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1. The conjecture and its statistical background

Sturmfels [11] proposed the following problem: Maximize the likelihood function

L(P ) =

4∏
i=1

p4
ii ×

∏
i 6=j

p2
ij (1)

over the set of all 4× 4-matrices P = (pij) whose entries are nonnegative and sum
to 1 and whose rank is at most two. Based on numerical experiments by employing
an expectation-maximization(EM) algorithm, Sturmfels [10, 11] conjectured that
the matrix

P =
1

40


3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3


is a global maximum of L(P ). He offered 100 Swiss francs for a rigorous proof in
a postgraduate course held at ETH Zürich in 2005.

Partial results were given in the paper in [5], where the general statistical
background for this problem is also presented. This problem is a special case of
the maximum likelihood estimation for a latent class model. More precisely, by
following [5], let (X1, . . . , Xd) be a discrete multivariate random vector where each
Xj takes value from a finite state set Sj = {1, . . . , sj}. Let Ω = S1 × · · · × Sd be
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the sample space. For each (x1, . . . , xd) ∈ Ω, the joint probability mass function
of (X1, . . . , Xd) is denoted as

p(x1, . . . , xd) = P{(X1, . . . , Xd) = (x1, . . . , xd)}.
The variables X1, . . . , Xd may not be mutually independent generally. By intro-
ducing an unobservable variable H defined on the set [r] = {1, . . . r}, X1, . . . , Xd

become mutually independent. The joint probability mass function in the newly
formed model is

p(x1, . . . , xd, h) = P{(X1, . . . , Xd, H) = (x1, . . . , xd, h)}
= p(x1|h) · · · p(xd|h)λh

where λh is the marginal probability of P{H = h} and p(xj |h) is the conditional
probability P{Xj = xj |H = h}. We denote this new r-class mixture model by H.
The marginal distribution of (X1, . . . , Xd) in H is given by the probability mass
function (which is also called accounting equations [8])

p(x1, . . . , xd) =
∑
h∈[r]

p(x1, . . . , xd, h) =
∑
h∈[r]

p(x1|h) · · · p(xd|h)λh.

In practice, a collection of samples from Ω are observed. For each (x1, . . . , xd),
let n(x1, . . . , xd) ∈ N be the number of observed occurrences of (x1, . . . , xd) in the
samples. While the parameters p(x1|h),· · · , p(xd|h), λh, p(x1, . . . , xd) are unknown.
The maximum likelihood estimation problem is to find the model parameters that
can best explain the observed data, that is, to determine the global maxima of the
likelihood function

L(H) =
∏

(x1,...,xd)∈Ω

p(x1, . . . , xd)n(x1,...,xd).

Since each p(x1, . . . , xd) is nonnegative, it is equivalent but more convenient
to use the log-likelihood function

l(H) =
∑

(x1,...,xd)∈Ω

n(x1, . . . , xd) ln p(x1, . . . , xd), (2)

where we define ln(0) = −∞. Finding the maxima of (2) is difficult and remains
infeasible by current symbolic software [2, 9]. We can only handle some special
cases: small models or highly symmetric table. The 100 Swiss francs problem is
the special case of H when d = 2, S1 = S2 = {A,C,G,T}, s1 = s2 = 4 and
r = 2. It is related to a DNA sequence alignment problem as described in [10].
In that example, the contingency table for the observed counts of ordered pairs of
nucleotides (i.e. AA, AC, AG, AT, CA, CC, · · · ) is

A C G T
A
C
G
T


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

.
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So the likelihood function (2) in this example is exactly (1).
Even for this simple case, the problem is surprisingly difficult. We know that

the global maxima must exist, as the region of the parameters is compact. By using
an EM algorithm or Newton-Raphson method and starting from suitable initial
points, one can find some local maxima of the likelihood function. However, the
global maximum property is not guaranteed. We prove that Sturmfels’ conjectured
solution is indeed a global maximum.

Our paper is organized as follows. We first derive some general properties
for optimal solutions in Section 2.1, then provide a theoretical solution to the
conjecture in Sections 2.2. In 2.3, we make some comments about using Gröbner
basis technique in solving this problem and provide a computational solution.
Lastly, we suggest several new conjectures in more general cases.

