordθ(x) 6= xn−1. Assume that there exists a solution β of (3.4)

such that deg(Ordβ(x)) ≤ deg(Ordθ(x)). Then there exists a non-zero element η ∈ Fqn such that

g(σ)η = 0, (3.5)

where g(x) = (xn − 1)/Ordθ(x). Moreover any such η has the property that

deg(Ordθ+η(x)) > deg(Ordθ(x)). (3.6)

Proof: Let γ be a normal element in Fqn over Fq. It is easy to see that η = Ordθ(σ)γ 6= 0 is a

solution of (3.5). We prove that (3.6) holds for any non-zero solution η of (3.5).
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From (3.4) it follows that Ordθ(x) divides Ordβ(x), so the hypothesis that deg(Ordβ(x)) ≤

deg(Ordθ(x)) implies that Ordβ(x) = Ordθ(x). Hence g(x) must be relatively prime to Ordθ(x).

Note that Ordη(x) is a divisor of g(x), and consequently Ordθ(x) and Ordη(x) are relatively

prime. This implies that

Ordθ+η(x) = Ordθ(x)Ordη(x),

and then (3.6) follows from the fact that η 6= 0. The proof is now complete. �

We are now ready to describe Lenstra’s algorithm for finding a normal element of Fqn over Fq.

Algorithm Construct a normal element of Fqn over Fq.

Step 1. Take any element θ ∈ Fqn and determine Ordθ(x).

Step 2. If Ordθ(x) = x
n − 1 then the algorithm stops.

Step 3. Calculate g(x) = (xn−1)/Ordθ(x), and then solve the system of linear equations g(σ)β =

θ for β.

Step 4. Determine Ordβ(x). If deg(Ordβ(x)) > deg(Ordθ(x)) then replace θ by β and go to

Step 2; otherwise if deg(Ordβ(x)) ≤ deg(Ordθ(x)) then find a non-zero element η such that

g(σ)η = 0, replace θ by θ + η and determine the order of the new θ, and go to Step 2.

The correctness of the algorithm follows from Lemmas 3.2.1 and 3.2.2, since with each replace-

ment of θ the degree of Ordθ(x) increases by at least 1.

3.3 Factoring xe − 1

To realize the decomposition in Theorem 2.4.5, we need to factor polynomials of the type xe−1 in

Fq[x]. Polynomial factorization is, of course, of independent interest; it has important applications

in computer algebra, coding theory and cryptography. For surveys on this topic, the reader is

referred to [89, Chapter 4] or [99, Chapter 2] and the references given there.

We will not try to give the best algorithms for this problem. Instead we present some results

that are of interest from a theoretical point of view. A result due to Daykin [39] shows that if one

knows the minimal polynomial f(x) of a primitive e-th root α of unity then all the irreducible
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factors of xe − 1 can be obtained by computing the minimal polynomials of αt for t = 1, 2, . . . , e.

We give a new characterization of the minimal polynomial of αt in terms of the coefficients of the

quotient polynomial (xe − 1)/f(x). When e = rk, where r is a prime, we show that xr
k

− 1 can

be factored in polynomial time (in rk, and log q) if an irreducible factor of (xr−1)/(x−1) and an

irreducible polynomial of degree r are given. Finally, we present an explicit complete factorization

of x2
k

− 1 over Fq when q ≡ 3 mod 4.

3.3.1 A Theorem of Daykin

Let f(x) ∈ Fq[x] with f(0) 6= 0. The period of f(x) is defined to be the smallest positive integer

e such that f(x) divides xe − 1. Recall the definition for cyclotomic cosets on page 30.

Theorem 3.3.1 (Daykin [39]) Let f(x) be an irreducible polynomial over Fq of degree n and

period e. Let α be a root of f(x) and ft(x) be the minimal polynomial of α
t over Fq for any integer

t. Let ∆ ⊂ Ze be a complete set of representatives of the cyclotomic classes mod e with respect to

q. Then

xe − 1 =
∏
t∈∆

ft(x).

In order to factor xe−1 in Fqn , one problem here is to find efficiently an irreducible polynomial

f(x) ∈ Fqn [x] whose roots are primitive e-th roots of unity. There are at present no deterministic

polynomial time (in log q and deg f(x)) algorithms to solve this problem. In this respect, the

following result seems interesting.

Theorem 3.3.2 Let r be an odd prime that does not divide q, and let m be the order of q modulo

r. Suppose that an irreducible factor of (xr − 1)/(x − 1) and an irreducible polynomial of degree

r in Fq[x] are given. Then, for any positive integer k, an irreducible polynomial in Fqn [x] whose

roots are primitive rk-th roots of unity can be found deterministically in time polynomial in r, k

and log q.

Proof: We only give a sketch of the proof. Let α be a root of the given irreducible factor of

(xr − 1)/(x− 1), and β a root of the given irreducible polynomial of degree r. Then

{αiβj | 0 ≤ i ≤ m− 1, 0 ≤ j ≤ r − 1}
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is a basis of Fqmr over Fq. Henceforth, we assume that elements in Fqmr are represented with

respect to this basis.

Let qm − 1 = rtl with gcd(l, r) = 1. Then rt+1 divides qmr − 1. As α has multiplicative order

r, the equation

xq
m−1 = α (3.7)

has at least one solution in Fqmr , say γ0. It is easy to see that the multiplicative order of γ0 is

divisible by rt+1. Hence γ = γ
(qmr−1)/r
0 is in Fqm and has multiplicative order r

t. Let f(x) be the

minimal polynomial of γ over Fq. For any positive integer k, as x
rk−γ is irreducible in Fqm [x], we

see that f(xr
k

) is irreducible over Fq. It is easy to see that the roots of f(x
rk) have multiplicative

order rt+k for all integers k ≥ 0.

Note that (3.7) can be written as

xq
m

= xα. (3.8)

Since (3.8) is a system of linear equations in the coordinates of x, it can be solved in polynomial

time. So γ can be computed in polynomial time. Also the minimal polynomial of γ can be easily

computed by the method in [58]. The theorem is thus proved. �

3.3.2 A Characterization of Minimal Polynomials

Another problem is to compute the minimal polynomials ft(x) from f(x). Let Ct(x) be the

characteristic polynomial of αt in Fqn over Fq (α
t is viewed as the linear transformation of

multiplying αt on the elements of Fqn .) Then it is easy to see that Ct(x) = (ft(x))
r, where

r = n/d and d is the degree of ft(x). In fact d is equal to the smallest positive integer k such

that tqk ≡ t mod e. If t is relatively prime to e, then d is equal to n. Thus if gcd(t, e) = 1 then

ft(x) = Ct(x). Several methods of computing Ct(x) are given by Alanen and Knuth [6], Daykin

[39], Rifà and Borrell [113] and Thiong Ly [136]. We will not discuss these methods here. Instead

we will show that the coefficients of ft(x) are a unique solution of a system of linear equations

whose coefficients are from the coefficients of the quotient polynomial (xe − 1)/f(x). Though

Theorem 3.3.3 seems not provide any advantages in computing ft(x), it is interesting in itself.
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For a polynomial g(x) =
∑e−1
i=0 gix

i, the associated column vector (g0, g1, · · · , ge−1)t of g(x) is

denoted by g. The polynomial g(x) can be written as (1, x, · · · , xe−1)g. Let u be a column vector.

We will use u[i] to denote the column vector obtained by cyclic shifting u downwardly i positions.

Theorem 3.3.3 Let f(x) be an irreducible polynomial of degree n and period e over Fq. Let x
e−

1 = f(x)h(x), say h(x) =
∑e−n
i=0 hix

i. Let h denote the column vector (h0, h1, · · · , he−n, 0, · · · , 0)t

of length e. Let α be a root of f(x) in some extension field of Fq. Then, for any non-negative

integer t, the minimal polynomial of αt over Fq is m(x) =
∑d
i=0mix

i, where d is the smallest

positive integer d such that tqd ≡ t mod e and X = (m0,m1, · · · ,md)t is the unique solution of

the following system of linear equations:(
h h[t] . . . h[dt]

)
X = 0, (3.9)

with md = 1.

Proof: First note that the degree of the minimal polynomial m(x) of αt over Fq is equal to the

smallest positive integer k such that (αt)q
k

= αt, or equivalently the smallest integer k such that

tqk ≡ t (mod e), as the order of α is e. Hence the degree of m(x) is d.

Now m(αt) = 0 implies that α is a root of m(xt). It follows that f(x) divides m(xt). Thus

xe − 1 divides m(xt)h(x), that is,

m(xt)h(x) ≡ 0 (mod xe − 1). (3.10)

Write h(x) as (1, x, · · · , xe−1)h. It is easy to see that

xih(x) ≡ (1, x, · · · , xe−1)h[i] (mod xe − 1).

Hence

m(xt)h(x) =

d∑
i=0

mi(x
ith(x))

≡
d∑
i=0

mi(1, x, · · · , x
e−1)h[it] (mod xe − 1)

≡ (1, x, · · · , xe−1)
d∑
i=0

mih
[it] (mod xe − 1).
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The equation (3.10) is equivalent to

d∑
i=0

mih
[it] = 0. (3.11)

So we have proved that the coefficients of the minimal polynomial of αt over Fq must be a solution

of the equation (3.9), and the equation (3.10) is equivalent to the equation (3.9).

Finally, we only need to prove that (3.9) has a unique solution within a scalar multiple.

Since (3.9) and (3.10) are equivalent, for any nonzero solution A = (a0, a1, · · · , ad)T of (3.9), the

associated polynomial A(x) =
∑d
i=0 aix

i has degree at most d and satisfies

A(xt)h(x) ≡ 0 (mod xe − 1). (3.12)

Plug α in (3.12), we have

A(αt)h(α) = 0. (3.13)

As e|(qn − 1), e is relatively prime to q. This implies that xe − 1 has no multiple roots, thus

h(α) 6= 0. Hence we have from (3.13) that A(αt) = 0, that is, αt is a root of A(x). One sees that

A(x) is divisible by the minimal polynomial m(x) of αt over Fq which has degree d. Therefore

ad 6= 0 and A(x) = adm(x), that is, the equation (3.9) has only one solution (a0, a1, · · · , ad) with

ad = 1. This completes the proof. �

3.3.3 Factoring x2
k
− 1

In this section, we consider the problem of completely factoring x2
k

− 1 over Fq for q ≡ 3 mod 4.

As x2
t

− 1 = (x − 1)
∏t−1
i=0(x

2i + 1), we just need to factor x2
k

+ 1. As the roots of x2
k

+ 1 are

primitive 2k+1th roots of unity (in some extension field of Fq), every irreducible factor of x
2k + 1

is of the same degree, a power of 2. Also let q = pm where p is a prime. Then m must be odd

and p ≡ 3 mod 4. We only need to factor x2
k

+ 1 over Fp, since its irreducible factors in Fp[x]

will remain irreducible over Fq.

We assume that p is a prime such that 2a|(p+ 1), 2a+1 - (p+ 1) with a ≥ 2. Then 2a+1 is the

highest power in p2 − 1. We first quote the following result due to J.A. Serret [126], see also [89,

Theorem 3.75].
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Lemma 3.3.4 Let a ∈ F ∗q with multiplicative order e. Then the binomial x
t − a is irreducible in

Fq[x] if and only if the integer t ≥ 2 satisfies the following conditions:

(i) gcd(t, (q − 1)/e) = 1,

(ii) each prime factor of t divides e,

(iii) if 4|t then 4|(q − 1).

Theorem 3.3.5 Let H1 = {0}. Recursively define

Hk = {±(
u+ 1

2
)(p+1)/4 : u ∈ Hk−1}

for k = 2, 3, · · · , a− 1 and

Ha = {±(
u− 1

2
)(p+1)/4 : u ∈ Ha−1}.

Then, for 1 ≤ k ≤ a− 1, Hk has cardinality 2k−1,

x2
k

+ 1 =
∏
u∈Hk

(x2 − 2ux+ 1), (3.14)

and for any integer e ≥ 0,

x2
a+e

+ 1 =
∏
u∈Ha

(x2
e+1

− 2ux2
e

− 1). (3.15)

All the factors in the above products are irreducible over Fp.

Proof: First note that Fp2 contains all the 2
a+1th roots of unity, since 2a+1|(p2 − 1). Since

22 - (p− 1), for 1 ≤ k ≤ a, every primitive 2k+1th root of unity is of degree 2 over Fp. We prove

(3.14) and (3.15) by induction on k.

For k = 1, note that p ≡ 3 mod 4, −1 is a quadratic nonresidue in Fp. Hence x2 + 1 is

irreducible over Fp. Therefore (3.14) is true for k = 1.

Assume that (3.14) is true for k with 1 ≤ k < a. For k + 1, we prove that (3.14) is true if

k + 1 < a and (3.15) with e = 0 is true if k + 1 = a. Substituting the x in (3.14) by x2 yields

x2
k+1

+ 1 =
∏
u∈Hk

(x4 − 2ux2 + 1).

and for a complete factorization it is required to factor

x4 − 2ux2 + 1 (3.16)
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for any u ∈ Hk.

Let β be a root of (3.16). Then β is of order 2k+2. As k+ 2 ≤ a+ 1, β is of degree 2 over Fp.

The minimal polynomial of β is of the form

x2 − 2rx+ s, (3.17)

where r, s ∈ Fp. As β is a root of both (3.16) and (3.17), we have

β2 + s = 2rβ, (3.18)

and

β4 = 2uβ2 − 1. (3.19)

Squaring (3.18) gives

β4 = (4r2 − 2s)β2 − s2. (3.20)

From (3.19) and (3.20) we have

(4r2 − 2s)β2 − s2 = 2uβ2 − 1.

As β2 6∈ Fp (since β2 has order 2k+1 and 2k+1 - (p− 1)), we must have 4r2 − 2s = 2u and s2 = 1.

So

s = ±1, (3.21)

and

r = ±

√
u+ s

2
= ±(

u+ s

2
)(p+1)/4. (3.22)

The last equation follows from the fact that if w is a quadratic residue in Fp then w
(p+1)/4 is a

square root of w. We prove that s must be 1 if k < a− 1, and −1 if k = a− 1.

Case 1 k < a − 1. Then k + 1 ≤ a − 1 and k + 3 ≤ a + 1. Suppose s = −1 in (3.21) and

(3.22). Then, from (3.17), x2 − 2rx − 1 is irreducible and its roots are primitive 2k+2th roots of

unity. Hence the roots of x4 − 2rx2 − 1 are primitive 2k+3th roots of unity. As k + 3 ≤ a + 1,

x4 − 2rx2 − 1 has two irreducible factors of degree 2, and assume x2 − 2r̄x + s̄ is one of them.

Then, by a similar argument leading to (3.21) and (3.22), we find that

s̄2 = −1 (3.23)
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and

4r̄2 − 2s̄ = 2r (3.24)

have at least one solution (r̄, s̄) ∈ Fp×Fp. This is impossible , as −1 is a quadratic nonresidue in

Fp.

Therefore s = 1 in (3.21) and (3.22). Since (3.16) has irreducible factors of degree 2, for every

u ∈ Hk, (u+ 1)/2 must be a quadratic residue in Fp. Let u1 = ((u+ 1)/2)(p+1)/4. Then

x4 − 2ux2 + 1 = (x2 − 2u1x+ 1)(x
2 − 2(−u1)x+ 1).

So (3.14) is true for k + 1.

Case 2 k = a − 1. In this case, k + 2 = a + 1, k + 3 = a + 2 > a + 1. Suppose s = 1 in

(3.21) and (3.22). Then both x2 − 2rx+ 1 and x2 + 2rx+ 1 are irreducible and have roots being

primitive 2a+1th roots of unity. Thus the roots of

x4 − 2rx2 + 1 (3.25)

and

x4 + 2rx2 + 1 (3.26)

are primitive 2a+2th roots of unity. Since p has order 4 modulo 2a+2, a primitive 2a+2th root of

unity is of degree 4 over Fp. So (3.25) and (3.26) must be irreducible over Fp.

It is easy to see that if (r + 1)/2 = r̄2 for some r̄ ∈ Fp, then x2 − 2r̄x + 1 divides (3.25); if

(r − 1)/2 = r̃2 for some r̃ ∈ Fp, then x2 − 2r̃x− 1 divides (3.25). So for (3.25) to be irreducible,

both (r+1)/2 and (r−1)/2 must be quadratic nonresidues. Similarly, for (3.26) to be irreducible,

both of (−r + 1)/2 and (−r − 1)/2 must also be quadratic nonresidues. This is impossible, since

−1 is a quadratic nonresidue in Fp and one of (r + 1)/2 and −(r + 1)/2 is a quadratic residue in

Fp.

Therefore s = −1 in (3.21) and (3.22). Hence, for each u ∈ Hk, (u−1)/2 is a quadratic residue

in Fp. Let u1 = ((u− 1)/2)(p+1)/4. Then

x4 − 2ux2 + 1 = (x2 − 2u1x− 1)(x
2 − 2(−u1)x− 1).

So (3.15) is true for e = 0.
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This proves by induction that (3.14) and (3.15) with e = 0 hold. As the factors in (3.14) and

(3.15) (with e = 0) are minimal polynomials of roots of unity, they are all irreducible over Fp.