2. Proof of the conjecture

2.1. General Properties

We focus on general n× n matrices P = (pij) in this section. For convenience we
scale each entry of P by n2 so the entries sum to n2, and take square root of the
original likelihood function. So we may assume that

L(P ) =

n∏
i=1

p2
ii ×

∏
i 6=j

pij . (3)

The problem is

Maximize: L(P )
Subject to:

∑
1≤i,j≤n

pij = n2, and

pij ≥ 0, 1 ≤ i, j ≤ n.

Suppose P = (pij)n×n is a global maximum of L(P ). It is easy to see that P
cannot be the following n× n matrix

J =

1 . . . 1
...

...
1 . . . 1

 .

Since the function (3) is a continuous function in pij ’s, if one of the entries
of P approaches 0, the product has to approach 0 too, as the other entries are
bounded by n2. Hence the optimal solutions must occur in interior points and we
don’t need to worry about the boundary where some pij = 0.

Therefore, in the subsequent discussion, we may assume that P 6= J and all
its entries are positive. We show that P must have certain symmetry properties.

Lemma 1. For an optimal solution P , its row sums and column sums must all
equal n.
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Proof. Let
n∑

j=1

pij = si. Then
n∑

i=1

si = n2 and
∏
i

si ≤ nn with equality if and only

if si = n for all i. Let p̄ij = n
si
pij and P̄ = (p̄ij)n×n. Then rank(P̄ ) = rank(P ) and∑

i,j

p̄ij = n2. However,

L(P̄ ) = L(P ) ·

 nn∏
i

si

n+1

≥ L(P )

with equality if and only if si = n for all i. Since P is a global maximum, L(P̄ ) ≤
L(P ). Therefore each row sum equals n. Similarly, each column sum equals n as
well. �

We shall express P in a form that involves fewer variables and has no rank
constraint. Since P has rank at most two, by singular value decomposition theorem,
there are column vectors u1, u2, v1 and v2 of length n such that

P = σ1u1v
t
1 + σ2u2v

t
2

for some nonnegative numbers σ1 and σ2. By Proposition 1, P has equal row and
column sums, so P has the vectors (1, 1, . . . , 1) and (1, 1, . . . , 1)t as its left and
right eigenvectors both with eigenvalue 1. Hence we may assume that σ1 = 1 and
u1 = v1 = (1, 1, . . . , 1)t. Let v2 = (a1, a2, . . . , an)t and σ2u2 = (b1, b2, . . . , bn)t.
Then P has the form

P = J +

b1...
bn

 (a1, a2, . . . , an) =

1 + a1b1 · · · 1 + anb1
... 1 + aibj

...
1 + a1bn · · · 1 + anbn

 .

In this form, P has rank at most two. Also, the condition
∑
ij

pij = n2 becomes

n∑
i=1

ai ·
n∑

i=1

bi = 0. (4)

We have transformed the original problem to the following optimization prob-
lem:

Maximize: l(P ) = 2
n∑

i=1

ln(1 + aibi) +
∑
i 6=j

ln(1 + aibj)

Subject to: Equation (4) and 1 + aibj > 0, 1 ≤ i, j ≤ n.

The Lagrangian function would be

Λ(P, λ) = l(P ) + λ

n∑
i=1

ai ·
n∑

i=1

bi

where λ ∈ R. Any local extrema must satisfy

∂Λ(P, λ)

∂ai
=

n∑
j=1

bj
1 + aibj

+
bi

1 + aibi
+ λ

n∑
j=1

bj = 0, 1 ≤ i ≤ n, (5)



Solving the 100 Swiss Francs Problem 5

and
∂Λ(P, λ)

∂bj
=

n∑
i=1

ai
1 + aibj

+
aj

1 + ajbj
+ λ

n∑
i=1

ai = 0, 1 ≤ j ≤ n. (6)

By Lemma 1, for an optimal solution P , its row sums and column sums must
be all equal to n. This means that

n∑
i=1

ai = 0, (7)

and
n∑

i=1

bi = 0. (8)

Plugging (7) and (8) into (5) and (6) respectively, we obtain the following lemma.