For e > 0, (3.15) obviously holds as it is true for e = 0. We just need to prove that every factor

in (3.15) is irreducible over Fp. For any u ∈ Ha, we have proved that x2 − 2ux− 1 is irreducible

over Fp. Let α1, α2 be its two roots. We know that α1, α2 ∈ Fp2 and have order 2
a+1. By Lemma

3.3.4, x2
e

− α1 and x2
e

− α2 are irreducible over Fp2 for any integer e ≥ 1. Hence

(x2
e

− α1)(x
2e − α2) = x

2e+1 − 2ux2
e

− 1

is irreducible over Fp.

This completes the proof. �

Note that when p ≡ −1(mod8) (so a > 2), 1/2 is a quadratic residue in Fp. From the above

proof we see that if k < a− 1 then, for every u ∈ Hk, (u+ 1)/2 is a quadratic residue in Fp, thus

u+1 is a quadratic residue. Observe that the irreducibility of x2 − 2ux+1 = (x− u)2 − (u2 − 1)

implies that u2− 1 = (u− 1)(u+1) is a quadratic nonresidue. So u− 1 is a quadratic nonresidue.

Similarly, for u ∈ Ha−1, u−1 is a quadratic residue and u+1 is a quadratic nonresidue. For u ∈ Ha,

we can only say that u2+1 is a quadratic nonresidue due to the irreducibility of x2− 2ux− 1. In

summary, we have

Corollary 3.3.6 If p ≡ −1(mod8) (hence a > 2), then

(a) for each 1 ≤ k < a−1 and u ∈ Hk, u+1 is a quadratic residue in Fp and u−1 is a quadratic

nonresidue in Fp;

(b) for each u ∈ Ha−1, u− 1 is a quadratic residue in Fp and u+ 1 is a quadratic nonresidue in

Fp;

(c) for each u ∈ Ha, u2 + 1 is a quadratic nonresidue in Fp.

This solves, in a theoretical sense, a problem arising from primality testing [35, (11.6)(a)] and

[26, section 5], as remarked by Lenstra [85, page 344].

Corollary 3.3.7 For 1 ≤ k ≤ a, let u ∈ Hk. Define

v =

 (1− u2)(p+1)/4, if k < a,

(−1− u2)(p+1)/4, if k = a.
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Then u+ iv ∈ Fp2 = Fp(i) is a 2
k+1th primitive root of unity where i =

√
−1.

Proof: For u ∈ Hk with k < a, we know from Corollary 3.3.6 that 1−u2 is a quadratic residue

in Fp. So v = (1 − u2)(p+1)/4 is a square root of 1 − u2, that is, v2 = 1 − u2. Hence u + iv is a

root of x2 − 2ux+ 1. By Theorem 3.3.5, u+ iv is a 2k+1th primitive root of unity. For u ∈ Ha,

the proof is similar. �

As x2
t

− 1 = (x − 1)
∏t−1
i=0(x

2i + 1), the following corollary is an immediate consequence of

Theorem 3.3.5.

Corollary 3.3.8 For any integer t ≥ 1, the following factorization over Fp is complete:

(a) if t < a+ 1, then

x2
t

− 1 = (x− 1)(x+ 1)
t−1∏
i=1

∏
u∈Hi

(x2 − 2ux+ 1);

(b) if t ≥ a+ 1, then

x2
t

− 1 = (x− 1)(x+ 1)
∏
u∈Hi

1≤i≤a−1

(x2 − 2ux+ 1)
∏
u∈Ha

0≤r≤t−a−1

(x2
r+1

− 2ux2
r

− 1).

In concluding this section, we mention a possible application of the above results in applying

the Fast Fourier Transform (FFT) over finite fields [91, Chapter IX] and [4, Chapter 7]. The

FFT is widely used in many areas including computing the convolution of data, digital signal

processing and computing products of polynomials or integers. In [91], to apply the FFT over

finite fields one chooses an appropriately large N = 2e and a prime p of the form Nk + 1. If an

Nth root of unity ω in Fp is given, then the FFT evaluates a polynomial in Fp[x] of degree at

most N at the N points 1, ω, ω2, . . . , ωN−1 in time O(N logN). The problem here is that, when

an integer e and a prime p = 2ek + 1 are given, there is currently no deterministic polynomial

time (in log p and e) algorithm to construct a 2eth primitive root of unity in Fp. It is suggested

in [4] to apply the FFT over the ring Zm of integers modulo m where m = 2
N/2 + 1 (which is

not necessarily a prime). One advantage of Zm is that 2 is known to be a primitive Nth root of

unity in Zm. Since the number m is exponential in N , the computation in Zm may be expensive

for large N . In the following we show that such problems do not exist if one operates the FFT

over Fp2 .
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Let e ≥ 1 be a positive integer and N = 2e. Let p be any prime of the form 2Nk − 1. Define

u = ue inductively: u1 = 0 and

uk = (
1 + uk−1
2

)(p+1)/4, k = 2, 3, . . . , e.

Let

v = (1− u2)(p+1)/4.

Then, by Theorem 3.3.5 and Corollary 3.3.7, ω = u+ iv ∈ Fp2 = Fp(i) is a 2
eth primitive root of

unity where i =
√
−1. Here the number of Fp-operations needed to get u+ iv is O(e log p). So one

can compute a 2eth primitive root of unity in Fp2 quickly for any given integer e and prime p of

the form 2Nk − 1. Also, for fixed N = 2e, the prime number theorem in arithmetic progressions

[88] implies that the number of primes 2Nk − 1 ≤ N2 is approximately N/(2e log 2). This means

that primes of the required form exist in reasonable abundance and their sizes can be bounded by

N2. So the problems encountered in [4] and [91] are avoided when the FFT is applied over Fp2 .

3.4 Specific Constructions

In this section, we shall present several families of N -polynomials (irreducible polynomials whose

roots are linearly independent).

3.4.1 For n whose prime factors divides q − 1

The following result shows how to construct an infinite family of N -polynomials whose degrees

have prime factors from q − 1.

Theorem 3.4.1 Let a ∈ Fq be such that xn − a is irreducible in Fq[x]. Then the polynomial

axn − (x− 1)n

is irreducible and has linearly independent roots over Fq.

Proof: Let α be a root of xn − a. Then

1

1− α
=

1

1− a
(1 + α+ · · ·+ αn−1).
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By Theorem 2.4.9, we see that (1− α)−1 is a normal element in Fqn over Fq. It is easy to check

that (1 − α)−1 is a zero of axn − (x − 1)n. Therefore axn − (x − 1)n is a scalar multiple of the

minimal polynomial of (1− α)−1, and thus an N -polynomial. �

By Lemma 3.3.4, we have the following corollary.

Corollary 3.4.2 Let a be a primitive element in Fq and n =
∏k
i=1 r

li
i where r1, r2, . . . , rk are

distinct prime factors of q−1. We assume that q ≡ 1(mod 4) if some ri = 2. Then the polynomial

axn − (x− 1)n

is irreducible and has linearly independent roots over Fq for all positive integers l1, l2, . . . , lk.

Example 3.4.3 As 2 is primitive in F5, and by Corollary 3.4.2, the polynomial 2x
2k − (x− 1)2

k

is irreducible with linearly independent roots over F5 for all integers k ≥ 1.

Example 3.4.4 Over F13, the following polynomials are N -polynomials for all integer k, ` ≥ 0:

a. ax2
k

− (x− 1)2
k

, a ∈ {±2,±5,±6};

b. ax3
k

− (x− 1)3
k

, a ∈ {±2,±3,±4,±6};

c. ax2
`3k − (x− 1)2

`3k , a ∈ {±2,±6}.

3.4.2 For n being a power of 2

In this section, we show how to construct an N -polynomial of degree any power of 2. If q ≡

1 mod 4, then by Theorem 3.4.1, for any quadratic nonresidue a in Fq, the polynomial ax
2k −

(x − 1)2
k

is an N -polynomial for every integer k ≥ 0. If q ≡ 3 mod 4, we just need to consider

the problem over the prime field Fp, since if p is the characteristic of Fq then p ≡ 3 mod 4 and

q = pm for odd m, and further, any N -polynomial of degree a power of 2 in Fp[x] remains an

N -polynomial in Fq[x].

Theorem 3.4.5 Let p ≡ 3 mod 4 be a prime. Assume that x2− bx− c ∈ Fp[x] is irreducible with

b 6= 2 and c a quadratic residue in Fp. Then the polynomial

(x− 1)2
k+1

− b(x− 1)2
k

x2
k

− cx2
k

(3.27)

is irreducible with roots being linearly independent over Fp for every integer k ≥ 0.
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Before proceeding to the proof of Theorem 3.4.5, we look at a corollary and some examples.

Corollary 3.4.6 Let p ≡ 3 mod 4 be a prime and let a be the largest integer such that 2a|(p+1).

Let the set Ha ⊂ Fp be defined as in Theorem 3.3.5. Then for any u ∈ Ha, u 6= 1, the polynomial

(x− 1)2
k+1

− 2u(x− 1)2
k

x2
k

− x2
k+1

is an N -polynomial over Fp of degree 2
k+1 for every integer k ≥ 0.

Example 3.4.7 Let p = 3. Then a = 2. We have H1 = {0}, H2 = {±1}. So by Corollary 3.4.6,

the polynomial

(x− 1)2
k+1

+ 2(x− 1)2
k

x2
k

− x2
k+1

is an N -polynomial over F3 of degree 2
k+1 for every integer k ≥ 0.

Example 3.4.8 Let p = 7. Then a = 3. We have H1 = {0}, H2 = {±2}, and H3 = {±2,±4}.

Hence for every u ∈ H3, the polynomial

(x− 1)2
k+1

− 2u(x− 1)2
k

x2
k

− x2
k+1

is an N -polynomial over F7 of degree 2
k+1 for every integer k ≥ 0.

Proof of Theorem 3.4.5: Let α be a root of (3.27). Then θ = (α− 1)/α is a root of

x2
k+1

− bx2
k

− c. (3.28)

The polynomial (3.27) is irreducible over Fp if and only if the polynomial (3.28) is irreducible over

Fp. To see that (3.28) is irreducible, let γ be a root of x
2−bx−c in Fp2 . As x

2−bx−c is irreducible

over Fp, we have γ
p + γ = b and γpγ = γp+1 = −c. Since −c is a quadratic nonresidue in Fp, the

multiplicative order of −c is divisible by 2. Let p + 1 = 2ah1 for h1 odd. Then p2 − 1 = 2a+1h2

for h2 odd. The multiplicative order of γ must be divisible by 2
a+1. Hence γ, and thus γp, is a

quadratic nonresidue in Fp2 . It follows from Lemma 3.3.4 that x
2k−γ and x2

k

−γp are irreducible

over Fp2 for every integer k ≥ 0. Consequently

(x2
k

− γ)(x2
k

− γp) = x2
k+1

− bx2
k

− c,
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is irreducible over Fp for every integer k ≥ 0. It remains to prove that the 2k+1 roots of (3.27) in

F
p2
k+1 are linearly independent over Fp, that is, we have to prove that α is a normal element in

F
p2
k+1 over Fp.

To establish this, we shall use Corollary 2.4.8. We first factor x2
k+1

− 1 over Fp, then we

decompose F
p2
k+1 into the direct sum of irreducible invariant subspaces under the Frobenius map

σ : β 7→ βp, β ∈ F
p2
k+1 , and at the same time we prove that the projection of α in each of the

subspaces is not zero. Our approach is motivated by Semaev [123, §3].

First some notations are in order. We fix that p2 − 1 = 2a+1h1, p+ 1 = 2ah2 and p− 1 = 2h3

where h1, h2, h3 are odd integers. Obviously, h1 = h2h3, h2 = (1 + h3)/2
a−1. Let E be the

multiplicative subgroup of order 2a+1 in Fp2 and let Ei ⊂ E be the set of elements in Fp2 with

multiplicative order exactly 2i for i = 0, 1, 2, . . . , a+ 1. Then E = E0 ∪ E1 ∪ · · · ∪ Ea+1. For an

integer `, we use v(`) to denote the largest integer v such that 2v|`, that is, ` = 2v(`)`1 where `1

is odd. When ` = 0 we define v(`) =∞.

By Corollary 3.3.8, the irreducible factors of x2
k+1

− 1 over Fp have the following forms:

(a) x− 1, x+ 1;

(b) x2 + 1;

(c) x2 − (ω + ω−1)x+ 1, for ω ∈ E3 ∪ E4 ∪ · · · ∪Emin{a,k+1};

(d) x2 − (ω − ω−1)x− 1 for ω ∈ Ea+1, if k ≥ a;

(e) x2
r+1

− (ω − ω−1)x2
r

− 1 for ω ∈ Ea+1 and 1 ≤ r ≤ k − a.

This could be seen as follows. Let β be a root of x2
k+1

− 1. Then β has multiplicative order 2i for

some i with 0 ≤ i ≤ k + 1. The minimal polynomial mβ(x) of β over Fp is an irreducible factor

of x2
k+1

− 1. If i ≤ 1 then mβ(x) is either x − 1 or x + 1. If 2 ≤ i ≤ a, then β ∈ E \ Ea+1 and

β2
a

= 1. As 2a|(p + 1), we have βp+1 = 1, hence βp = β−1 6= β. So mβ(x) is of the form (b) or

(c). If i > a, then ω = β2
i−a−1

∈ Ea+1. In this case, ω2
a

= −1, and ωp+1 = ω2
ah2 = (−1)h2 = −1,

as h2 is odd. Hence β
p = −β−1. Since x2

i−a−1
− ω and x2

i−a−1
− ωp are irreducible over Fp by

Lemma 3.3.4, the polynomial

(x2
i−a−1

− ω)(x2
i−a−1

− ωp) = x2
i−a

− (ω − ω−1)x2
i−a−1

− 1
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is irreducible over Fp. However this polynomial has β as a zero, we see that mβ(x) is of the form

(d) or (e).

Now we proceed to decompose F
p2
k+1 into the direct sum of irreducible σ-invariant subspaces.

For convenience, we denote t = 2k. We use t and 2k interchangeably. Thus 2t = 2k+1. Let γ = θt.

Then γ is a root of x2 − bx− c and

σ(γ) = γp = −c/γ, γ2 = bγ + c, γp+1 = −c. (3.29)

Since −c is a quadratic nonresidue in Fp, γ is a quadratic nonresidue in Fp2 . Thus γ
h1m ∈ Ea+1

for any odd integer m. We also have

α =
1

1− θ
=

1

1− γ2
(1 + θ + · · ·+ θt−1 + γ + γθ + · · ·+ γθt−1). (3.30)

Since θ has degree 2t over Fp, the 2t elements

1, θ, . . . , θt−1, γ, γθ, . . . , γθt−1 (3.31)

form a basis for Fp2t over Fp.

For ` such that 0 ≤ ` ≤ t− 1 = 2k − 1, let

M` = {`p
i mod t : i = 0, 1, 2, . . . }

be the cyclotomic class modulo t containing `. Note that M0 = {0}, and for ` 6= 0, the size of M`

is equal to the smallest positive integer i such that ` ≡ `pi mod 2k, i.e., 1 ≡ pi mod 2k−v(`). As 2

and 2a+1 divide exactly p− 1 and p2 − 1, respectively, we see that

∣∣M`∣∣ =


1, if ` = 0,

1, if v(`) = k − 1,

2, if k − a ≤ v(`) ≤ k − 2,

2k−v(`)−a, if v(`) < k − a.

Let V` be the subspace of Fp2t spanned over Fp by the elements of the set

{θr, γθr : r ∈M`}.

Then V` is of dimension 2
∣∣M`∣∣ over Fp, and V` is also a subspace over Fp2 of dimension ∣∣M`∣∣. Let

{0, 1, . . . , t− 1} =
⋃
`∈L

M`
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be a disjoint union for some subset L of {0, 1, . . . , t− 1}. Then

Fp2t =
∑
`∈L

V`

is a direct sum. Let

α` =
1

1− γ2
(
∑
r∈M`

θr + γθr).

Then α` ∈ V` and

α =
∑
`∈L

α`.

For each ` ∈ L, we shall prove that V` is either an irreducible σ-invariant subspace or a direct

sum of two irreducible σ-invariant subspaces. Thus we obtained all the irreducible σ-invariant

subspaces of Fp2t over Fp. To prove that α is a normal element, it suffices to check that the

projection of α in each of the subspaces is not zero. In the first case, the projection of α in V`

is α` 6= 0, nothing to check. In the latter case, we need to find the projection of α` in each of

the two irreducible subspaces of V` and verify that it is not zero. We are going to discuss in the

following cases, corresponding to the types of polynomials (a)–(e):

(A) ` = 0;

(B) v(`) = k − 1, then ` = 2k−1;

(C) k − a+ 1 ≤ v(`) ≤ k − 2;

(D) v(`) = k − a;

(E) v(`) < k − a.

We proceed in the order A,B,E,C,D, since the cases (C) and (D) are more complicated.

Case (A). Obviously, V0 = Fp ⊕ γFp = Fp2 . Hence V0 is a σ-invariant subspace with x
2 − 1 as

annihilating polynomial. As x2 − 1 = (x − 1)(x + 1), V0 splits into two irreducible σ-invariant

subspaces. One is evidently Fp with x − 1 as annihilating polynomial. Since σ(γ + c/γ) =

−(γ + c/γ), the other must be (γ + c/γ)Fp with x+ 1 as annihilating polynomial. Therefore

V0 = Fp ⊕ (2γ − b)Fp.
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(Note that 2γ − b = γ + c/γ.) It can be checked that

α0 =
1

1− γ2
(1 + γ) =

b− 2

2(b+ c− 1)
+

(
−

1

2(b+ c− 1)

)
(2γ − b).

As b 6= 2 by assumption, the projections of α0 (or α) into the irreducible σ-invariant subspaces

with annihilating polynomials x− 1 and x+ 1 do not vanish.

Case (B). Note that θ2
k

= γ ∈ Fp2 , we have
(
θ2
k−1(p2−1)

)2
=
(
θ2
k
)p2−1

= 1. It follows that

θ2
k−1(p2−1) = −1, as θ2

k−1
6∈ Fp2 . Hence

(σ2 + 1)(θ2
k−1

) = θ2
k−1
(
θ2
k−1(p2−1) + 1

)
= 0,

(σ2 + 1)(γθ2
k−1

) = γθ2
k−1
(
θ2
k−1(p2−1) + 1

)
= 0.

Therefore V2k−1 spanned by θ
2k−1 and γθ2

k−1
over Fp is a σ-invariant subspace with x

2 + 1 as

annihilating polynomial. As the dimension of V2k−1 is 2, equal to the degree of x
2+1, V2k−1 is the

irreducible invariant subspace annihilated by x2 + 1. The projection of α in V2k−1 is α2k−1 6= 0.

Case (E). Let ` = 2v(`)`1 for `1 odd and let p1 = p2
k−v(`)−a

. Since k − v(`) − a ≥ 1, we have

p1 = 1 + 2
k−v(`)m for m odd and

p21 = 1 + 2
k−v(`)+1(m+ 2k−v(`)−1m2).

Note that (p2 − 1)|(p1 − 1), we have h1|m. Let b` = γm`1 . Then b` = (γ
h1)`1m/h1 ∈ Ea+1. Now

let

ψ`(x) = x
2k−v(`)−a+1 − (b` − b

−1
` )x

2k−v(`)−a − 1.

Then ψ`(x) is irreducible over Fp. We show that V` is annihilated by ψ`(σ). Note that

ψ`(σ)θ
` = θ`

(
θ`(p

2
1−1) − (b` − b

−1
` )θ

`(p1−1) − 1
)

= θ`
(
θ2
k+1(m+2k−v(`)−1m2)`1 − (b` − b

−1
` )θ

2km`1 − 1
)

= θ`
(
γ2m`1 − (b` − b

−1
` )γ

m`1 − 1
)

= 0,

as θ2
k

= γ ∈ Fp2 and γ
2k−v(`)m2`1 = 1. If r ∈ M`, then r ≡ `ps mod t for some integer s. Note

that v(`) = v(r) and r = 2v(`)`1p
s. By a similar argument, we have

ψr(σ)θ
r = 0,
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where

ψr(x) = x
2k−v(r)−a+1 − (br − b

−1
r )x

2k−v(r)−a − 1,

with br = γ
m`1p

s

. Since

br = (b`)
ps =

 b` if s is even,

−b−1` if s is odd,

we have br − b−1r = b` − b
−1
` . Thus ψr(x) = ψ`(x) for r ∈ M`. This implies that ψ`(σ)θr = 0 for

each r ∈M`.

Note that, for any r ∈ M`, ψ`(σ)(γθr) = γψ`(σ)(θ
r) = 0. Therefore all the elements in the

basis {θr, γθr : r ∈ M`} of V` are annihilated by ψ`(σ). So V` is annihilated by ψ`(σ). Since

ψ`(x) has degree 2
k−v(`)−a+1, which is equal to the dimension of V` over Fp, the irreducibility of

ψ`(x) implies that V` is the irreducible σ-invariant subspace annihilated by ψ`(x). The projection

of α in V` is α` 6= 0.

Common for Cases (C) and (D). In both cases, we shall show that V` splits into two irreducible

σ-invariant subspaces of dimension 2. Let ` = 2v(`)`1 for `1 odd. We have

k − a ≤ v(`) ≤ k − 2.

Hence

2 ≤ k − v(`) ≤ a.

Note that `(p+ 1) = 2v(`)+a`1h2 ≡ 2k (mod t), as v(`) + a ≥ k. We see that `p ≡ 2k − ` (modt).

Thus

M` = {`, 2
k − `}.

The basis for V` over Fp is

{θ`, θ2
k−`, γθ`, γθ2

k−`} = {θ, γθ−`, γθ`, γ2θ−`}.

It is easy to see that

V` = θ
`Fp2 ⊕ θ

−`Fp2 ,
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since Fp2 = Fp(γ) = Fp ⊕ γFp. Let b` = γ
2a−kh1`. Then

b` = γ
2a+v(`)−kh1`1 ∈ E \ (E0 ∪ E1 ∪ E2),

and

θp
2` = θ`θ`(p

2−1) = θ`θ2
a+1h1` = θ`(θ2

k

)2
a+1−kh1` = θ`γ2

a−k+1h1` = θ`b2` .

Let c` = γ
2a−kh2`. Then

θp` = θ−`θ`(p+1) = θ−`θ2
ah2` = θ−`

(
θ2
k)2a−kh2`

= θ−`γ2
a−kh2` = θ−`c`.

Denote b`c` by d`. Then

d` = b`c` = γ
2a−k(h1+h2)` = γ2

a−kh2(1+h3)` = γ2
a−k+a−1+v(`)h22`1 .

Case (C). Assume that we are in case (C). Then v(`) + a− k ≥ 1. Hence b` ∈ E \ Ea+1 and

d` =
(
γp+1

)2a+v(`)−k−1h2`1
= c2

a+v(`)−k−1h2`1 ∈ Fp.

For δ = 1, 2, let

ψ`δ(x) = x
2 + (−1)δ(b` + b

−1
` )x+ 1.

Then ψ`δ(x) is irreducible in Fp[x]. Let V`δ ⊆ V` be the subspace spanned over Fp by

α
(1)
`δ = θ

` − (−1)δd`θ
−`, α

(2)
`δ = cγ

−1θ` + (−1)δd`γθ
−`.

Then V` = V`1 ⊕ V`2. Since

ψ
(σ)
`δ (α

(1)
`δ ) = θp

2` + (−1)δ(b` + b
−1
` )θ

p` + θ` − (−1)δd`θ
−p2`

−(−1)δ(b` + b
−1
` )(−1)

δd`θ
−p` − (−1)δd`θ

−`

= θ`b2` + (−1)
δ(b` + b

−1
` )θ

−`c` + θ
`

−(−1)δd`θ
−`b−2` − d`(b` + b

−1
` )θ

`c−1` − (−1)
δd`θ

−`

= θ`b`(b` + b
−1
` )(1− d`c

−1
` b−1` )− (−1)

δθ−`b−1` (b` + b
−1
` )(d` − c`b`)

= 0,
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and

ψ
(σ)
`δ (α

(2)
`δ ) = cγ−1θp

2` + (−1)δ(b` + b
−1
` )(−γ)θ

p` + cγ−1θ` + (−1)δd`γθ
−p2`

+(−1)δ(b` + b
−1
` )(−1)

δd`(−cγ
−1)θ−p` + (−1)δd`γθ

−`

= cγ−1θ`b2` − (−1)
δ(b` + b

−1
` )γθ

−`c` + cγ
−1θ`

+(−1)δd`γθ
−`b−2` − d`(b` + b

−1
` )cγ

−1θ`c−1` + (−1)
δd`γθ

−`

= cγ−1θ`b`(b` + b
−1
` )(1− d`c

−1
` b−1` ) + (−1)

δγθ−`b−1` (b` + b
−1
` )(d` − c`b`)

= 0,

we see that V`δ is annihilated by ψ`δ(σ). As the dimension of V`δ equals the degree of ψ`δ(x), it

follows that V`δ is the irreducible σ-invariant subspace of ψ`δ(σ) for δ = 1, 2.

Now it can be checked that

α` =
1

1− γ2
(θ` + γθ−` + γθ` + γ2θ−`)

=
1

1− γ
(θ` + γθ−`)

= x1α
(1)
`1 + x2α

(2)
`1 + y1α

(1)
`2 + y2α

(2)
`2

where

x1 =
d` + c

2d`(1− b− c)
, x2 =

d` − 1

2d`(1− b− c)
,

y1 =
d` − c

2d`(1− b− c)
, y2 =

d` + 1

2d`(1− b− c)
.

Since c 6= −1 (as −1 is a quadratic nonresidue in Fp),

x1 − x2 = y2 − y1 =
c+ 1

2d`(1− b− c)
6= 0.

Therefore

(x1, x2) 6= (0, 0), (y1, y2) 6= (0, 0),

that is, the projections of α` (or α) in V`1 and V`2 do not vanish.

Case (D). Finally, assume that we are in case (D), that is, v(`) = k−a. Then b` = γh1`1 ∈ Ea+1

and c`b` = γ
2a−1h22`1 . We have

(c`b`)
p−1 = γ2

ah22`1h3 =
(
γ2
ah1
)h2`1

=
(
γ(p

2−1)/2
)h2`1

= (−1)h2`1 = −1,
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since γ is a quadratic nonresidue and h2`1 is odd. Thus

σ(c`b`) = (c`b`)
p = −c`b`.

Let ε = (c`b`)/(γ + cγ
−1). Then ε ∈ Fp, as σ(ε) = ε. For δ = 1, 2, let

ψ`δ(x) = x
2 + (−1)δ(b` − b

−1
` )x− 1.

Then ψ`δ(x) is irreducible in Fp[x]. Let V`δ ⊆ V` be the subspace spanned over Fp by the two

elements

α
(1)
`δ = θ` + (−1)δε(γ + cγ−1)θ−`,

α
(2)
`δ = cγ−1θ` − (−1)δε(γ + cγ−1)γθ−`.

Then V` = V`1 ⊕ V`2. Note that

ψ
(σ)
`δ (α

(1)
`δ ) = θp

2` + (−1)δ(b` − b
−1
` )θ

p` − θ` + (−1)δε(γ + cγ−1)θ−p
2`

+(−1)δ(b` − b
−1
` )(−1)

δε(−cγ−1 − γ)θ−p` − (−1)δε(γ + cγ−1)θ−`

= θ`b2` + (−1)
δ(b` − b

−1
` )θ

−`c` − θ
` + (−1)δε(γ + cγ−1)θ−`b−2`

−ε(b` − b
−1
` )(γ + cγ

−1)θ`c−1` − (−1)
δε(γ + cγ−1)θ−`

= θ`b`(b` − b
−1
` )(1− ε(γ + cγ

−1)c−1` b−1` )

−(−1)δθ−`b−1` (b` − b
−1
` )(ε(γ + cγ

−1)− c`b`)

= 0,

and

ψ
(σ)
`δ (α

(2)
`δ ) = cγ−1θp

2` + (−1)δ(b` − b
−1
` )(−γ)θ

p` − cγ−1θ` − (−1)δε(γ + cγ−1)γθ−p
2`

−(−1)δ(b` − b
−1
` )(−1)

δε(−cγ−1 − γ)(−cγ−1)θ−p` + (−1)δε(γ + cγ−1)γθ−`

= cγ−1θ`b2` − (−1)
δ(b` − b

−1
` )γθ

−`c` − cγ
−1θ` − (−1)δε(γ + cγ−1)γθ−`b−2`

−(b` − b
−1
` )ε(γ + cγ

−1)cγ−1θ`c−1` + (−1)
δε(γ + cγ−1)γθ−`

= cγ−1θ`b`(b` − b
−1
` )(1− ε(γ + cγ

−1)c−1` b−1` )

+(−1)δγθ−`b−1` (b` − b
−1
` )(ε(γ + cγ

−1)− c`b`)

= 0.

We see that V`δ is annihilated by ψ`δ(σ). As the dimension of V`δ equals the degree of ψ`δ(x), it

follows that V`δ is the irreducible σ-invariant subspace of ψ`δ(σ) for δ = 1, 2.
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It is direct to check that

α` =
1

1− γ2
(θ` + γθ−` + γθ` + γ2θ−`)

=
1

1− γ
(θ` + γθ−`)

= x1α
(1)
`1 + x2α

(2)
`1 + y1α

(1)
`2 + y2α

(2)
`2

where

x1 =
1

2

(
1

1− b− c
+

c(b− 2)

ε(1− b− c)(b2 + 4c)

)
,

x2 =
1

2

(
1

1− b− c
+

2c+ b

ε(1− b− c)(b2 + 4c)

)
,

y1 =
1

2

(
1

1− b− c
−

c(b− 2)

ε(1− b− c)(b2 + 4c)

)
,

y2 =
1

2

(
1

1− b− c
−

2c+ b

ε(1− b− c)(b2 + 4c)

)
.

Note that

x1 − x2 = y2 − y1 =
(c− 1)b− 4c

2ε(1− b− c)(b2 + 4c)
.

We prove that (c− 1)b− 4c 6= 0. Suppose in the contrary that (c− 1)b− 4c = 0. Then c 6= 1 and

thus b = 4c/(c − 1). Hence the discriminant b2 + 4c = 4c(c + 1)2/(c − 1)2. The irreducibility of

x2−bx−c would imply that c were a quadratic nonresidue in Fp, contradicting to the assumption

that c is a quadratic residue in Fp. Therefore

(x1, x2) 6= (0, 0), (y1, y2) 6= (0, 0),

that is, the projections of α` (or α) in V`1 and V`2 do not vanish.

This completes the proof. �

3.4.3 For n being a power of p

Let p be the characteristic of Fq. For each positive integer k, we shall construct an irre-

ducible polynomial of degree pk with linearly independent roots. We need some results from

Varshamov [137, 138, 139].
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Lemma 3.4.9 (Varshamov) Let P (x) = xn+cn−1x
n−1+ · · ·+c1x+c0 be an irreducible polyno-

mial over Fq, and let b ∈ Fq. Let p be the characteristic of Fq. Then the polynomial P (xp−x− b)

is irreducible over Fq if and only if Trq|p(nb− cn−1) 6= 0.

A proof of this lemma can be found in [89, 99]. The next theorem is due to Varshamov [139],

where no proof is given.

Theorem 3.4.10 (Varshamov) Let p be a prime and let f(x) = xn +
∑n−1
i=0 cix

i be irreducible

over Fp. Suppose that there exists an element a ∈ Fp, a 6= 0, such that (na+ cn−1)f ′(a) 6= 0. Let

g(x) = xp − x + a and define f0(x) = f(g(x)), and fk(x) = f∗k−1(g(x)) for k ≥ 1, where f
∗(x)

is the reciprocal polynomial of f(x). Then for each k ≥ 0, fk(x) is irreducible over Fp of degree

npk+1.

Proof: The following proof can be found in [142]. From Lemma 3.4.9, f0(x) = f(g(x)) is

irreducible if and only if Trp|p(na + cn−1) = na + cn−1 6= 0. Induction is used to show that the

coefficient of x in fk(x), denoted [x]fk(x), is not 0 and f
′
k(a) 6= 0. First consider f0(x):

[x]f0(x) =
d

dx
f0(x)|x=0 =

d

dx

(
n∑
i=0

cig
i(x)

)
|x=0

=
n∑
i=0

ciig
i−1(x)g′(x)|x=0

= −
n∑
i=0

ciia
i−1 (since g(0) = a, g′(0) = −1)

= −f ′(a),

which by assumption is non-zero. Similarly note that

f ′0(a) =
n∑
i=0

ciig
i−1(a)g′(a)

= −
n∑
i=0

ciia
i−1 (since g(a) = a, g′(a) = −1)

= −f ′(a),

which again by assumption is non-zero.

Now assume that fk(x) is irreducible over Fp and that [x]fk(x) 6= 0 and f ′k(a) 6= 0. We prove

the statement true for fk+1(x). Note that both fk(x) and f
∗
k (x) have degree np

k+1 = nk. When



FACTORING xe − 1 62

f∗k (x) is made monic, its coefficient of x
nk−1 is [x]fk(x)/fk(0) 6= 0. It follows from Lemma 3.4.9

that fk+1(x) = f
∗
k (g(x)) is irreducible over Fq. Let

fk(x) =

nk∑
i=0

uix
i.

Then

fk+1(x) =

nk∑
i=0

uig
nk−i(x),

and

f ′k+1(x) =

nk∑
i=0

ui(nk − i)g
nk−i−1(x)g′(x)

= −
nk∑
i=0

ui(nk − i)g
nk−i−1(x).

Note that since g(x) is constant on Fp, so are fk(x) and f
′
k(x). Thus

[x]fk+1(x) = f ′k+1(0) = f ′k(a
−1)ank−1 = f ′k(a)a

nk−1,

which is non-zero by the induction hypothesis. Similarly

f ′k+1(a) = ank−1f ′k(a
−1) = ank−1f ′k(a),

which is again non-zero. This completes the proof. �

Since xp − x− 1 is irreducible over Fp, substituting x by 1/(x− 1), it is seen that

f(x) = (x− 1)p + (x− 1)p−1 − 1 = xp + xp−1 + · · ·+ x− 1

is irreducible over Fp. By taking g(x) = xp − x − 1 in Theorem 3.4.10, we obtain the following

result.

Corollary 3.4.11 Let p be a prime. Define f−1(x) = x
p+xp−1+· · ·+x−1, f0(x) = f−1(xp−x−1)

and fk(x) = f∗k−1(x
p − x − 1) for k ≥ 1. Then fk(x) is irreducible over Fp of degree pk+2 for

every k ≥ −1. Moreover, the roots of f∗k (x) are linearly independent over Fp.