Lemma 2. A global maximum P must satisfy
n∑

j=1

bj
1 + aibj

+
bi

1 + aibi
= 0, 1 ≤ i ≤ n, (9)

and
n∑

i=1

ai
1 + aibj

+
aj

1 + ajbj
= 0, 1 ≤ j ≤ n. (10)

Doing some simple algebra yields

Corollary 3. An optimal solution must satisfy
n∑

j=1

1

1 + aibj
+

1

1 + aibi
= n+ 1, 1 ≤ i ≤ n, (11)

and
n∑

i=1

1

1 + aibj
+

1

1 + ajbj
= n+ 1, 1 ≤ j ≤ n. (12)

Proof. Multiply (9) by ai and then add
n∑

j=1

1
1+aibj

+ 1
1+aibi

to both sides, we can

get (11). �

The 2n equations derived by clearing denominators of the equations in Lemma
2 or Corollary 3 along with equations (7) and (8) form a system of 2n + 2 poly-
nomial equations with 2n unknowns, whose solutions contain all global maxima.
From computational point of view, we may find all the solutions to this system of
equations, say utilizing Gröbner basis method, and then pick a global maximum.
At the time we submitted this paper (in 2008), we could not solve the system for
n = 4 using Maple on a computer with moderate computation power. With both
the advance in computer hardware and efficient implementations of algorithms for
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computing Gröbner basis, the system for n = 4 now became solvable. A compu-
tational solution for this problem is attached in Section 2.3. However, the system
for n = 5 remains unsolvable using our computers.

Our strategy below is to prove that P should have high symmetry. Firstly
ai’s and bi’s are in the same order: if ai > aj > 0, then bi > bj > 0 correspondingly
(Lemma 4 and 5). For the case n = 4 once we force a1 = b1 by scaling, we can
eventually prove ai = bi for all other i’s (Lemma 7 and 9). With four ai’s remained,
we prove that the ai’s with the same signs must be identical. Finally one can solve
the system by hand. Note that Fienberg et. al. [5] derived results similar to Lemmas
4 and 5, but our approaches are simpler and completely different.

Lemma 4. For every i,

1. ai = 0 if and only if bi = 0, and
2. ai > 0 if and only if bi > 0.

Proof. For the first part, plugging in ai = 0 to the equation (9), we have
n∑

j=1

bj +

bi = 0, thus bi = 0. Similarly, if bi = 0 then ai = 0.

For the second part , note that g(x) = 1
x is concave up in (0,∞). By Jensen’s

Inequality,
n∑

j=1

1

n
· 1

1 + aibj
≥ 1

n∑
j=1

1
n (1 + aibj)

= 1.

That is,
n∑

j=1

1

1 + aibj
≥ n.

Compare with equation (11), we get

1

1 + aibi
≤ 1,

so aibi ≥ 0. We conclude that ai > 0 if and only if bi > 0. �

Lemma 5. For i and j,

1. ai = aj if and only if bi = bj, and
2. ai > aj if and only if bi > bj.

Proof. For the first part, suppose bi = bj . Then, by (10),

n∑
k=1

ak
1 + akbi

+
ai

1 + aibi
= 0 and

n∑
k=1

ak
1 + akbj

+
aj

1 + ajbj
= 0.

Then ai

1+aibi
=

aj

1+ajbj
, so ai = aj . Then, using (9), we have bi = bj .
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For the second part, switch bi, bj in P to form a new matrix P̄ . Then we should
have L(P ) ≥ L(P̄ ) due to our assumption that P is a global maximum. Note that

L(P )− L(P̄ ) = C1 · ((1 + aibi)
2(1 + aibj)(1 + ajbi)(1 + ajbj)

2

−(1 + aibj)
2(1 + aibi)(1 + ajbj)(1 + ajbi)

2)

= C2 · ((1 + aibi)(1 + ajbj)− (1 + aibj)(1 + ajbi))

= C2 · (aibi + ajbj − aibj − ajbi)
= C2 · (ai − aj)(bi − bj)

where C1, C2 are products of some entries of P , so C1, C2 are positive. Thus (ai−
aj)(bi − bj) ≥ 0. Note that ai = aj if and only if bi = bj by part(1), we conclude
that ai > aj if and only if bi > bj . �

2.2. Theoretical solution

We complete the theoretical proof for the conjecture in this section. From now
on we focus on the case when n = 4. By Lemma 5, we can always assume a1 ≥
a2 ≥ a3 ≥ a4 and b1 ≥ b2 ≥ b3 ≥ b4. We know a1 6= 0, otherwise b1 = 0 by
Lemma 4, hence ai = bj = 0, which result in P = J . We also have a1

b1
> 0, so

we can replace (a1, a2, a3, a4) in P by
√

a1

b1
(a1, a2, a3, a4) and (b1, b2, b3, b4)t by√

b1
a1

(b1, b2, b3, b4)t. It turns out that 1 +
√

a1

b1
ai

√
b1
a1
bi = 1 + aibj for any i and j,

so we may always assume a1 = b1. Thus P can be expressed as the form
1 + a2

1 1 + a2a1 1 + a3a1 1 + a4a1

1 + a1b2 1 + a2b2 1 + a3b2 1 + a4b2
1 + a1b3 1 + a2b3 1 + a3b3 1 + a4b3
1 + a1b4 1 + a2b4 1 + a3b4 1 + a4b4

 . (13)

If a2 ≤ 0, we then replace (a1, a2, a3, a4) in P by (−a4,−a3,−a2,−a1) and
(b1, b2, b3, b4)t by (−b4,−b3,−b2,−b1)t. The new matrix with −a4 ≥ −a3 ≥ 0 has
the same likelihood function as P . Thus we may assume a1 ≥ a2 ≥ 0. Without
loss of generality, we may make the following assumption.

Assumption 6. We can always assume the following

1. a1 ≥ a2 ≥ a3 ≥ a4 and b1 ≥ b2 ≥ b3 ≥ b4,
2. a1 = b1 > 0, and
3. a1 ≥ a2 ≥ 0.

The results in the rest of this section are all based on Assumption 6. Our
first goal is to prove a2 = b2.

Lemma 7. a2 = b2.

Proof. If one of a2, b2 is 0, then a2 = b2 = 0 by Lemma 4. We assume that both
a2, b2 are nonzero.
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Apply Corollary 3 to the first row of matrix (13). We have

2

1 + a2
1

+
1

1 + a2a1
+

1

1 + a3a1
+

1

1 + a4a1
= 5.

Also

a2
1 + a2a1 + a3a1 + a4a1 = 0.

From the two equations above we get

a3a1 · a4a1 = f1(a1a1, a1a2) (14)

where f1 is a bivariate function in x, y defined as

f1(x, y) =
2− x− y

5− 2
1+x −

1
1+y

+ x+ y − 1.

Similarly, apply Corollary 3 to the second row of matrix (13). We get

1

1 + a1b2
+

2

1 + a2b2
+

1

1 + a3b2
+

1

1 + a4b2
= 5.

Along with

a1b2 + a2b2 + a3b2 + a4b2 = 0,

we get

a3b2 · a4b2 = f1(a2b2, a1b2). (15)

Since a1, b2 are nonzero, we combine equations (14) and (15) to get

f1(a2
1, a1a2)

a2
1

=
f1(a2b2, a1b2)

b22
. (16)

Normalizing (16) we can derive a trivariate polynomial equation, say

f2(a1, a2, b2) = 0. (17)

Symmetrically apply Corollary 3 to the first column and the second column
13, we get

f1(a2
1, a1b2)

a2
1

=
f1(a2b2, a1a2)

a2
2

. (18)

One can see that equation (18) is obtainable by switching a2 with b2 in equation
(16). Thus we have

f2(a1, b2, a2) = 0. (19)

Subtracting (19) from (17) yields

f2(a1, a2, b2)− f2(a1, b2, a2) = 0.

Since we only switched a2 and b2 in polynomial f2, there must be a factor a2 − b2
for f2(a1, a2, b2)− f2(a1, b2, a2), say

(a2 − b2)f3(a1, a2, b2) = 0, (20)
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where

f3(a1, a2, b2) = (20a4
1b

2
2 + 15a3

1b2 + 3a2
1b

2
2 + 2a1b2 − 4b22)a2

2

+ (3a4
1b2 + 15a3

1b
2
2 + 2a3

1 + 10a2
1b2 + 2a1b

2
2 − 3a1 − b2)a2

− 4a4
1 + 2a3

1b2 − a2
1 − 3a1b2 − 2.