For the latter statement, by Corollary 2.5.2, one just need to check that the coefficient of the

next highest term in each polynomial f∗k (x) is nonzero. However, the proof of Theorem 3.4.10

shows that this is indeed true.
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When p = 2, we have an another construction as follows. Define polynomials ak(x) and bk(x)

recursively:

a0(x) = x, b0(x) = 1,

ak+1(x) = ak(x)bk(x),

bk+1(x) = a2k(x) + b
2
k(x),

for k ≥ 0. Then we claim that ak(x) + bk(x) is irreducible over F2 of degree 2k and its roots

are linearly independent over F2 for every k ≥ 1. We will prove this result by proving the more

general Theorem 3.4.13.

Lemma 3.4.12 Let q = 2m and let P (x) =
∑n
i=0 cix

i ∈ Fq[x] be irreducible over Fq of degree n.

Then

(i) xnP (x+ x−1) is irreducible over Fq if and only if Trq|2(c1/c0) 6= 0.

(ii) xnP ∗(x+ x−1) is irreducible over Fq if and only if Trq|2(cn−1/cn) 6= 0.

Proof: Only (i) is proved here; the proof of (ii) is similar. Let α be a root of P (x). Then it is easy

to show that xnP (x+x−1) is irreducible over Fq if and only if x
2+1−αx = α2[(x/α)2−x/α+α−2]

is irreducible over Fqn . By Lemma 3.4.9, this is true if and only if

Trqn|2(α
−2) = (Trqn|2(α

−1))2

= (Trq|2(Trqn|q(α
−1)))2

= (Trq|2(−c1/c0))
2 = (Trq|2(c1/c0))

2 6= 0. �

Part (i) of Theorem 3.4.12 was obtained by Meyn [98] in the present general form; in the case

that q = 2, it was previously obtained by Varshamov and Garakov [140].

The next theorem appears in a different form in [98], special cases were proved by Varshamov

[139] and Wiedemann [150].

Theorem 3.4.13 Let q = 2m and let f(x) =
∑n
i=0 cix

i be irreducible over Fq of degree n. Suppose

that Trq|2(c1/c0) 6= 0 and Trq|2(cn−1/cn) 6= 0. Then

fk(x) = (bk(x))
nf(ak(x)/bk(x))

is irreducible over Fq of degree n2
k for all k ≥ 0.
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Proof: Note that for k ≥ 0,

ak+1(x)

bk+1(x)
=

ak(x)/bk(x)

1 + (ak(x)/bk(x))2
.

It is easily proved by induction that

ak(x/(1 + x
2))

bk(x/(1 + x2))
=

ak(x)/bk(x)

1 + (ak(x)/bk(x))2

for k ≥ 0. Then one sees that fk(x) satisfy the following recursive relation:

f0(x) = f(x),

fk+1(x) = (1 + x2)n2
k

fk(x/(1 + x
2)), k ≥ 0.

For the sake of convenience let nk = n2
k and fk(x) =

∑nk
i=0 c

(k)
i xi, k ≥ 0. By Theorem 3.4.12(ii),

if fk(x) is irreducible over Fq then fk+1(x) is irreducible over Fq if and only if

Trq|2(c
(k)
nk−1

/c(k)nk ) 6= 0. (3.32)

Since c
(0)
n0−1 = cn−1 and c

(0)
n0 = cn, (3.32) is true for k = 0 by assumption, and so f1(x) is irreducible

over Fq. To prove that fk(x) is irreducible over Fq for k > 1, by Theorem 3.4.12(ii) it suffices to

prove that

c(k)nk = c0, c
(k)
nk−1

= c1, for all k ≥ 1, (3.33)

since Trq|2(c1/c0) 6= 0 by assumption. To prove (3.33) it is enough to observe that if M(x) =∑l
i=0mix

i is an arbitrary polynomial over Fq, then

(1 + x2)lM(x/(1 + x2)) =

l∑
i=0

mix
i(1 + x2)l−i

is self-reciprocal of degree 2l, the coefficients of x and x2l−1 are bothm1, and the leading coefficient

of x2l is m0. The proof is completed by induction on k. �

Now for m = 1 and f(x) = x+ 1, we see from the above proof that the coefficient of the next

highest term in ak(x) + bk(x) is not zero. Therefore, by Corollary 2.5.2, we have the following

result.

Corollary 3.4.14 For any integer k ≥ 0,

ak(x) + bk(x)

is irreducible over F2 of degree 2
k and its roots are linearly independent over F2.



Chapter 4

Optimal Normal Bases

In this chapter, we first give a general constructions for normal bases of low complexity, including

optimal normal bases. We then determine all the optimal normal bases in finite fields.

4.1 Constructions

We have seen in Chapter 1 that normal bases of low complexity are desirable in hardware or

software implementation of finite fields. Presently we do not have many techniques for finding

normal bases of a required complexity. In this section we will describe a quite general construction

that gives all the optimal normal bases and a large family of normal bases of low complexity. Let us

begin with the constructions of optimal normal bases discovered by Mullin, Onyszchuk, Vanstone

and Wilson [103].

Theorem 4.1.1 Suppose n + 1 is a prime and q is primitive in Zn+1, where q is a prime or

prime power. Then the n nonunit (n+1)th roots of unity are linearly independent and they form

an optimal normal basis of Fqn over Fq.

Theorem 4.1.2 Let 2n+ 1 be a prime and assume that either

(1) 2 is primitive in Z2n+1, or

(2) 2n+ 1 ≡ 3(mod 4) and 2 generates the quadratic residues in Z2n+1.

65
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Then α = γ + γ−1 generates an optimal normal basis of F2n over F2, where γ is a primitive

(2n+ 1)th root of unity.

Theorem 4.1.1 and Theorem 4.1.2 will be proved as consequences of Theorem 4.1.4. We first

examine the multiplication tables of these bases.

For Theorem 4.1.1, let α be a primitive (n + 1)th root of unity. Then α is a root of the

polynomial xn+ · · ·+x+1. As n+1 is a prime, n+1 divides qn−1 and all the (n+1)th roots of

unity are in Fqn . Since q is primitive in Zn+1, there are n distinct conjugates of α, each of which

is also a nonunit (n+ 1)th root of unity, i.e.,

N = {α, αq, . . . , αq
n−1

} = {α, α2, . . . , αn}.

Hence N is a normal basis of Fqn over Fq. Note that

ααi = αi+1 ∈ N, 1 ≤ i < n,

and

ααn = 1 = −Tr(α) = −
n∑
i=1

αi.

Therefore there are 2n− 1 non-zero terms in all the cross-products, and thus N is optimal. The

matrix T corresponding to this basis has the following properties: there is exactly one 1 in each

row, except for one row where all the n entries are −1’s; all other entries are 0’s. We call any

optimal normal basis obtained by this construction a type I optimal normal basis.

For Theorem 4.1.2, it will be proved that α ∈ F2n and α, α2, . . . , α2
n−1
are linearly independent

over F2. So N = {α, α2, . . . , α2
n−1
} is a normal basis of F2n over F2. By the conditions in

Theorem 4.1.2, it is easy to see that

N = {γ + γ−1, γ2 + γ−2, . . . , γn + γ−n}.

The cross-product terms are

α(γi + γ−i) = (γ + γ−1)(γi + γ−i)

= (γ(1+i) + γ−(1+i)) + (γ(1−i) + γ−(1−i)),

which is a sum of two distinct elements in N except when i = 1. If i = 1, the sum is just α2

which is in N . Thus N is an optimal normal basis of F2n over F2. The matrix T corresponding to
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this basis has the following properties: there are exactly two 1’s in each row, except for the first

row in which there is exactly one 1; all other entries are 0’s. We call any optimal normal basis

obtained by this construction a type II optimal normal basis.

We next look at the minimal polynomials of these optimal normal bases. For a type I optimal

normal basis, its minimal polynomial is obviously xn + · · ·+ x+ 1, which is irreducible over Fq if

and only if n+ 1 is a prime and q is primitive in Zn+1. For the minimal polynomial of a type II

optimal normal basis, we consider a more general situation. Let n be any positive integer and γ

a (2n+ 1)th primitive root of unity in an arbitrary field. Let

fn(x) =

n∏
j=1

(x− γj − γ−j). (4.1)

(Note that fn(x) is the minimal polynomial of α = γ+γ
−1 under the conditions of Theorem 4.1.2.)

We will find an explicit formula for fn(x). For any 0 ≤ j ≤ n, γj is also a (2n+1)th root of unity.

Hence

(γj)n + (γj)−n = (γj)n+1 + (γj)−(n+1). (4.2)

By Waring’s formula, for any positive integer k,

(γj)k + (γj)−k =

[k/2]∑
i=0

k

k − i

(
k − i

i

)
(−1)i(γj + γ−j)k−2i.

Let

Dk(x) =

[k/2]∑
i=0

k

k − i

(
k − i

i

)
(−1)ixk−2i,

which is a special kind of Dickson polynomial. Then by (4.2), we see that γj + γ−j is a root of

Dn+1(x)−Dn(x) for j = 0, 1, . . . , n. As Dn+1(x)−Dn(x) has degree n+ 1 and γj + (γj)−1 are

different for j = 0, 1, . . . , n, we see that Dn+1(x)−Dn(x) = fn(x)(x− 2). Therefore

fn(x) =

[(n−1)/2]∑
j=0

(−1)j
(
n− 1− j

j

)
xn−(2j+1) +

[n/2]∑
j=0

(−1)j
(
n− j

j

)
xn−2j .

We point out that fn(x) is irreducible over Fq if and only if the multiplicative group Z
∗
2n+1 is

generated by q and −1, and fn(x) is irreducible over the field of rational numbers whenever 2n+1

is a prime.
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In practical applications, we need optimal normal bases over F2. It would be nice if we had

simple rules to test the hypotheses in Theorems 4.1.1 and 4.1.2. In this regard, the following

results (see [88], p. 68) are useful:

(a) 2 is primitive in Zr for a prime r if r = 4s+ 1 and s is an odd prime.

(b) 2 is primitive in Zr for a prime r if r = 2s+ 1 where s is a prime congruent to 1 modulo 4.

(c) 2 generates the quadratic residues in Zr for a prime r if r = 2s + 1 where s is a prime

congruent to 3 modulo 4.

For convenience, we list in Table 4.1 all the values of n ≤ 2000 for which there is an optimal

normal basis of F2n over F2. In the table, ? indicates the existence of a type I optimal normal

basis, † indicates the existence of both type I and type II optimal normal bases, otherwise there

exists only a type II optimal normal basis.

The constructions in Theorems 4.1.1 and 4.1.2 are generalized by Ash, Blake and Vanstone [10]

and further by Wassermann [148] to construct normal bases of low complexity as in Theorem 4.1.4.

To establish this result, we first prove a lemma.

Lemma 4.1.3 Let k, n be integers such that nk + 1 is a prime, and let the order of q modulo

nk + 1 be e. Suppose that gcd(nk/e, n) = 1. Let τ be a primitive k-th root of unity in Znk+1.

Then every non-zero element r in Znk+1 can be written uniquely in the form

r = τ iqj , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− 1.

Proof: Let e1 = nk/e. There is a primitive element g in Z∗nk+1 such that q = ge1 . As the order

of g is nk and the order of τ is k, there is an integer a such that

τ = gna, gcd(a, k) = 1.

Now suppose that there are 0 ≤ i, s ≤ k − 1, 0 ≤ j, t ≤ n− 1, such that

τ iqj ≡ τ sqt (mod nk + 1),

i.e.,

τ i−s ≡ qt−j (mod nk + 1),

gna(i−s) ≡ ge1(t−j) (mod nk + 1).
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2† 113 293 473 676? 873 1110 1310 1533 1790

3 119 299 483 683 876? 1116? 1323 1539 1791

4? 130? 303 490? 686 879 1118 1329 1541 1806

5 131 306 491 690 882? 1119 1331 1548? 1811

6 134 309 495 700? 891 1121 1338 1559 1818

9 135 316? 508? 708? 893 1122? 1341 1570? 1821

10? 138? 323 509 713 906? 1133 1346 1583 1829

11 146 326 515 719 911 1134 1349 1593 1835

12? 148? 329 519 723 923 1146 1353 1601 1838

14 155 330 522? 725 930 1154 1355 1618? 1845

18† 158 338 530 726 933 1155 1359 1620? 1850

23 162? 346? 531 741 935 1166 1370 1626 1854

26 172? 348? 540? 743 938 1169 1372? 1636? 1859

28? 173 350 543 746 939 1170? 1380? 1649 1860?

29 174 354 545 749 940? 1178 1394 1653 1863

30 178? 359 546? 755 946? 1185 1398 1659 1866†

33 179 371 554 756? 950 1186? 1401 1661 1876?

35 180? 372? 556? 761 953 1194 1409 1666? 1883

36? 183 375 558 765 965 1199 1418 1668? 1889

39 186 378† 561 771 974 1211 1421 1673 1898

41 189 378? 562? 772? 975 1212? 1425 1679 1900?
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50 191 386 575 774 986 1218 1426? 1685 1901

51 194 388? 585 779 989 1223 1430 1692? 1906?

52? 196? 393 586? 783 993 1228? 1439 1703 1923

53 209 398 593 785 998 1229 1443 1706 1925

58? 210† 410 606 786? 1013 1233 1450? 1730 1926

60? 221 411 611 791 1014 1236? 1451 1732? 1930?

65 226? 413 612? 796? 1018? 1238 1452? 1733 1931

66? 230 414 614 803 1019 1251 1454 1734 1938

69 231 418? 615 809 1026 1258? 1463 1740? 1948?

74 233 419 618† 810 1031 1265 1469 1745 1953

81 239 420? 629 818 1034 1269 1478 1746? 1955

82? 243 426 638 820? 1041 1271 1481 1749 1958

83 245 429 639 826? 1043 1274 1482? 1755 1959

86 251 431 641 828? 1049 1275 1492? 1758 1961

89 254 438 645 831 1055 1276? 1498? 1763 1965

90 261 441 650 833 1060? 1278 1499 1766 1972?

95 268? 442? 651 834 1065 1282? 1505 1769 1973

98 270 443 652? 846 1070 1289 1509 1773 1978?

99 273 453 653 852? 1090? 1290? 1511 1778 1983

100? 278 460? 658? 858? 1103 1295 1518 1779 1986?

105 281 466? 659 866 1106 1300? 1522? 1785 1994

106? 292? 470 660? 870 1108? 1306? 1530? 1786? 1996?

Table 4.1: Values of n ≤ 2000 for which there exists an optimal normal basis in F2n over F2.
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Then

na(i− s) ≡ e1(t− j) (mod nk). (4.3)

As gcd(n, e1) = 1, equation (4.3) implies that n | (t− j). Hence t = j. Thus from (4.3),

a(i− s) ≡ 0 (mod k).

But gcd(a, k) = 1, so k | (i− s). Therefore i = s. This proves that

τ iqj (mod nk + 1), i = 0, 1, . . . , k − 1, j = 0, 1, . . . , n− 1

are all distinct. As τ iqj 6≡ 0(mod nk + 1), every non-zero element in Znk+1 can be expressed

uniquely in the required form. �

Theorem 4.1.4 Let q be a prime or prime power, and n, k be positive integers such that nk + 1

is a prime not dividing q. Let β be a primitive (nk + 1)th root of unity in Fqnk . Suppose that

gcd(nk/e, n) = 1 where e is the order of q modulo nk + 1. Then, for any primitive k-th root of

unity τ in Znk+1,

α =
k−1∑
i=0

βτ
i

generates a normal basis of Fqn over Fq with complexity at most (k+1)n− k, and at most kn− 1

if k ≡ 0(mod p), where p is the characteristic of Fq.

Proof: We first prove that α ∈ Fqn . Since qnk ≡ 1(mod nk + 1), qn is a k-th root of unity in

Znk+1. Thus there is an integer ` such that q
n = τ `. Then

αq
n

=

k−1∑
i=0

βτ
iqn =

k−1∑
i=0

βτ
i+`

=

k−1∑
i=0

βτ
i

= α.

Therefore α is in Fqn .

We next prove that α, αq, . . . , αq
n−1
are linearly independent over Fq. Suppose that

n−1∑
i=0

λiα
qi =

n−1∑
i=0

λi

k−1∑
j=0

βτ
jqi = 0, λi ∈ Fq.

Note that there exist unique ui ∈ Fq, i = 1, 2, . . . , kn such that the following holds for all (2n+1)th

roots γ of unity:

n−1∑
i=0

k−1∑
j=0

λiγ
τjqi =

nk∑
j=1

ujγ
j = γ

nk−1∑
j=0

uj+1γ
j ,
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since, by Lemma 4.1.3, τ jqi modulo nk + 1 runs through Z∗nk+1 for j = 0, 1, . . . , k − 1 and

i = 0, 1, . . . , n − 1. Let f(x) =
∑nk−1
j=0 uj+1x

j . For any 1 ≤ r ≤ nk, there exist integers u and v

such that r = τuqv. As βr is also a (nk + 1)th primitive root of unity,

βrf(βr) =

n−1∑
i=0

λi

k−1∑
j=0

(βr)τ
jqi =

n−1∑
i=0

λi

k−1∑
j=0

βτ
u+jqi

q
v

=

n−1∑
i=0

λi

k−1∑
j=0

βτ
jqi

q
v

= 0.

Therefore βr is a root of f(x) for r = 1, 2, . . . , nk, whence

nk∏
r=1

(x− βr) =
xnk+1 − 1

x− 1
= xnk + · · ·+ x+ 1

divides f(x). But f(x) has degree at most nk−1, and so this is impossible. Thus α, αq, . . . , αq
n−1

must be linearly independent over Fq, and thus form a normal basis of Fqn over Fq.

Next we compute the multiplication table of this basis. Note that for 0 ≤ i ≤ n− 1,

α · αq
i

=

k−1∑
u=0

k−1∑
v=0

βτ
u+τvqi =

k−1∑
u=0

k−1∑
v=0

βτ
u(1+τv−uqi)

=
k−1∑
v=0

(
k−1∑
u=0

βτ
u(1+τvqi)

)
. (4.4)

There is a unique pair (v0, i0), 0 ≤ v0 ≤ k−1, 0 ≤ i0 ≤ n−1 such that 1+τv0qi0 ≡ 0 (mod nk+1).

If (v, i) 6= (v0, i0), then 1 + τvqi ≡ τwqj(mod nk+ 1), for some 0 ≤ w ≤ k− 1, 0 ≤ j ≤ n− 1, and

k−1∑
u=0

βτ
u(1+τvqi) =

k−1∑
u=0

βτ
u+wqj =

(
k−1∑
u=0

βτ
u

)qj
= αq

j

.

If (v, i) = (v0, i0), then

k−1∑
u=0

βτ
u(1+τvqi) = k,

which is 0 if k ≡ 0(mod p). So for all i 6= i0, the sum (4.4) is a sum of at most k basis elements.

Therefore the complexity of the basis is at most (n − 1)k + n = (k + 1)n − k. If k ≡ 0(mod p)

and i = i0, then (4.4) is a sum of at most k − 1 basis elements. Therefore if k ≡ 0(mod p) then

the complexity of the basis is at most (n− 1)k + k − 1 = kn− 1. The proof is complete. �
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As special cases of Theorem 4.1.4, when k = 1 we obtain Theorem 4.1.1, and when k = 2 and

q = 2 we have Theorem 4.1.2. When q is odd, k = 2, it is easy to see that the complexity of the

normal basis generated by the α in Theorem 4.1.4 is exactly 3n − 2. The exact complexity is in

general difficult to determine. Here we just quote the following result from [10], without proof.

Theorem 4.1.5 Let q = 2. Then the normal basis generated by the α of Theorem 4.1.4 has

complexity

(a) 4n− 7 if k = 3, 4 and n > 1;

(b) 6n− 21 if k = 5, n > 2, or k = 6, n > 12;

(c) 8n− 43 if k = 7, n > 6.

4.2 Determination of all Optimal Normal Bases

We have seen two constructions of optimal normal bases in the last section. A natural question

is whether there are any other optimal normal bases. In [103], complete computer searches

were performed for optimal normal bases in F2n , 2 ≤ n ≤ 30, and no new optimal normal

bases were found. This evidence led the authors to conjecture that if n does not satisfy the

criteria for Theorem 4.1.1 or Theorem 4.1.2, then F2n does not contain an optimal normal basis.

Lenstra [84] proved that this is indeed true. If the ground field Fq is not F2 we do have other

optimal normal bases. Suppose N is an optimal normal basis of Fqn over Fq and a ∈ Fq. Then

aN = {aα : α ∈ N} is also an optimal normal basis of Fqn over Fq. The two bases N and aN are

said to be equivalent. In addition, by Lemma 5.1.1, for any positive integer v with gcd(v, n) = 1,

N remains a basis of Fqnv over Fqv . Therefore N is an optimal normal basis of Fqnv over Fqv

provided that gcd(v, n) = 1. The problem now is whether there are any other optimal normal

bases. Mullin [102] proved that if the distribution of the nonzero elements of the multiplication

table of an optimal normal basis is similar to a type I or a type II optimal normal basis then the

basis must be either of type I or type II. Later Gao [49] proved that any optimal normal basis of

a finite field must be equivalent to a type I or a type II optimal normal basis. Finally, Gao and

Lenstra [50] extended the result to any finite Galois extension of an arbitrary field.

In this section we prove that all the optimal normal bases in finite fields are completely
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determined by Theorems 4.1.1 and 4.1.2. The proof given here is a combination of the proofs in

[49] and [50]. We first prove some properties that hold for any normal basis.

Let N = {α0, α1, . . . , αn−1} be a normal basis of Fqn over Fq with αi = αq
i

. Let

ααi =
n−1∑
j=0

tijαj , 0 ≤ i ≤ n− 1, tij ∈ Fq. (4.5)

Let T = (tij). Raising (4.5) to the q
−i-th power, we find that

tij = t−i,j−i, for all 0 ≤ i, j ≤ n− 1. (4.6)

From Chapter 1, we know that the dual of a normal basis is also a normal basis. Let B =

{β0, β1, . . . , βn−1} be the dual basis of N with βi = βq
i

, 0 ≤ i ≤ n− 1. Suppose that

αβi =

n−1∑
j=0

dijβj , 0 ≤ i ≤ n− 1, dij ∈ Fq. (4.7)

We show that

dij = tji, for all 0 ≤ i, j ≤ n− 1, (4.8)

i.e., the matrix D = (dij) is the transpose of T = (tij). The reason is as follows. By definition of

a dual basis, we have

Tr(αiβj) =

 0, if i 6= j,1, if i = j.

Consider the quantity Tr(αβiαk). On the one hand,

Tr(αβiαk) = Tr((αβi)αk) = Tr

n−1∑
j=0

dijβjαk

 = n−1∑
j=0

dijTr(βjαk) = dik.

On the other hand,

Tr(αβiαk) = Tr((ααk)βi) = Tr

n−1∑
j=0

tkjαjβi

 = n−1∑
j=0

tkjTr(αjβi) = tki.

This proves (4.8).

Theorem 4.2.1 Let N = {α, αq, . . . , αq
n−1
} be an optimal normal basis of Fqn over Fq. Let

b = Trqn|q(α), the trace of α in Fq. Then either
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(i) n+ 1 is a prime, q is primitive in Zn+1 and −α/b is a primitive (n+ 1)th root of unity; or

(ii) (a) q = 2v for some integer v such that gcd(v, n) = 1,

(b) 2n+ 1 is a prime, 2 and −1 generate the multiplicative group Z∗2n+1, and

(c) α/b = ζ + ζ−1 for some primitive (2n+ 1)th root ζ of unity.

Proof: Let αi = α
qi , 0 ≤ i ≤ n− 1, and {β0, β1, . . . , βn−1} be the dual basis of N with βi = βq

i

.

We assume (4.5) and (4.7) with the (i, j)-entry of D denoted by d(i, j). Then, by (4.6) and (4.8),

we have

d(i, j) = d(i− j,−j), for all 0 ≤ i, j ≤ n− 1. (4.9)

We saw from the proof of Theorem 1.2.1 that each row of D (or column of T ) has exactly two

non-zero entries which are additive inverses, except the first row which has exactly one non-zero

entry with value b. This is equivalent to saying that for each i 6= 0, αβi is of the form aβk − aβ`

for some a ∈ Fq and integers 0 ≤ k, ` ≤ n − 1, and αβ0 = bβm for some integer 0 ≤ m ≤ n − 1.

Replacing α by −α/b and β by −bβ we may, without loss of generality, assume that Tr(α) = −1.

Then we have

αβ0 = −βm. (4.10)

Also, from Tr(α)Tr(β) =
∑
i,j αiβj =

∑
k Tr(αβk) = 1 we see that we have Tr(β) = −1.

If m = 0 then from (4.10) we see that α = −1, so that n = 1, a trivial case. Let it henceforth

be assumed that m 6= 0.

We first deal with the case that 2m ≡ 0(mod n). Raising (4.10) to qm-th power we see that

αmβm = −β2m = −β0 = βm/α.

Therefore, we have

ααm = 1 = −Tr(α) =
n−1∑
i=0

−αi.

This shows that d(i,m) = −1 for all i = 0, . . . , n− 1. This implies that for each i 6= 0 there is a

unique i∗ 6= m such that

αβi = βi∗ − βm.
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If i 6= j then αβi 6= αβj , so i∗ 6= j∗. Therefore i 7→ i∗ is a bijective map from {0, 1, . . . , n−1}−{0}

to {0, 1, . . . , n− 1} − {m}. Hence each i∗ 6= m occurs exactly once, and so

ααi∗ = αi for i
∗ 6= m,

ααm = 1.

It follows that the set {1}∪{αi|i = 0, 1, . . . , n−1} is closed under multiplication by α. Since it is

also closed under the Frobenius map, it is a multiplicative group of order n+1. This implies that

αn+1 = 1, and we also have α 6= 1. Hence α is a zero of xn + · · · + x + 1. Since α has degree n

over Fq, the polynomial x
n+ · · ·+x+1 is irreducible over Fq. Therefore n+1 is a prime number.

This shows that we are in case (i) of Theorem 4.2.1.

For the remainder of the proof we assume that 2m 6≡ 0(mod n). By (4.10) we have d(0, i) = −1

or 0 according as i = m or i 6= m. Hence from (4.9) we find that

d(i, i) =

 −1, if i = −m,0, if i 6= −m.
(4.11)

Therefore αβ−m has a term −β−m. As −m 6= 0, there exists 0 ≤ ` ≤ n− 1 such that

αβ−m = β` − β−m, ` 6= −m. (4.12)

We next prove that the characteristic of Fq is 2. Note that

αm(αβ0) = αm(−βm) = −(αβ0)
qm = −(−βm)

qm = β2m.

On the other hand,

α(αmβ0) = α(αβ−m)
qm = α(β` − β−m)

qm

= αβ`+m − αβ0 = αβ`+m + βm.

Since αm(αβ0) = α(αmβ0) we obtain

αβ`+m = β2m − βm. (4.13)

Now we compute αα`β−m in two ways. To this purpose, note that d(−m− `,−`) = d(−m, `) = 1,

by (4.12). Since ` 6= −m implies that −m− ` 6= 0, we may assume that

αβ−m−` = β−` − βj
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for some j 6∈ {−`,−m− `} (hence j + ` 6= 0,−m). On the one hand,

α`(αβ−m) = α`(β` − β−m) = (αβ0 − αβ−m−`)
q`

= (−βm − β−` + βj)
q` = −βm+` − β0 + βj+`.

On the other hand,

α(α`β−m) = α(αβ−m−`)
q` = α(β−` − βj)

q`

= αβ0 − αβj+` = −βm − αβj+`.

We have

αβj+` = −βj+` + β0 + βm+` − βm.

As j + ` 6= −m, βj+` does not appear in αβj+` by (4.11). Thus −βj+` must cancel against one of

the last two terms.

If −βj+` + βm+` = 0 then j + ` = m + ` and thus αβm+` = β0 − βm. But by (4.13),

αβm+` = β2m − βm. Therefore β0 = β2m and 2m ≡ 0 (mod n), contradicting the assumption.

Consequently, −βj+`−βm = 0 and αβj+` = βm+`+β0. The first relation implies that j+` = m

and −2 = 0. Therefore the characteristic of Fq is 2, and

αβm = βm+` + β0. (4.14)

From now on we assume that q = 2v for some integer v. The equations (4.10) and (4.12) can

be rewritten as

αβ = βm, (4.15)

αβ−m = β` + β−m. (4.16)

Raising (4.16) to qm-th power and comparing the result to (4.14), we find αmβ = αβm, which

is the same as

α

β
=

αm

βm
=

(
α

β

)qm
. (4.17)

Multiplying (4.17) and (4.15) we find that α2 = αm = α
qm . By induction on k one deduces from

this that αq
mk

= α2
k

for every non-negative integer k. Let k = n/ gcd(m,n). Then α2
k

= α,
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which means that α is in F2k and thus of degree at most k ≤ n over the prime field F2 of Fq.

As α has degree n over Fq, it has degree at least n over F2. Hence k must equal to n, and thus

gcd(m,n) = 1. Also from the fact that α has the same degree over F2 and Fq for q = 2
v, we see

immediately that gcd(v, n) = 1 and the conjugates of α over Fq are the same as those over F2,

namely α, α2, . . . , α2
n−1
.

Let m1 be a positive integer such that mm1 ≡ 1(mod n). Then by repeatedly raising (4.17)

to qm-th power we have

α

β
=

(
α

β

)qmm1
=

(
α

β

)q
.

(Note that (α/β)q
n

= α/β.) This implies that α/β ∈ Fq, and since Tr(α) = Tr(β) = −1 we have

in fact α = β. Thus by (4.8) we see that

d(i, j) = d(j, i) for all 0 ≤ i, j ≤ n− 1. (4.18)

Let now ζ be a zero of x2 − αx + 1 in an extension Fq2n of Fqn , so that ζ + ζ−1 = α. The

multiplicative order of ζ is a factor of q2n − 1 and is thus odd; let it be 2t + 1. For each integer

i, write γi = ζi + ζ−i, so that γ0 = 0 and γ1 = α. It can be seen directly that γi = γj if and

only if i ≡ ±j (mod 2t+ 1). Hence there are exactly t different non-zero elements among the γi,

namely γ1, γ2, . . . , γt. Each of the n conjugates of α is of the form α2
j

= ζ2
j

+ ζ−2
j

= γ2j for

some integer j, and therefore occurs among the γi. This implies that n ≤ t. We show that n = t

by proving that, conversely, every non-zero γi is a conjugate of α. This is done by induction on i.

We have γ1 = α and γ2 = α
2, so it suffices to take 3 ≤ i ≤ t. We have

αγi−2 = (ζ + ζ
−1)(ζi−2 + ζ2−i) = γi−1 + γi−3,

where by the induction hypothesis each of γi−2, γi−1 is conjugate to α, and γi−3 is either conjugate

to α or equal to zero. Thus when αγi−2 is expressed in the normal basis {α2
i

|i = 0, 1, . . . , n− 1},

then γi−1 occurs with a coefficient 1. By (4.18), this implies that when αγi−1 is expressed in the

same basis, γi−2 likewise occurs with a coefficient 1. Hence from the fact that β = α and γi−1 6= α

we see that αγi−1 is equal to the sum of γi−2 and some other conjugate of α. But since we have

α · γi−1 = γi−2 + γi, that other conjugate of α must be γi. This completes the inductive proof

that all non-zero γi are conjugate to α and that n = t.

From the fact that each non-zero γi equals a conjugate α
2j of α it follows that for each integer

i that is not divisible by 2n+1, there is an integer j such that i ≡ ±2j(mod 2n+1). In particular,
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every integer i that is not divisible by 2n + 1 is relatively prime to 2n + 1, so 2n + 1 is a prime

number, and Z∗2n+1 is generated by 2 and −1. Thus the conditions (a) and (b) of the theorem are

satisfied. All assertions of (ii) have been proved. �

4.3 Constructing Irreducible Polynomials under ERH

The α in Theorem 4.1.4 has classical origins and is called a Gauss period [147, 110]. Gauss periods

are used to realize the Galois correspondence between subfields of a cyclotomic field and subgroups

of its Galois group, as shown in section 1.1. Gauss periods are also useful for integer factorization

algorithms [12]. In this section, we show how Theorem 4.1.4 can be used to solve the problem of

constructing irreducible polynomials deterministically in polynomial time, assuming the Extended

Riemann Hypothesis (ERH), as shown in [1].

Suppose that the conditions in Theorem 4.1.4 are satisfied. Then the α has degree n over Fq.

The minimal polynomial of α over Fq is an irreducible polynomial of degree n. Let αi = αq
i

for

i = 0, 1, . . . , n − 1. By the equation (4.4) and its following arguments, we see that the products

ααq
i

=
∑n−1
j=0 tijαj , where tij ’s are integers and i = 0, 1, . . . , n − 1, can be computed in time

polynomial in m = kn+ 1. The minimal polynomial of α is just the characteristic polynomial of

the n× n matrix (tij), since {α0, α1, . . . , αn−1} is a basis for Fqn over Fq. Thus we see that the

minimal polynomial of α can be found in time polynomial in m = kn+ 1.

About the smallest m = kn + 1 such that the conditions of Theorem 4.1.4 are satisfied, we

quote Proposition 3 in [1] which is a variant of Theorem 3 in [12].

Lemma 4.3.1 Assuming the Extended Riemann Hypothesis (ERH), there is a constant c > 0 such

that for all prime p and positive integer n such that gcd(n, p) = 1, there is a prime m = kn + 1

with m < cn4(log(np))2 such that gcd(kn/e, n) = 1 where e is the multiplicative order of p modulo

m.

Note that the conditions in the above lemma are the same as in Theorem 4.1.4 and can be

tested in time polynomial in m and log p. Therefore, we have

Theorem 4.3.2 (Adleman and Lenstra [1]) Assuming Extended Riemann Hypothesis, an ir-

reducible polynomial of degree n in Fp[x] can be constructed deterministically in polynomial time
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(in n and log p) for any prime p and positive integer n.

Finally, we give some comments on computing the matrix (tij) and its connection with cyclo-

tomic numbers. From the argument following the equation (4.4) we see that tij is the number

of solutions of 1 + τvqi ≡ τwqj(modnk + 1) with 0 ≤ v, w ≤ k − 1 (except for i = i0 where

1 + τv0qi0 ≡ 0(modnk + 1)). These numbers are called cyclotomic numbers in the theory of cy-

clotomy and their values are determined for many small values of n, for detail see [135]. We

remark that αi = α
qi =

∑k−1
v=0 β

τvqi does not depends on the particular τ and q, it depends only

on the coset {qi, qiτ, . . . , qiτk−1}(modm = kn + 1) of the unique subgroup < τ > of order k of

the multiplicative group Z∗m. Also the value of β is not important. We can just think of β as a

symbol x with xm = 1 and x 6= 1, that is, we may work in the ring Zm[x]/(xm−1 + · · ·+ x+ 1).