Thus a2 = b2 if f3(a1, a2, b2) 6= 0. This is true because we have some bounds
for a2

1, a1a2, a1b2 as presented in Lemma 8 below, which can be applied to get

f3(a1, a2, b2) = (20a4
1b

2
2 + 15a3

1b2 + 3a2
1b

2
2 + 2a1b2 − 4b22)a2

2

+ (3a4
1b2 + 15a3

1b
2
2 + 2a3

1 + 10a2
1b2 + 2a1b

2
2 − 3a1 − b2)a2

− 4a4
1 + 2a3

1b2 − a2
1 − 3a1b2 − 2

<
20

54
+

15

53
+

3

4
a2

2b
2
2 +

2

5
a2b2 − 4a2

2b
2
2

+
3

2252
+

15

53
+

2

225
+

10

52
+

2

5
a2b2 − a2b2

+
2

225
− 2

< − 13

4
a2

2b
2
2 −

1

5
a2b2 −

549

500
< 0.

Therefore, f3(a1, a2, b2) 6= 0 and a2 = b2, just as needed. �

Lemma 8.

1. a2
1 ≤ 1

2 ,

2. 0 ≤ a1a2 ≤ 1
5 , and

3. 0 ≤ a1b2 ≤ 1
5 .

Proof. (1) Let Ai = 1 + a1ai for i = 1, . . . , 4, then
4∑

i=1

Ai = 4, A1 ≥ A2 ≥ 1,

A3 ≥ A4 > 0 and
2

A1
+

1

A2
+

1

A3
+

1

A4
= 5.

Since
1

A3
+

1

A4
≥ 4

A3 +A4
=

4

4−A1 −A2
,

we have

5 =
2

A1
+

1

A2
+

1

A3
+

1

A4
≥ 2

A1
+

1

A2
+

4

4−A1 −A2
. (21)

Let

g(A2) =
1

A2
+

4

4−A1 −A2
,

where g is a function in R[x]. Then

∂g(A2)

∂A2
= − 1

A2
2

+
4

(4−A1 −A2)2
.
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Note that A1 ≥ A2 ≥ 1, thus 4 − A1 − A2 ≤ 2 and ∂g(A2)
∂A2

≥ 0. Therefore

g(A2) ≥ g(1) for A2 ≥ 1, that is,

1

A2
+

4

4−A1 −A2
≥ 1 +

4

3−A1
.

Hence by inequality (21),

5 ≥ 2

A1
+

1

A2
+

4

4−A1 −A2
≥ 2

A1
+ 1 +

4

3−A1
.

We get 2A2
1 − 5A1 + 3 ≤ 0, i.e. 1 ≤ A1 ≤ 3

2 . Thus a2
1 ≤ 1

2 .

(2) Assume A2 = 1 + a1a2 >
6
5 . Then g(A2) > g( 6

5 ). That is,

5 ≥ 2

A1
+

1

A2
+

4

4−A1 −A2
>

2

A1
+

5

6
+

4
14
5 −A1

.

The solution set of A1 is (−∞, 0) ∪ ( 28
25 ,

6
5 ) ∪ ( 14

5 ,∞). Note that A1 > 0 and

A1 = 1 + a2
1 ≤ 3

2 , we then get 28
25 < A1 <

6
5 , which contradicts with A1 ≥ A2.

Thus A2 ≤ 6
5 and 0 ≤ a1a2 ≤ 1

5 .

(3) This result is followed by letting A1 = 1 + a2
1 and Ai = 1 + a1bi for i ≥ 2.

The above proofs in part (1) and (2) remain good. �

Lemma 9. ai = bi for i = 3, 4.

Proof. Let Ai = 1 + aib1 for i = 1, . . . , 4. Then

4∑
i=1

Ai = 4

and
2

A1
+

1

A2
+

1

A3
+

1

A4
= 5.

By the two equations above, since A3 ≥ A4, we can derive explicit expression for
A3, A4 in the variables A1, A2, say A3 = h1(A1, A2) and A4 = h2(A1, A2). If we
let Bi = 1 + a1bi, we can get B3 = h1(B1, B2) and B4 = h2(B1, B2) in a similar
manner. Note that A1 = B1 and A2 = 1 + a2b1 = 1 + b2a1 = B2, we deduce that
Ai = Bi for i = 3, 4. Since a1 = b1 > 0, ai = bi for i = 3, 4. �

By Lemmas 7 and 9, we have ai = bi for all i. Hence P can be expressed as

P =


1 + a2

1 1 + a2a1 1 + a3a1 1 + a4a1

1 + a1a2 1 + a2
2 1 + a3a2 1 + a4a2

1 + a1a3 1 + a2a3 1 + a2
3 1 + a4a3

1 + a1a4 1 + a2a4 1 + a3a4 1 + a2
4


where

4∑
i=1

ai = 0. (22)