Let us look at an example. Let n = 4, k = 3 and m = 4× 3 + 1 = 13. The subgroup of order

3 in Z13 is {1, 3, 9}. Its cosets are

{1, 3, 9}, {2, 5, 6}, {4, 10, 12}, {7, 8, 11}.

We have

α0 = β + β3 + β9,

α1 = β2 + β5 + β6,

α2 = β4 + β10 + β12,

α3 = β7 + β8 + β11,

and

α0α0 = α1 + 2α2,

α0α1 = α0 + α1 + α3,

α0α2 = −3α0 − 2α1 − 3α2 − 2α3,

α0α3 = α0 + α2 + α3.

The matrix (tij) is 
0 1 2 0

1 1 0 1

−3 −2 −3 −2

1 0 1 1

 .
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Its characteristic polynomial is f(x) = x4 + x3 + 2x2 − 4x + 3. Let E = {2, 5, 6, 7, 8, 11}. Then,

for each a ∈ E, the multiplicative order e of a satisfies gcd(12/e, 4) = 1. Hence by Theorem 4.1.4,

the polynomial f(x) is irreducible over Fq for all prime powers q such that q ≡ a mod 13 for some

a ∈ E.

4.4 A Simple Proof of the Law of Quadratic Reciprocity

In this section, we show another application of Gauss periods in the proof of the law of quadratic

reciprocity.

Let p be prime. For an integer a, the Legendre symbol (a/p) is defined to be 1 if a is a quadratic

residue in Zp, −1 if a is a quadratic nonresidue in Zp, and zero if p|a. If q is another prime, then

there is a remarkable relationship between (p/q) and (q/p), called the law of quadratic reciprocity,

discovered by Euler and first completely proved by Gauss.

Theorem 4.4.1 (Law of Quadratic Reciprocity) Let p and q be odd primes. Then

(a) (−1/p) = (−1)(p−1)/2,

(b) (2/p) = (−1)(p
2−1)/8,

(c) (p/q) = (−1)((p−1)/2)((q−1)/2)(q/p).

Proof: It is our purpose to give a proof of (c), the proof of (a) and (b) can be found in [68]. Note

that q|(pq−1 − 1). There is a primitive q-th root of unity in Fpq−1 , say ξ. As ξ 6= 1, ξ must be a

root of (xq − 1)/(x− 1), that is,

q−1∑
i=0

ξi = 0.

Now let S be the set of quadratic residues in Fq and N = F
∗
q \S the set of quadratic nonresidues.

Then uS = S if u ∈ S and uS = N if u ∈ N . Define

α0 =
1

2
+
∑
u∈S

ξu, α1 =
1

2
+
∑
u∈N

ξu.

Then we have

α0 + α1 = 0.
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Note that

α0α1 =
1

4
+
1

2

(∑
u∈S

ξu +
∑
u∈N

ξu

)
+
∑
u∈S
v∈N

ξu+v

= −
1

4
+

q−1∑
d=0

adξ
d.

where ad is the number of pairs (u, v) ∈ S ×N such that

u+ v = d. (4.19)

We claim that ad is a constant for d 6= 0. The reason is that for any d1 = σd 6= 0, every solution

(u, v) ∈ S×N of (4.19) corresponds to a solution (u1, v1) ∈ S×N for u1+ v1 = d1 where (u1, v1)

is (σu, σv) if σ is a quadratic residue or (σv, σu) if σ is a quadratic nonresidue. Let a = ad be

the constant for d 6= 0. The number a0 is easy to determine. We know that if q ≡ 1 (mod4) then

−1 ∈ S and −S = S, −N = N ; if q ≡ 3 (mod4) then −1 ∈ N and −S = N , −N = S. Hence

a0 =

 0, if q ≡ 1 (mod4),

|S| = |N | = q−1
2 , if q ≡ 3 (mod4).

Note that

a0 + (q − 1)a =
q−1∑
i=0

ai =

(
q − 1

2

)2
,

which is the total number of pairs (u, v) ∈ S ×N . We have

a =


q−1
4 , if q ≡ 1 (mod4),

|S| = |N | = q−1
4 −

1
2 , if q ≡ 3 (mod4).

Therefore

α0α1 = −
1

4
+ a0 + a

q−1∑
i=1

ξi = −
1

4
+ a0 − a = −(−1)

(q−1)/2 q

4
.

Consider the irreducibility of the following polynomial

f(x) = (x− α0)(x− α1) = x
2 − (−1)(q−1)/2

q

4

in Fp[x]. On the one hand, obviously, f(x) is irreducible in Fp[x] if and only (−1)(q−1)/2q is a

quadratic nonresidue in Fp. On the other hand, f(x) is irreducible in Fp[x] if and only if α0 6∈ Fp,
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or equivalently αp0 6= α0. However,

αp0 =

(
1

2
+
∑
u∈S

ξu

)p
=
1

2
+
∑
u∈S

ξpu =

 α0, if (p/q) = 1,

α1, if (p/q) = −1.

This means that f(x) is irreducible in Fp[x] if and only if p is a quadratic nonresidue in Fq.

Consequently, we have(
p

q

)
=

(
(−1)(q−1)/2q

p

)
= (−1)((q−1)/2)((p−1)/2)

(
q

p

)
,

which is what we want to prove! �

The reader may have realized that the second terms of α0 and α1 are Gauss periods for n = 2.

In [68, page 85], there is a proof on the same line based on finite fields using Gauss sums. It seems

that Gauss periods are easier to manipulate than Gauss sums in this circumstance.



Chapter 5

Normal Bases of Low Complexity

This chapter is devoted to a family of normal bases, considered by Sidel’nikov [130], with the

property that all the elements in a basis can be obtained from one element by repeatedly applying

to it a linear fractional function of the form ϕ(x) = (ax+ b)/(cx+ d), a, b, c, d ∈ Fq. Sidel’nikov

proved that the cross products for such a basis {αi} are of the form αiαj = ei−jαi + ej−iαj + γ,

i 6= j, where ek, γ ∈ Fq. We will show that every such basis can be formed by the roots of an

irreducible factor of F (x) = cxq+1 + dxq − ax − b. We will construct: (a) a normal basis of Fqn

over Fq with complexity at most 3n − 2 for each divisor n of q − 1 and for n = p where p is

the characteristic of Fq; (b) a self-dual normal basis of Fqn over Fq for n = p and for each odd

divisor n of q − 1 or q + 1. When n = p, the self-dual normal basis constructed of Fqp over Fq

also has complexity at most 3p− 2. In all cases, we will give the irreducible polynomials and the

multiplication tables explicitly.

For this purpose, some properties of linear fractional functions and the complete factorization

of F (x) are discussed in sections 5.1 and 5.2, respectively.

5.1 On Linear Fractional Functions

In this section, we discuss some properties of the linear fractional function ϕ(x) = (ax+b)/(cx+d)

with a, b, c, d ∈ Fq and ad− bc 6= 0. It is easy to see that ϕ(x) defines a permutation on Fq ∪{∞},

84
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where

a∞+ b

c∞+ d
: =

a

c
, if c 6= 0,

a∞+ b

c∞+ d
: =∞, if ad 6= 0, c = 0,

a

0
:=∞, if a 6= 0.

Actually, ϕ(x) induces a permutation on Fqn ∪ {∞}, for any n ≥ 1. The inverse of ϕ(x) is

ϕ−1(x) = (−dx+ b)/(cx− a).

For any two linear fractional functions ϕ and ψ, the composition ϕψ, defined as ϕψ(x) =

ϕ(ψ(x)), is still a linear fractional function. It is well known that all the linear fractional functions

over Fq form a group under composition and is isomorphic to the projective general linear group

PGL(2, q). The order of ϕ is the smallest positive integer t such that ϕt(x) = x, i.e., ϕt is the

identity map.

For our purpose, we will deal with a linear fractional function ϕ(x) = (ax+ b)/(cx+ d) with

c 6= 0. The fixed points of ϕ(x) satisfy

cx2 − (a− d)x− b = 0. (5.1)

The following two lemmas are easily checked.

Lemma 5.1.1 Let ϕ(x) = ax+ b with a 6= 0, 1, be a linear mapping. Then

ϕ = h−1ψh,

where ψ(x) = ax and h(x) = x+ b/(a− 1).

Lemma 5.1.2 Let ϕ(x) = (ax+ b)/(cx+ d) with c 6= 0 and ad− bc 6= 0. Let ∆ = (a− d)2 + 4bc.

Then

ϕ = h−1ψh,

where h(x) and ψ(x) are defined as follows:

(a) When ∆ = 0, let x0 be the only solution of (5.1) in Fq, that is, x0 satisfies cx
2
0 = −b and

2cx0 = a− d. Then h(x) = (a/c− x0)/(x− x0) and ψ(x) = x+ 1.
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(b) When ∆ 6= 0, let x0, x1 be the two solutions of (5.1) in Fq2 and let ξ = (a− cx0)/(a− cx1).

Then

h(x) =
x− x0
x− x1

, ψ(x) = xξ.

The order of ϕ is now easy to determine. The order of ϕ is equal to the order of ψ. If ψ is of the

form x+1 then the order of ψ is equal to the additive order p of 1 in Fq, where p is the characteristic

of Fq. If ψ is of the form ξx, then the order of ψ is equal to the multiplicative order of ξ. In case (b)

of Lemma 5.1.2, if ∆ is a quadratic residue in Fq, then x0, x1 ∈ Fq, and ξ ∈ Fq. Hence ξq−1 = 1 and

the order of ξ is a divisor of q−1. If ∆ is a quadratic nonresidue in Fq, then x0, x1 ∈ Fq2 \Fq and

xq0 = x1, x
q
1 = x0. Thus ξ

q = ((a−cx0)/(a−cx1))q = (a−cx
q
0)/(a−cx

q
1) = (a−cx1)/(a−cx0) = 1/ξ.

So ξq+1 = 1 and the order of ξ divides q + 1. Therefore the order of ϕ is always a divisor of p,

q − 1 or q + 1.

Lemma 5.1.3 Let a, b, c, d ∈ Fq with c 6= 0 and ad− bc 6= 0. Let ϕ(x) = (ax+ b)/(cx + d) with

order t. Then, for 1 ≤ i ≤ t− 1,

ϕi(x) =
eix+ b/c

x− et−i
, ei + et−i =

a− d

c
(5.2)

where e1 = a/c and ei+1 = ϕ(ei) for i = 1, . . . , t− 2.

Proof: It is routine to prove by induction on i that there exist ei, fi ∈ Fq with e1 = a/c, f1 = d/c

such that

ϕi(x) =
eix+ b/c

x+ fi
,

and

ei − fi =
a− d

c
, ei = ϕ(ei−1)

for i = 1, . . . , t− 1, where e0 =∞. Note that

et−ix+ b/c

x+ ft−i
= ϕt−i(x) = ϕ−i(x) = (ϕi)−1(x) =

−fix+ b/c

x− ei
.

We see that fi = −et−i. This completes the proof. �
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Lemma 5.1.4 With the same notation as in Lemma 5.1.3, we have

t−1∑
j=1

ej =



(t− 1)(a− d)/(2c), if p 6= 2,

a/c = d/c, if p = 2 and t = 2,

(a− d)/c, if p = 2 and t ≡ 3 mod 4,

0, if p = 2 and t ≡ 1 mod 4,

(5.3)

where p is the characteristic of Fq.

Proof: We consider two cases according to the type of ϕ(x).

Case I ∆ = (a− d)2 + 4bc = 0. Then t = p and, by Lemma 5.1.2, ϕ(x) = h−1ψh(x) where

ψ(x) = x+ 1, h(x) =
a/c− x0
x− x0

, h−1(x) = x0 +
a/c− x0

x
,

with x0 satisfying 2cx0 = a− d and cx20 = −b. Note that ψ
i(x) = x+ i. We have

ϕi(x) = h−1ψih(x)

= h−1
(
a/c− x0
x− x0

+ i

)
=
(a/c− x0 − ix0)x− ix20
ix+ (a/c− x0 − ix0)

.

So

ei =
a/c− x0

i
+ x0, for 1 ≤ i ≤ t− 1.

Therefore

p−1∑
i=1

ei = (p− 1)x0 + (a/c− x0)
p−1∑
i=1

i−1

= (p− 1)x0 + (a/c− x0)
p−1∑
i=1

i

=

 (p− 1)x0 = (t− 1)(a− d)/(2c), if p 6= 2,a/c = d/c, if p = 2.

Case II ∆ = (a− d)2 + 4bc 6= 0. In this case, the order t of ϕ(x) is a factor of q − 1 or q + 1.

So t ∈ F ∗q . By Lemma 5.1.2, ϕ(x) = h
−1ψh(x) where

h(x) =
x− x0
x− x1

, ψ(x) = ξx, ξ =
a/c− x0
a/c− x1

,
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with x0+x1 = (a−d)/c and x0x1 = −b/c. Note that h−1(x) = (x1x−x0)/(x−1) and ψi(x) = ξix,

we have

ϕi(x) = h−1ψih(x)

= h−1
(
ξi
x− x0
x− x1

)
=
(x1ξ

i − x0)x− x0x1(ξi − 1)

(ξi − 1)x+ x1 − x0ξi
.

So

ei =
x1ξ

i − x0
ξi − 1

= x1 +
x1 − x0
ξi − 1

, for 1 ≤ i ≤ t− 1,

and

t−1∑
i=1

ei = (t− 1)x1 + (x0 − x1)
t−1∑
i=1

1

1− ξi
.

As ξ is a t-th primitive root of unity, we have

t−1∏
i=1

(x− ξi) = (xt − 1)/(x− 1) = xt−1 + xt−2 + · · ·+ x+ 1. (5.4)

Letting x = 1 in equation (5.4), we get

t−1∏
i=1

(1− ξi) = t. (5.5)

Taking derivatives with respect to x on both sides of (5.4), we have

t−1∏
i=1

(x− ξi)(
t−1∑
i=1

1

x− ξi
) = (t− 1)xt−2 + (t− 2)xt−3 + · · ·+ 2x+ 1. (5.6)

Letting x = 1 in (5.6), we see that

t−1∑
i=1

1

1− ξi
= (

t−1∑
i=1

i)/t =


(t− 1)/2, if p 6= 2,

1, if p = 2 and t ≡ 3 mod 4,

0, if p = 2 and t ≡ 1 mod 4,

(Note that t is odd when p = 2.) Therefore

t−1∑
i=1

ei =


((t− 1)/2)(x0 + x1) = (t− 1)(a− d)/(2c), if p 6= 2,

x0 − x1 = (a− d)/c, if p = 2 and t ≡ 3 mod 4,

0, if p = 2 and t ≡ 1 mod 4.

This completes the proof. �

The following theorem is proved by Sidel’nikov [130, Theorem 2]:
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Theorem 5.1.5 Let a, b, c, d ∈ Fq with c 6= 0 and ad − bc 6= 0. Let θ be a root of F (x) =

cxq+1 + dxq − ax− b in some extension field of Fq, not fixed by ϕ(x) = (ax+ b)/(cx+ d) whose

order is assumed to be t. Then

θ, ϕ(θ), · · · , ϕt−1(θ)

are linearly independent over Fq, if
∑t−1
i=0 ϕ

i(θ) 6= 0.

This theorem indicates that if we can factor F (x) then we will obtain normal bases over Fq.

The factorization of F (x) is discussed in the next section.
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5.2 Factorization of cxq+1 + dxq − ax− b

The complete factorization of F (x) = cxq+1 + dxq − ax− b, a, b, c, d ∈ Fq, into irreducible factors

was established by Ore [106, pp. 264–270] by using his theory of linearized polynomials. In this

section, we briefly discuss how this can be done without resorting to linearized polynomials. The

detail can be found in [22]. To exclude the trivial cases, we assume that ad − bc 6= 0. Let

ϕ(x) = (ax + b)/(cx + d) be the linear fractional function associated with F (x). As noted in

section 5.1, ϕ(x) induces a permutation on Fqn ∪ {∞}, for any n ≥ 1. We assume that the order

of ϕ is t in this section.

Let θ be a root of F (x) = (cx+ d)xq − (ax+ b). Then

θq =
aθ + b

cθ + d
= ϕ(θ).

Note that

θq
2

= (ϕ(θ))q = ϕ(θq) = ϕ(ϕ(θ)) = ϕ2(θ).

By induction we see that θq
i

= ϕi(θ), i ≥ 0. So

θ, ϕ(θ), · · · , ϕt−1(θ) (5.7)

are all the conjugates of θ over Fq. If θ is a fixed point of ϕ(x) then θ ∈ Fq, and x − θ is a

factor of F (x). If θ is not a fixed point of ϕ(x), then, by Theorem 5.1.5, the elements of (5.7) are

distinct and θ is of degree t over Fq. In the latter case, the minimal polynomial of θ over Fq is an

irreducible factor of F (x) of degree t. So an irreducible factor of F (x) is either linear or of degree

t. We first deal with two special cases.

Theorem 5.2.1 Let ξ ∈ Fq \ {0} with multiplicative order t. Then the following factorization

over Fq is complete:

xq−1 − ξ =

(q−1)/t∏
j=1

(xt − βj),

where βj are all the (q − 1)/t distinct roots of x(q−1)/t − ξ in Fq.

Proof: Let θ be a root of xq−1 − ξ in some extension field of Fq. Then θq
i

= θξi, i ≥ 1. All the

distinct conjugates of θ over Fq are θ, θξ, . . . , θξ
t−1. The minimal polynomial of θ over Fq is

t−1∏
i=0

(x− θξi) = xt − θt,
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which divides xq−1 − ξ. This means that any irreducible factor of xq−1 − ξ is of the form xt − β

where β ∈ Fq. One can prove that xt−β divides xq−1− ξ if and only if β is a root of x(q−1)/t− ξ.