Solving the 100 Swiss Francs Problem 11

By Corollary 3 we have the following system of equations

2

1 + a2
1

+
1

1 + a2a1
+

1

1 + a3a1
+

1

1 + a4a1
= 5,

1

1 + a1a2
+

2

1 + a2
2

+
1

1 + a3a2
+

1

1 + a4a2
= 5,

1

1 + a1a3
+

1

1 + a2a3
+

2

1 + a2
3

+
1

1 + a4a3
= 5,

1

1 + a1a4
+

1

1 + a2a4
+

1

1 + a3a4
+

2

1 + a2
4

= 5.

(23)

With (22) and (23), we claim that

Lemma 10. ai = aj if aiaj > 0.

Proof. Let

F (x) =
1

1 + a1x
+

1

1 + a2x
+

1

1 + a3x
+

1

1 + a4x
+

1

1 + x2
− 5 = 0.

Normalizing F (x) yields a polynomial (the numerator) of degree 6 in x whose

constant is 0 and whose coefficient of the term x is
4∑

i=1

ai = 0. So a1, a2, a3, a4, 0, 0

are all the zeros of F (x). Suppose there exists consecutive i, j such that ai > aj > 0
(or aj < ai < 0 respectively). Then F (x) is continuous in the interval (− 1

aj
,− 1

ai
).

Note that

lim
x→− 1

aj

+
F (x) =∞ and lim

x→− 1
ai

−
F (x) = −∞.

There must be a zero lying in (− 1
aj
,− 1

ai
), say a0. Then a0 < − 1

ai
(or a0 > − 1

aj

respectively), i.e. 1+aia0 < 0 (or 1+aja0 < 0 respectively). Since a0 6= 0, x0 must
be one of ak, k = 1, . . . , 4. Thus 1 + aia0 (or 1 + aja0, respectively) is an entry
in matrix P , contradicting the fact that each entry of P is positive. Therefore if
i, j are consecutive and aiaj > 0, we must have ai = aj . Hence aiaj > 0 implies
ai = aj for any i, j. �

With Lemma 10 it is handy to solve the system (23). Under Assumption
(6) there are only 4 possible patterns of signs for (a1, a2, a3, a4). If the signs are
(+,+,+,−), then a1 = a2 = a3 = − 1

3a4. Substitute this to any equation in (23)

yields a1 = a2 = a3 = 1√
15

and a4 = − 3√
15

. The matrix would be

P1 =


16
15

16
15

16
15

4
5

16
15

16
15

16
15

4
5

16
15

16
15

16
15

4
5

4
5

4
5

4
5

8
5

 .
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For the case when the signs are (+,+,−,−), we get a1 = 1√
5

and the matrix

would be

P2 =


6
5

6
5

4
5

4
5

6
5

6
5

4
5

4
5

4
5

4
5

6
5

6
5

4
5

4
5

6
5

6
5

 .

When the signs are (+,+, 0,−), a1 = 1
2
√

2
, and the matrix would be

P3 =


9
8

9
8 1 3

4
9
8

9
8 1 3

4

1 1 1 1
3
4

3
4 1 3

2

 .

And when the signs are (+, 0, 0,−), a1 = 1√
3

and the matrix would be

P4 =


4
3 1 1 2

3

1 1 1 1

1 1 1 1
2
3 1 1 4

3

 .

The matrices obtaining local maximum of the likelihood function must be
among the matrices above. We conclude that matrix P2 obtains the global maxi-
mum. Finally, multiplying matrix P2 by 1

16 yields

P =
1

40


3 3 2 2

3 3 2 2

2 2 3 3

2 2 3 3

 .

2.3. Approach via Gröbner bases

Gröbner basis technique is a general approach for solving systems of equations.
Buchberger introduced in 1965 the first algorithm for computing Gröbner basis
(see [1]), and subsequently there have been extensive efforts in improving its effi-
ciency. It is not our purpose here to give a detailed survey of all the algorithms
in the literature, but we mention two important algorithms F4 (Faugère 1999,
[3]) and F5 (Faugère 2002, [4]) where signatures are introduced to detect useless
S-pairs without performing reductions. F5 is believed to be the fastest algorithm
in the last decade. Most recently, Gao, Guan and Volny (2010, [6]) introduced
an incremental algorithm (G2V) that is simpler and several times faster than F5,
and Gao, Volny and Wang (2010, [7]) developed a more general algorithm that
avoids the incremental nature of F5 and G2V and is flexible in signature orders.
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All these algorithms are for general polynomial systems. If a large system of poly-
nomials have certain structures, it is not known how to use these algorithms to
take advantage of the structures of the polynomial system.