This completes the proof. �

Theorem 5.2.2 For xq − (x+ b) with b ∈ F ∗q , the following factorization over Fq is complete:

xq − (x+ b) =

q/p∏
j=1

(xp − bp−1x− bpβj) (5.8)

where βj are the distinct elements of Fq with Trq/p(βj) = 1 and p is the characteristic of Fq.

Remark: The factorization in (5.7) is better than that in Theorem 3.80 in [90, page 128].

Proof: Let θ be a root of F (x) = xq − (x+ b). Then θq
i

= θ + ib, i ≥ 1. So the conjugates of θ

over Fq are θ, θ + b, . . . , θ + (p− 1)b. The minimal polynomial of θ over Fq is

p−1∏
i=0

[x− (θ + ib)] = bp
p−1∏
i=0

[
x− θ

b
− i]

= bp[(
x− θ

b
)p −

x− θ

b
]

= xp − bp−1x+ θ(bp−1 − θp−1).

Hence an irreducible factor of xq − (x+ b) is of the form

xp − bp−1x− β, β ∈ Fq. (5.9)

Let γ be a root of (5.9) in some extension field of Fq. Then we have

(
γ

b
)p
i

− (
γ

b
)p
i−1

= (
β

bp
)p
i−1

, 1 ≤ i ≤ m, (5.10)

where q = pm. Summing (5.10) yields

γp
m

− γ = bTrq/p(
β

bp
).

Consequently (5.9) divides F (x) = xp
m

− x − b if and only if Trq/p(β/b
p) = 1. Note that there

are q/p = pm−1 elements β in Fq with trace 1, and the proof is completed. �

In general we show that the factorization of F (x) can be reduced to factoring xq − x − 1,

xq−1 − ξ or xq+1 − ξ. Let ϕ = h−1ψh as in Lemmas 5.1.1 and 5.1.2. For any root θ of F (x) that

is not fixed by ϕ, we have

h(θq) = ψ(h(θ)). (5.11)
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If ∆ is a quadratic residue in Fq, then h(θ
q) = (h(θ))q. Thus η = h(θ) is a root of xq − x− 1 or

xq − ξx = x(xq−1 − ξ) according as ψ(x) = x + 1 or ψ(x) = ξx, ξ ∈ Fq. So by the factorization

of xq − x− 1 and xq−1 − ξ as in Theorems 5.2.1 and 5.2.2 we obtain the factorization of F (x) as

follows.

Theorem 5.2.3 For a, b ∈ Fq with a 6= 0, 1, the following factorization over Fq is complete:

xq − (ax+ b) = (x−
b

a− 1
)

(q−1)/t∏
j=1

((x−
b

a− 1
)t − βj),

where t is the multiplicative order of a and βj are all the (q − 1)/t distinct roots of x(q−1)/t − a.

Remark: Compare this with Theorem 3.83 in [90, page 129].

Theorem 5.2.4 For a, b, c, d ∈ Fq with c 6= 0, ad − bc 6= 0 and ∆ = (a − d)2 + 4bc = 0, the

following factorization over Fq is complete:

(cx+ d)xq − (ax+ b)

= (x− x0)

q/p∏
j=1

[(x− x0)
p +

1

βj
(a/c− x0)(x− x0)

p−1 −
1

βj
(a/c− x0)

p]

where x0 ∈ Fq is the unique solution of (5.1) and βj are all the q/p distinct elements of Fq with

Trq/p(βj) = 1.

Theorem 5.2.5 For a, b, c, d ∈ Fq with c 6= 0, ad − bc 6= 0 and ∆ = (a − d)2 + 4bc 6= 0 being a

quadratic residue in Fq, the following factorization over Fq is complete:

(cx+ d)xq − (ax+ b)

= (x− x0)(x− x1)

(q−1)/t∏
j=1

1

1− βj
[(x− x0)

t − βj(x− x1)
t]

where x0, x1 ∈ Fq are the two distinct roots of (5.1), t is the multiplicative order of ξ = (a −

cx0)/(a− cx1) and βj are all the (q − 1)/t distinct roots of x(q−1)/t − ξ in Fq.

If ∆ is not a quadratic residue in Fq, the situation is a little more complicated, as in this case

x0, x1, ξ 6∈ Fq. Noting that x
q
0 = x1 and x

q
1 = x0, we have h(θ

q) = (1/h(θ))q. The equation (5.11)

implies that η = 1/h(θ) is a root of xq+1 − ξ. So by factoring xq+1 − ξ over Fq2 we can obtain

the factorization of F (x) over Fq2 . Then by “combining” these factors we get the factorization of

F (x) over Fq as in Theorem 5.2.6.
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Theorem 5.2.6 For a, b, c, d ∈ Fq with c 6= 0, ad − bc 6= 0 and ∆ = (a − d)2 + 4bc 6= 0 being a

quadratic nonresidue in Fq, the following factorization over Fq is complete:

F (x) = (cx+ d)xq − (ax+ b)

=

(q+1)/t∏
j=1

1

1− βj
[(x− x0)

t − βj(x− x1)
t] (5.12)

where x0, x1 ∈ Fq2 are the two distinct roots of (5.1), t is the multiplicative order of ξ = (a −

cx1)/(a− cx0) and βj are all the (q + 1)/t distinct roots of x(q+1)/t − ξ in Fq2 .

Let f(x) be any nonlinear irreducible factor of F (x) of degree t and let α be a root of f(x).

From the discussion at the beginning of this section, we see that ϕi(α), i = 0, 1, . . . , t− 1 are all

the roots of f(x) and, by Theorem 5.1.5, they are linearly independent over Fq if Tr(α) 6= 0. But

Tr(α) is just the negative of the coefficient of xt−1 in f(x). By examining the factors in the above

explicit factorizations, we have

Theorem 5.2.7 Let F (x) = (cx+d)xq−(ax+b) with a, b, c, d ∈ Fq, c 6= 0 and ad−bc 6= 0. Then

a monic nonlinear irreducible factor f(x) of F (x) of degree t has linearly dependent roots over Fq if

and only if the coefficient of xt−1 in f(x) is zero. The latter happens only if ∆ = (a−d)2+4bc 6= 0

and f(x) is of the form

1

x1 − x0
[x1(x− x0)

t − x0(x− x1)
t],

where x0 and x1 are solutions of (5.1).

This shows that every nonlinear irreducible factor of F (x), except for possibly one, has linearly

independent roots.

5.3 Normal Bases

As Theorem 5.2.7 shows, when c 6= 0 the roots of an irreducible nonlinear factor of F (x) form a

normal basis over Fq (except possibly for one factor). This section is devoted to discussing the

properties of these bases. We will show how to construct a normal basis of Fqn over Fq with

complexity at most 3n − 2 for n = p and for each divisor n of q − 1. For this purpose we first



FACTORIZATION of cxq+1 + dxq − ax− b 94

compute the multiplication tables of the normal bases formed by the roots of an irreducible factor

of F (x).

Without loss of generality, we assume that F (x) = xq+1 + dxq − ax − b with a, b, d ∈ Fq

and b 6= ad. Assume that ϕ(x) = (ax + b)/(x + d) has order n and that, by Lemma 5.1.3,

ϕi(x) = (eix + b)/(x − en−i) with ei = ϕi−1(a), 1 ≤ i ≤ n − 1. Let f(x) be any irreducible

nonlinear factor of F (x) and α a root of f(x). Then f(x) has degree n and its roots are

αi = α
qi = ϕi(α), i = 0, 1, · · · , n− 1,

and they form a normal basis of Fqn over Fq if the coefficient of x
n−1 in f(x) is not zero (or

Tr(α) 6= 0), by Theorem 5.2.7.

Theorem 5.3.1 Let F (x) = xq+1 + dxq − (ax+ b) with a, b, d ∈ Fq and b 6= ad. Let f(x) be an

irreducible factor of F (x) of degree n > 1 and let α be a root of it. Then all the roots of f(x) are

αi = α
qi = ϕi(α), i = 0, 1, · · · , n− 1, (5.13)

where ϕ(x) = (ax+ b)/(x+ d). If τ =
∑n−1
i=0 αi, the negative of the coefficient of x

n−1 in f(x), is

not zero, then (5.13) form a normal basis of Fqn over Fq such that

α0



α0

α1

α2
...

αn−1


=



τ∗ −en−1 −en−2 . . . −e1

e1 en−1

e2 en−2
...

. . .

en−1 e1





α0

α1

α2
...

αn−1


+



b∗

b

b

...

b


(5.14)

where e1 = a, ei+1 = ϕ(ei) (i ≥ 1), b∗ = −b(n− 1) and τ∗ = τ − ε with

ε =

n−1∑
i=1

ei =



(n− 1)(a− d)/2, if p 6= 2,

a = d, if p = n = 2,

a− d, if p = 2 and n ≡ 3 mod 4,

0, if p = 2 and n ≡ 1 mod 4.

Proof: We just need to prove (5.14). By Lemma 5.1.3, for i ≥ 1,

αi = ϕ
i(α) =

eiα0 + b

α0 − en−i
.
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So

α0αi = eiα0 + en−iαi + b.

For i = 0, we have

α0α0 = α0(τ −
n−1∑
j=1

αj) = (τ −
n−1∑
j=1

ej)α0 −
n−1∑
j=1

en−jαj − b(n− 1).

The theorem follows from Lemma 5.1.4. �

The next theorem can be viewed as the “converse” of Theorem 5.3.1.

Theorem 5.3.2 Let n > 2 and αi = αq
i

for 0 ≤ i ≤ n− 1. Suppose that {αi} is a normal basis

of Fqn over Fq and satisfies

αiαj = aijαi + bijαj + γij , for all 0 ≤ i 6= j ≤ n− 1, (5.15)

where aij , bij , γij ∈ Fq. Then there are constants γ, e1, e2, . . . , en−1 ∈ Fq such that

(a) ei = ϕ(ei−1), for 2 ≤ i ≤ n− 1, and

aij = ej−i, bij = ei−j , γij = γ, for all i 6= j,

where ϕ(x) = (e1x+ γ)/(x− en−1) and the subscripts of e are calculated modulo n;

(b) the minimal polynomial of α is a factor of F (x) = xq+1 − en−1xq − (e1x + γ), and thus n

must be a factor of p, q − 1 or q + 1.

Proof: Let ek = a0k and γk = γ0k for k = 1, 2, · · · , n− 1. Then

α0αk = ekα0 + b0kαk + γk. (5.16)

Raising (5.16) to the qn−k-th power on both sides, we have

α0αn−k = b0kα0 + ekαn−k + γk. (5.17)

Subtracting (5.17) from (5.16), with the k in (5.16) replaced by n− k, gives

(en−k − b0k)α0 + (b0n−k − ek)αn−k + γn−k − γk = 0. (5.18)
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As n > 2 and the αi’s are linearly independent over Fq, the equation (5.18) implies that

b0k = en−k, γk = γn−k, 1 ≤ k ≤ n− 1

Therefore

α0αk = ekα0 + en−kαk + γk, 1 ≤ k ≤ n− 1. (5.19)

Now for any i 6= j, raising (5.19) to the qi-th power and letting k = j − i, we have

αiαj = ej−iαi + ei−jαj + γj−i. (5.20)

Comparing (5.20) and (5.15) gives

aij = ej−i, bij = ei−j , γij = γj−i, (5.21)

which proves part of (a).

We shall prove the remaining part of (a) together with (b). To this purpose, note that a special

case of (5.20) is

αiαi+1 = en−1αi+1 + e1αi + γ1, 0 ≤ i < n− 1,

or

αi+1 =
e1αi + γ1
αi − en−1

= ϕ(αi), 0 ≤ i < n− 1, (5.22)

where ϕ(x) = (e1x+γ)/(x− en−1) with γ = γ1. So, by induction on i, we see that αi = ϕi(α0) =

ϕi(α), 0 ≤ i ≤ n− 1. We know, by Lemma 5.1.3, that

ϕi(x) = (aix+ γ)/(x− an−i), 0 ≤ i ≤ n− 1

where ai = ϕ(ai−1), for i ≥ 1, and a1 = e1. Thus (5.22) implies that

αi =
aiα0 + γ

α0 − an−i
,

i.e.,

α0αi = aiα0 + an−iαi + γ. (5.23)
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Comparing (5.23) to (5.19), we have

ei = ai, en−i = an−i, γi = γ.

This proves (a). For (b), note that α1 = αq and that (5.19) with k = 1 means α is a root of

F (x) = xq+1 − en−1xq − e1x − γ. Therefore the minimal polynomial of α divides F (x). This

completes the proof. �

Theorem 5.3.3 For every a, β ∈ F ∗q with Trq/p(β) = 1,

xp −
1

β
axp−1 −

1

β
ap, (5.24)

is irreducible over Fq and its roots form a normal basis of Fqn over Fq with complexity at most

3p− 2. The multiplication table is

τ∗ −ep−1 −ep−2 . . . −e1

e1 ep−1

e2 ep−2
...

. . .

ep−1 e1


(5.25)

where e1 = a, ei+1 = ϕ(ei) fori ≥ 1, ϕ(x) = ax/(x + a), and τ∗ = a/β if p 6= 2 or a/β − a if

p = 2.

Proof: Let F (x) = (x+ a)xq − ax and ϕ(x) = ax/(x+ a). Then F (x) satisfies the conditions of

Theorem 5.2.4 with b = 0, c = 1, d = a, ∆ = 0, and x0 = 0. So (5.24) is an irreducible factor of

F (x). As the coefficient of xp−1 in (5.24) is −a/β 6= 0, by Theorem 5.3.1, the roots of (5.24) form

a normal basis and its multiplication table is (5.25). The complexity is obviously at most 3p− 2.

�

Theorem 5.3.4 Let n be any factor of q − 1. Let β ∈ Fq with multiplicative order t such that

gcd(n, (q − 1)/t) = 1 and let a = β(q−1)/n. Then

xn − β(x− a+ 1)n (5.26)
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is irreducible over Fq and its roots form a normal basis of Fqn over Fq of complexity at most

3n− 2. The multiplication table is

τ∗ −en−1 −en−2 . . . −e1

e1 en−1

e2 en−2
...

. . .

en−1 e1


(5.27)

where e1 = a, ei+1 = ϕ(ei) (i ≥ 1), ϕ(x) = ax/(x + 1) and τ∗ = −n(a − 1)β/(1 − β) − ε with ε

specified as in Theorem 5.3.1 (with d = 1).

Proof: It is easy to see that a has multiplicative order n. Then ϕ(x) = ax/(x + 1) has x0 = 0

and x1 = a − 1 as fixed points, and ξ = (a − x0)/(a − x1) = a has order n. So ϕ has order n.

Note that β is a root of x(q−1)/n − a. By Theorem 5.2.5, the polynomial (5.26) is an irreducible

factor of F (x) = xq+1 + xq − ax. Note that the coefficient of xn−1 in (5.26) is n(a− 1) 6= 0. By

Theorem 5.3.1 (with b = 0, d = 1), the roots of (5.26) form a normal basis of Fqn over Fq and its

multiplication table is (5.27). The complexity is obviously at most 3n− 2. �

The following table is the result of a computer search for the minimal complexity of normal

bases. It indicates that when n|(q − 1) the minimal complexity is often 3n − 3 or 3n − 2. This

indicates that the normal bases constructed in Theorems 5.3.3 and 5.3.4 often have complexity

very close to the minimal complexity. In the table, † indicates that the minimal complexity is

q 5 7 7 11 11 13 13 17 19

n 4 3 6 5 10 3 4 4 3

min 9 6 16† 12 28† 6 7? 7? 6

Table 5.1: Minimal complexity of normal bases in Fqn over Fq

3n − 2 and ? indicates optimal complexity, i. e., 2n − 1. Other minimal values are of the form

3n− 3.
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5.4 Self-dual Normal Bases

We know from Chapter 1 that a finite field Fqn has a self-dual normal basis over Fq if and only if

both n and q are odd or q is even and n is not divisible by 4. But the proof of this result is not

constructive. In this section, we shall construct a self-dual normal basis of Fqn over Fq for every

n in the following cases:

(a) n = p, the characteristic of Fq,

(b) n|(q − 1) and n is odd,

(c) n|(q + 1) and n is odd.

We first determine the dual basis of the normal bases from the previous section.

Theorem 5.4.1 Let N = {α0, α1, · · · , αn−1} with αi = αq
i

be a normal basis of Fqn over Fq

satisfying

αiαj = ej−iαi + ei−jαj + γ, for all i 6= j,

where e1, e2, · · · , en−1, γ ∈ Fq. Let τ = Trqn/q(α) and λ = −(e1 + en−1)− nγ/τ . Then

{
1

τ(τ + nλ)
(αi + λ) : i = 0, 1, · · · , n− 1}

is the dual basis of N .