After we submitted our paper (in 2008), one of the referees pointed out that
it is possible to compute the Gröbner basis for our polynomial system with n = 4.
We give more details on this computation. The solution starts from Equations
(7-10), using the scaling at of the beginning of Section2.2. Without the scaling the
solutions are infinite. For this one needs to assume a1 = b1 6= 0. Note that this
assumption relies on Lemmas 4 and 5 we proved. It takes about ten minutes for
the whole computation in Maple on a moderate computer.

Precisely, one can construct an ideal

J0 = 〈a1 − b1,
4∑

i=1

ai,

4∑
i=1

bi, h1, · · · , h8〉 ⊂ C[X]

where hi is a numerator on the left hand side of Equations 9,10, C is the complex
field and X represents the list of unknowns: a1, · · · , a4, b1, · · · , b4. Let

J1 = J0 + 〈1− u · a1〉 ⊂ C[X,u]

where u is a new variable. Then a1 6= 0 for any solution of J1. We compute
the Gröbner basis G1 of J1 in an elimination term order with u > X. Let G2 =
G1∩C[X]. Then G2 is a Gröbner basis of J1∩C[X]. Now 〈G2〉 is a zero-dimensional
ideal, and its rational univariate representation can be computed. In this step, a
univariate polynomial r(v) with a new variable v is computed, whose roots can
represent all the solutions of 〈G2〉. It has degree of 398, with 56 real roots. By
substituting each real root to the representations, there are 18 roots making that
some entries of P equal 0 thus L(P ) = 0. Each of the remaining solutions gives
one of the following:

P1 =


16
15

16
15

16
15

4
5

16
15

16
15

16
15

4
5

16
15

16
15

16
15

4
5

4
5

4
5

4
5

8
5

 , P2 =


6
5

6
5

4
5

4
5

6
5

6
5

4
5

4
5

4
5

4
5

6
5

6
5

4
5

4
5

6
5

6
5

 ,

P3 =


9
8

9
8 1 3

4
9
8

9
8 1 3

4

1 1 1 1
3
4

3
4 1 3

2

 , P4 =


4
3 1 1 2

3

1 1 1 1

1 1 1 1
2
3 1 1 4

3

 ,

up to a permutation of variables ai’s and bi’s. It is straightforward to check that
P2 is the optimal solution.

We also tried to the case for n = 5, but our computation did not finish after
more than one day, mainly because the computation for the first Gröbner basis
G1 did not finish. Gröbner basis encodes both real and complex solutions. For our
system with n = 4, there are far more complex solutions than real solutions. For
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a system of polynomials with finitely many complex solutions, it is expected that
in general, the more solutions with the system, the harder to compute Gröbner
basis (for any term order). Also, even if a final Gröbasis is small, the intermediate
polynomials may be large (in number of nonzero terms as well as the size of the
coefficients), hence the algorithms can not finish in reasonable time in practice,
in fact, it’s more likely that the computer is out of memory quickly. For our
theoretical approach (by hand), we were able to explore some partial structure
in our polynomial system. For example, we have a polynomial of the form (a2 −
b2)f3(a1, a2, b2) in the proof for Lemma 7. Our approach is to justify that the factor
f3(a1, a2, b2), a trivariate polynomial with 17 terms, is nonzero by applying some
bounds from Lemma 8, so that we can derive the simplest equation a2 − b2 = 0.
In the proof we used the fact that we are looking only for real solutions. However,
it is possible that f3(a1, a2, b2) is zero for some complex solutions. The locus of
all solutions may be much more complicated than that of real solutions, hence the
Gröbner basis is much more time consuming to compute.

3. Some comments on more general likelihood functions

In this section, we consider some generalization of the likelihood problem. We let
the exponent in the likelihood function (3) be symbolic, and consider the function

L(P ) =

n∏
i=1

psii ×
∏
i 6=j

ptij , (24)

where P = (pij) is still an n×n matrix as before. The question is how the optimal
solution depends on (s, t). Even for the case when n = 4, it seems hard to find
the optimal solutions. In the following, we describe some possible solutions in the
form of conjectures.

Conjecture 11. For given 0 < t < s where t, s are two integers, among the set of
all non-negative 4× 4 matrices whose rank is at most 2 and whose entries sum to
1, the matrix

P =
1

4s+ 12t


s+t
2

s+t
2 t t

s+t
2

s+t
2 t t

t t s+t
2

s+t
2

t t s+t
2

s+t
2


is a global maximum for the likelihood function L(P) in (24) when n = 4.

The results in Section 2.1 remain good for this likelihood function. The equa-
tion (10) becomes

b1
1 + aib1

+
b2

1 + aib2
+

b3
1 + aib3

+
b4

1 + aib4
+

( s
t − 1)ai

1 + aibi
= 0.



Solving the 100 Swiss Francs Problem 15

But the bounds in Lemma 8 involve the fraction s
t and become complicated. A

similar equation to (20) can be derived, but the nonzero factor is difficult to claim.
Hopefully we may also prove a2 = b2. Then a3 = b3 and a4 = b4 can be derived
in a similar manner to Lemma 9. So does Lemma 10. Finally we can find 4 local
extrema and need only compare them to obtain the global maximum. In the case
when the signs of (a1, a2, a3, a4) are (+,+,+,−), we have the equation

a2
1((3s+ 9t)a2

1 − (s− t)) = 0.

Thus a1 =
√

s−t
3s+9t , and the matrix would be

P1 =



4s+8t
3s+9t

4s+8t
3s+9t

4s+8t
3s+9t

12t
3s+9t

4s+8t
3s+9t

4s+8t
3s+9t

4s+8t
3s+9t

12t
3s+9t

4s+8t
3s+9t

4s+8t
3s+9t

4s+8t
3s+9t

12t
3s+9t

12t
3s+9t

12t
3s+9t

12t
3s+9t

12s
3s+9t

 .

In the case when the signs are (+,+,−,−), we get a1 =
√

s−t
s+3t and the

matrix would be

P2 =



2s+2t
s+3t

2s+2t
s+3t

4t
s+3t

4t
s+3t

2s+2t
s+3t

2s+2t
s+3t

4t
s+3t

4t
s+3t

4t
s+3t

4t
s+3t

2s+2t
s+3t

2s+2t
s+3t

4t
s+3t

4t
s+3t

2s+2t
s+3t

2s+2t
s+3t

 . (25)

One can prove that L(P1) < L(P2) by some calculus technique, for example,

taking the partial derivative of L(P1)
L(P2) with respect to s. In similar approaches

one can also show that L(P3) < L(P2) and L(P4) < L(P2) where P3, P4 are the
corresponding matrices for the cases when signs are (+,+, 0,−) and (+, 0, 0,−)
respectively. Thus the matrix in (25) is a global maximum.

More generally, let (u)l1×l2 be a block matrix with every entry being u where
l1 × l2 ∈ N2 and u > 0.

Conjecture 12. Let n ≥ 2 and 0 < t < s. Then the matrix

P =
1

ns+ (n− 1)nt

( s−t
dn2 e

+ t)dn2 e×d
n
2 e (t)dn2 e×b

n
2 c

(t)bn2 c×d
n
2 e ( s−t

bn2 c
+ t)bn2 c×b

n
2 c


is a global maximum for L(P) in (24).
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Conjecture 13. Let n ≥ 2 and 0 < s ≤ t. Then the matrix

P =



2s
n2(s+t)

1
n2 · · · 1

n2
2t

n2(s+t)

1
n2

1
n2 · · · 1

n2
1
n2

...
...

...
...

...

1
n2

1
n2 · · · 1

n2
1
n2

2t
n2(s+t)

1
n2 · · · 1

n2
2s

n2(s+t)


is a global maximum for L(P) in (24).

Acknowledgment

The authors were partially supported by the National Science Foundation under
grants DMS-0302549 and DMS-1005369 and National Security Agency under grant
H98230-08-1-0030. We would like to thank Bernd Sturmfels for his encouragement
and anonymous referees for their helpful comments, in particular one of them
provided Maple codes to us.

References
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