Proof: Note that, for i 6= j,

Trqn/q(αi(αj + λ)) = Trqn/q(λαi + ej−iαi + ei−jαj + γ)

= λτ + ej−iτ + ei−jτ + nγ

= τ(λ+ e1 + en−1) + nγ

= 0,

and

Trqn/q(αi(αi + λ)) = Tr(αi(τ + λ−
∑
j 6=i

αj))

= Tr(αi(τ + nλ−
∑
j 6=i

(αj + λ)))

= Tr(αi)(τ + nλ)−
∑
j 6=i

Tr(αi(αj + λ))

= τ(τ + nλ).
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The result is proved. �

We now proceed to determine when the roots of an irreducible factor of F (x) = xq+1 + dxq −

ax − b form a self-dual normal basis. Let {α0, α1, . . . , αn−1} be a normal basis generated by a

root α of F (x) with αi = αq
i

and let τ = Trqn|q(α). By Theorem 5.3.1 and Lemma 5.1.3, we

have, for i 6= 0,

Trqn/q(α0αi) = eiTr(α0) + en−iTr(αi) + nb

= τ(ei + en−i) + nb

= τ(a− d) + nb, (5.28)

and

Trqn/q(α0α0) = τ(τ − ε)− τε− nb(n− 1)

=

 τ2, if p = 2,

τ2 − (n− 1)(τ(a− d) + nb), if p 6= 2.
(5.29)

Therefore α generates a self-dual normal basis if τ = Tr(α) = 1 and (a−d)+nb = 0. By examining

the irreducible factors in Theorems 5.2.4, 5.2.5 and 5.2.6, we find that these two conditions can

be satisfied. More explicitly, we have the following three results.

Theorem 5.4.2 For any β ∈ F ∗q with Trq/p(β) = 1,

xp − xp−1 − βp−1 (5.30)

is irreducible over Fq and its roots form a self-dual normal basis of Fqp over Fq with complexity

at most 3p − 2. The multiplication table is (5.25) where e1 = β, ei+1 = ϕ(ei) (i ≥ 1), ϕ(x) =

βx/(x+ β), and τ∗ = 1 if p 6= 2 or τ∗ = 1− β if p = 2.

Proof: Let F (x) = (x+β)xq−βx. Then, by Theorem 5.2.4, the polynomial (5.30) is an irreducible

factor of F (x) (where b = 0, c = 1, d = a = β, x0 = 0 and βj = β). Since a− d = b = 0 and τ = 1

in (5.28) and (5.29), the roots of (5.30) form a self-dual normal basis. Its multiplication table is

(5.25), by Theorem 5.3.1. �.

Theorem 5.4.3 Let n be an odd factor of q− 1 and ξ ∈ Fq of multiplicative order n. Then there

exists u ∈ Fq such that (u2)(q−1)/n = ξ. Let x0 = (1 + u)/n and x1 = (1 + u)/(nu). Then the



FACTORIZATION of cxq+1 + dxq − ax− b 101

monic polynomial

1

1− u2
[(x− x0)

n − u2(x− x1)
n] (5.31)

is irreducible over Fq and its roots form a self-dual normal basis of Fqn over Fq. The multiplication

table is (5.14) with a = (x0 − ξx1)/(1− ξ), b = −x0x1, d = a− (x0 + x1) and τ = 1.

Proof: We first prove that there exists at least one root of x(q−1)/n−ξ that is a quadratic residue

in Fq. Let ζ be a primitive element in Fq. Let t be an odd factor of q − 1 such that n|t and

gcd(n, (q − 1)/t) = 1. Then ζ0 = ζ(q−1)/t is a t-th primitive root of unity. Since t is odd, ζ20 is

also a t-th primitive root of unity. Let d = t/n. Then there is an integer i such that (ζ20 )
id = ξ,

that is,

(ζ(q−1)/t)2id = (ζ2i)(q−1)/n = ξ.

So ζ2i is a root of x(q−1)/n − ξ and is a quadratic residue in Fq. Therefore we can take u = ζi.

Now by applying Theorem 5.2.5, we see that (5.31) is an irreducible factor of F (x) = (x +

d)xq − (ax+ b). The negative of the coefficient of xn−1 in (5.31) is

τ =
n(x0 − u2x1)

1− u2
= 1.

By Theorem 5.3.1, the roots of (5.31) form a normal basis of Fqn over Fq with the claimed

multiplication table. Note that

a− d = x0 + x1 =
(u+ 1)

n
+
u+ 1

nu
=
(u+ 1)2

nu
= nx0x1 = −nb,

that is, τ(a−d)+nb = 0. It follows from (5.28) and (5.29) that the roots of (5.31) form a self-dual

normal basis. �

Theorem 5.4.4 Let n be an odd factor of q + 1 and let ξ ∈ Fq2 be a root of x
q+1 − 1 with

multiplicative order n. Then there is a root u of xq+1 − 1 such that (u2)(q+1)/n = ξ. Let x0 =

(1 + u)/n and x1 = (1 + u)/(nu). Then

1

1− u2
[(x− x0)

n − u2(x− x1)
n] (5.32)

is in Fq[x] and is irreducible over Fq with its roots forming a self-dual normal basis of Fqn over

Fq. The multiplication table is (5.14) with a = (x1 − ξx0)/(1− ξ), b = −x0x1, d = a− (x0 + x1)

and τ = 1.
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Proof: The proof of the existence of u is similar to that in the proof of Theorem 5.4.3 by taking

ζ to be a (q + 1)th primitive root of unity in Fq2 . We next prove that a, b, d ∈ Fq and (5.32) is

in Fq[x]. Note that ξ, u and u
2 are all (q + 1)th roots of unity and we have ξq = 1/ξ, uq = 1/u

and (u2)q = 1/u2. Thus xq0 = x1 and x
q
1 = x0. So a

q = a, bq = b and dq = d, that is, a, b, d ∈ Fq.

Denote the polynomial (5.32) by φ(x) and note that

(φ(x))q =
1

1− (u2)q
[(xq − xq0)

n − (u2)q(xq − xq1)
n]

=
1

1− 1/u2
[(xq − x1)

n − 1/u2(xq − x0)
n]

= φ(xq).

We see that the coefficients of φ(x) are in Fq.

To prove that (5.32) is irreducible over Fq, we apply Theorem 5.2.6. It is easy to check

that, with a, b, d as defined in Theorem 5.4.4, x0 and x1 are the two distinct solutions of (5.1)

with c = 1 and (a − x1)/(a − x0) = ξ which is of order n. Now since u2 is assumed to be

a solution of x(q+1)/q − ξ, it follows from Theorem 5.2.6 that (5.32) is an irreducible factor of

F (x) = (x+ d)xq − (ax+ b).

As the coefficient of xn−1 in (5.32) is (−nx0 + nu2x1)/(1− u2) = −1, the trace of any root of

(5.32) is τ = 1. It is easy to check that τ(a−d)+nb = 0. It follows from (5.28) and (5.29) that the

roots of (5.32) form a self-dual normal basis. The multiplication table follows from Theorem 5.3.1.

�



Chapter 6

Further Research Problems

In previous chapters, we have discussed various properties of normal bases and give some construc-

tions of special normal bases. In this chapter we point out some problems that deserve further

study.

In Chapter 3, we have seen that given an irreducible polynomial of degree n over Fq, one can

construct a normal basis for Fqn over Fq deterministically in polynomial time. So the problem of

constructing normal bases is polynomially reduced to the following problem.

Research Problem 6.1 Given the finite field Fq and a positive integer n, find a determinis-

tic algorithm for constructing an irreducible polynomial of degree n in Fq[x] that runs in time

polynomial in n and log q.

This problem is theoretically important in finite field theory and computer algebra. However,

there is currently no deterministic polynomial time algorithm to solve this problem.

We have seen in Chapter 1 that for practical implementation of finite field arithmetic, it is

essential to construct normal bases of complexity as low as possible. In Chapter 4, we have

determined all the optimal normal bases in finite fields, and we see that not all the finite fields

have optimal normal bases. The following question arises naturally.

Research Problem 6.2 Suppose there is no optimal normal basis in Fqn over Fq. What is the

103
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minimal complexity of normal bases in Fqn over Fq, and how to construct a normal basis of

minimal complexity?

In particular, we can ask if there are normal bases of complexity 2n, 2n + 1, 2n + 2, etc.,

and construct them if any. In Chapter 5, we have constructed a normal basis of Fqn over Fq of

complexity at most 3n − 2 for each factor n of q − 1 and for n being the characteristic of Fq.

In this case, Table 5.1 indicates that the minimum complexity of normal bases in Fqn over Fq is

often 3n− 3 or 3n− 2. Computer experiment for other values of n and q also suggests that there

are no normal bases of complexity strictly between 2n− 1 and 3n− 3, that is, the next possibility

of complexity is 3n− 3. It will be very interesting if one can prove that this is actually true.

For cryptographic purposes it is important to have either a primitive element or an element of

high multiplicative order in F2n . Table 6.1 indicates that the type II optimal normal basis gener-

ators have high multiplicative orders in general and are quite often primitive. This phenomenon

was also noticed by Rybowicz [115].

Research Problem 6.3 Let n be a positive integer and ζ a (2n+1)th primitive root of unity in

some extension of F2. Determine the multiplicative order of α = ζ + ζ
−1.

We are interested in the case where 2n+ 1 is prime and Z∗2n+1 is generated by 2 and −1, i.e.,

when α generates an optimal normal basis of F2n over F2. Significant progress will have been

made if one can determine the exact order of α without knowing the complete factorization of

2n − 1 for large n, say n ≥ 543.

The following problem may be viewed as the converse of the above problem.

Research Problem 6.4 Let α be an element in an extension field of F2. Given the multiplicative

order of α, determine the order of γ, where γ + γ−1 = α.

In particular, let α0 = 1 and αk be defined over F2 such that αk + α
−1
k = αk−1 for k ≥ 1.

Prove or disprove that the multiplicative order of αk is 2
2k−1 +1 for k ≥ 1. This has been verified

to be true in [150] for k ≤ 9. Also note that αk is a root of the polynomial ak(x) + bk(x) in

Corollary 3.4.14.

The complexity of a normal basis defined as in this thesis does not necessarily represent the

real complexity of field multiplication under this basis. In Chapter 5, we constructed normal bases
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m Order m Order m Order m Order

2 2m − 1 231 2m − 1 530 2m − 1 834 2m − 1

3 2m − 1 233 2m − 1 531 2m − 1 846 2m − 1

5 2m − 1 239 2m − 1 543 ? 866 2m − 1

6 2m − 1 243 2m − 1 545 2m − 1 870 2m − 1

9 2m − 1 245 2m − 1 554 2m − 1 873 2m − 1

11 2m − 1 251 2m − 1 558 2m − 1 879 2m − 1

14 2m − 1 254 2m − 1 561 2m − 1 891 2m − 1

18 (2m − 1)/3 261 2m − 1 575 2m − 1 893 ?

23 2m − 1 270 (2m − 1)/7 585 2m − 1 911 ?

26 2m − 1 273 2m − 1 593 ? 923 ?

29 2m − 1 278 (2m − 1)/3 606 (2m − 1)/9 930 (2m − 1)/3

30 2m − 1 281 2m − 1 611 ? 933 ?

33 2m − 1 293 2m − 1 614 (2m − 1)/3 935 ?

35 2m − 1 299 2m − 1 615 2m − 1 938 2m − 1

39 2m − 1 303 2m − 1 618 2m − 1 939 ?

41 2m − 1 306 2m − 1 629 ? 950 (2m − 1)/3

50 (2m − 1)/3 309 2m − 1 638 2m − 1 ? 953 ?

51 2m − 1 323 2m − 1 639 2m − 1 965 2m − 1

53 2m − 1 326 2m − 1 641 ? 974 (2m − 1)/3

65 2m − 1 329 2m − 1 645 (2m − 1)/7 975 2m − 1

69 2m − 1 330 2m − 1 650 (2m − 1)/3 986 (2m − 1)/3

74 2m − 1 338 (2m − 1)/3 651 2m − 1 989 ?

81 2m − 1 350 (2m − 1)/3 653 2m − 1 993 2m − 1

83 2m − 1 354 (2m − 1)/3 659 ? 998 2m − 1

86 2m − 1 359 2m − 1 683 ? 1013 ?

89 2m − 1 371 2m − 1 686 (2m − 1)/3 1014 (2m − 1)/7
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90 2m − 1 375 2m − 1 690 (2m − 1)/151 1019 ?

95 2m − 1 378 (2m − 1)/3 713 ? 1026 (2m − 1)/7

98 (2m − 1)/3 386 2m − 1 719 ? 1031 ?

99 (2m − 1)/7 393 (2m − 1)/7 723 ? 1034 (2m − 1)/3

105 2m − 1 398 2m − 1 725 ? 1041 2m − 1

113 2m − 1 410 (2m − 1)/11 726 2m − 1 1043 ?

119 2m − 1 411 2m − 1 741 (2m − 1)/7 1049 2m − 1

131 2m − 1 413 2m − 1 743 ? 1055 ?

134 (2m − 1)/3 414 (2m − 1)/3 746 2m − 1 1065 ?

135 2m − 1 419 2m − 1 749 ? 1070 ?

146 2m − 1 426 2m − 1 755 2m − 1 1103 2m − 1

155 2m − 1 429 2m − 1 761 ? 1106 (2m − 1)/381

158 2m − 1 431 2m − 1 765 2m − 1 1110 (2m − 1)/9

173 2m − 1 438 (2m − 1)/3 771 2m − 1 1118 ?

174 (2m − 1)/3 441 2m − 1 774 2m − 1 1119 2m − 1

179 2m − 1 443 2m − 1 779 ? 1121 2m − 1

183 2m − 1 453 2m − 1 783 ? 1133 ?

186 (2m − 1)/3 470 2m − 1 785 ? 1134 (2m − 1)/3

189 2m − 1 473 2m − 1 791 ? 1146 2m − 1

191 2m − 1 483 2m − 1 803 ? 1154 2m − 1

194 (2m − 1)/3 491 2m − 1 809 ? 1155 2m − 1

209 2m − 1 495 2m − 1 810 2m − 1 1166 2m − 1

210 2m − 1 509 2m − 1 818 2m − 1 1169 2m − 1

221 2m − 1 515 2m − 1 831 2m − 1 1178 ?

230 2m − 1 519 2m − 1 833 ? 1185 2m − 1

Table 6.1: Order of type II optimal normal basis generators in F2m .
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in Fqn over Fq with cross products of the form: αiαj = ei−jαi+ ej−iαj +γ, i 6= j for i 6= j, where

ek, γ ∈ Fq. If γ 6= 0, the complexity of the normal basis {α0, α1, . . . , αn−1} has complexity nearly

n2. Since there are only 3n− 1 constants in all the n cross products α0αi for 0 ≤ i ≤ n− 1, it is

easy to check that one can multiply any two elements in Fqn , represented in this basis, by using

about 3n − 1 multiplications of elements in Fq. This indicates that the real complexity of field

multiplication of Fqn under a normal basis of above type is much less than the defined complexity

of the basis.

In general, it is interesting to study the complexity of finite field arithmetic (similarly for a

finite dimensional algebra). For any positive integer n and prime power q, let C(q, n) denote the

smallest number of essential Fq-operations needed to multiply any two elements in Fqn among

all possible choices of (normal) bases and operational algorithms. Here “essential Fq-operations”

are not specified, they may include −,+, ∗, / or just ∗ in Fq, depending on the actual situations.

The definition of the number C(q, n) is not clear, but intuitively, it should represent the actual

arithmetic complexity of the field Fqn . Note that this is similar to but perhaps different from the

approach by de Groote [59].

Research Problem 6.5 Find good lower and upper bounds for C(q, n) and construct the required

bases.
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[92] H. Lüneburg, “On a little but useful algorithm”, Proc. AAECC-3, Lecture Notes in Com-

puter Science 229, Springer-Verlag, Berlin, 1985, 296-301.

[93] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-

Holland, Amsterdam, 1977.

[94] H.B. Mann, “On canonical bases for subgroups of an Abelian group”, in: R.C. Bose and

T.H. Dowling, eds., Combinatorial Mathematics and its applications, (University of North

Carolina Press, Chapel Hill, NC, 1969), 38-54.

[95] J.L. Massey and J.K. Omura, “Computational method and apparatus for finite field

arithmetic”, U.S. patent #4,587,627, May 1986.

[96] E. Mastrovito, “VLSI designs for multiplication over finite fields GF (2m)”, Applied Alge-

bra, Algebraic Algorithms and Error-correcting Codes (Rome 1988), Lecture Notes in Com-

puter Science, vol. 357, 1989, 297–309.

[97] F.J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic

Publishers, Boston-Dordrecht-Lancaster, 1987.

[98] H. Meyn, “On the construction of irreducible self-reciprocal polynomials over finite fields”,

App. Alg in Eng., Comm. and Comp., 1 (1990), 43-53.

[99] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone and T.

Yaghoobian, Applications of Finite Fields, Kluwer Academic Publishers, Boston-Dordrecht-

Lancaster, 1993.

[100] M. Morii and K. Imamura, “A theorem that GF (2m) has no self-complementary normal

basis over GF (2) for odd m”, Trans. IECE Japan, E67 (1984), 655-656.

[101] M. Morii, M. Kasahara and D. Whiting, “Efficient bit-serial multiplication and the

dicrete-time Wiener-Hopf equation over finite fields”, IEEE Trans. Info. Th., 35 (1989),

1177-1183.

[102] R.C. Mullin, “A characterization of the extremal distributions of optimal normal bases”,

to appear in Proc. Marshall Hall Memorial Conference, Burlington, Vermont, 1990.

[103] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone and R.M. Wilson, “Optimal normal

bases in GF (pn)”, Discrete Applied Math., 22 (1988/1989), 149-161.



BIBLIOGRAPHY 116

[104] E. Noether, “Normalbasis bei Körpen ohne höhere Verzweigung”, J. Reine Angew. Math.,
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