
Approximating the Performance of Stochastic Distribution Systems

JAMES P. JARVIS / Department of Mathematical Sciences, Clemson University, Clemson,

SC 29634-1907; e-mail: jpjrv@clemson.edu

DOUGLAS R. SHIER / Department of Mathematical Sciences, Clemson University, Clemson,

SC 29634-1907; e-mail: shierd@clemson.edu

October 1994

Subject classifications: Reliability: multistate systems; Networks/graphs: applications,
flows, stochastic

Abstract: A problem encountered in the analysis of telecommunication and other

distribution systems is evaluating the performance of the system in meeting user demands

with available resources. We consider the case in which user demands and available

resources are only known stochastically, and connecting links can operate at various levels.

This situation can be modeled as a stochastic network flow problem, in which each edge of

the network assumes a finite number of values (corresponding to different capacity levels)

with known probabilities. Each state of the network corresponds to a specification of

supplies, demands, and link capacities in the given system. For any such state we are

interested in whether overall demand can be met using the present supply of resources. If

not, we are interested in the maximum demand that can be met using the best allocation of

resources. The approach used here to estimate the probability of unmet demand, as well as

the average unmet demand, involves generating only “high leverage” states of the

system—states having high probability and/or high values of unmet demand. A new method

is proposed for generating such states in monotone order, either by probability or unmet

demand. Various bounds on performance measures for the system are investigated.

2

1. Introduction

Telecommunication systems are frequently studied using a graph-theoretic model, in

which various sites (nodes) are connected by communication links (edges). Considerable

attention has focused on reliability analysis of such systems, typically based on the

connectivity of the graph relative to possible link failures. In practice, links degrade rather

than simply fail and the system itself achieves various levels of performance, not just

working or failed. Consequently, more realistic analyses of distribution and communication

systems need to consider congestion, delay, and throughput of the system [2, 16, 20, 25].

Since these systems typically involve the flow of goods or information from one location to

another, a network flow model can be useful in conducting such analyses.

As an illustration, packets of information in a telecommunication network need to be

routed along capacitated links to satisfy requirements at other locations. In the case of

distributed computing, user requests at diverse network nodes can be served by allocating

limited resources located throughout the network. In a power distribution system, existing

supplies need to be transmitted along capacitated lines of the system in order to satisfy

anticipated demands. In all such examples, the flow of supplies to satisfy demands is carried

out subject to certain capacity limitations. Deterministic network flow models have

numerous additional applications, and a variety of efficient solution algorithms have been

developed for this problem [4, 26]. More realistically, the elements of such a flow network

should be viewed as stochastic, rather than deterministic, since the supplies, demands, and

transmission capacities are rarely known with certainty. A stochastic version of the standard

network flow problem is the focus of this paper.

One motivating example is that of electric power distribution systems, in which there are

generating stations whose output (or supply) is not necessarily fixed, but which can assume

a finite number of operating levels with certain known probabilities. Also the demands at

each location take on a finite number of levels with known probabilities, and the

3

transmission lines comprising the distribution system have random capacities. Figure 1.1

shows an example system [5] in which there are seven nodes and nine edges (three edges

are bi-directional). Certain characteristics of the network components are described in Table

1.1. Notice that nodes a, b, c, d are classified as both supply and demand nodes;

deterministic elements are identified by those with a single capacity level. By adding a new

source node s and a sink node t, as well as additional capacitated edges to represent nodal

supplies and demands, the power system can be represented by a stochastic network G in

which the nodes operate deterministically and only the edges have random capacities. Since

node g has deterministic supply and since edges (g, a) and (g, c) have deterministic

capacities, the effect of this node has been eliminated in constructing the modified network

G, shown in Figure 1.2. The number of distinct capacity levels, if greater than one, is

indicated along each edge.

a

bc d

ef

g

nodes: supply/demand points

edges: transmission links

Figure 1.1. Electric power system example

Another motivating example occurs in designing primary and backup databases for

users in a local area network. Table 1.2 describes the specific case of seven user sites

connected to three databases. For instance, user A can obtain records from either database 1

or database 2, whereas user C can obtain records from any of the three databases. Both user

demands and database capacities are stochastic; e.g., user A requires 4, 6, or 8 accesses per

time period (with certain probabilities which are given in Table 4.2), while database 1 can

4

supply 14, 17, or 20 accesses per time period (again with probabilities given in Table 4.2).

For simplicity, we assume that the communication links operate deterministically. This

problem can again be transformed into a two-terminal stochastic network G by introducing

a source node s (joined by an edge to each database) and a sink node t (joined by an edge to

each user), as shown in Figure 1.3. Here the source and sink edges operate stochastically

(each with three capacity levels), whereas the communication links are assumed to be

perfect.

Table 1.1. Characteristics of the power system example

Capacity Levels

Nodes Supply Demand Edges # Capacity
Levels

a 12 1 ab 3

b 11 1 b c 2

c 11 1 bd 2

d 9 1 eb 1

e 6 ed 1

f 5 f b 1

g 1 f c 1

ga 1

g c 1

5

a

b

c

d

e

f ts

12
11

5

11

6

9

2
2

3

Figure 1.2. Flow network G for power system example

Table 1.2. Characteristics of the database example

Users Databases
Accessed

Demand Levels Databases Supply Levels

A 1, 2 4, 6, 8 1 14, 17, 20

B 1, 2 5, 7, 9 2 25, 30, 35

C 1, 2, 3 6, 8, 10 3 14, 17, 20

D 1, 2, 3 7, 9, 11

E 1, 2, 3 6, 8, 10

F 2, 3 5, 7, 9

G 2, 3 4, 6, 8

6

B

A

C

D

E

F

G

1

2

3

ts

Figure 1.3. Flow network G for database example

In general, for any realization x of a two-terminal stochastic network (i.e., a

specification of capacities for all edges), it is straightforward to determine whether a feasible

s-t flow exists: that is, a flow from s to t that satisfies the required capacities of all demand

edges (leading to node t). If edge capacities are not sufficient to satisfy all these demands,

the system has “failed” and there is positive “unsatisfied demand.” More formally, given

a realization x having total demand ∆(x) required at t, we define the unmet (unsatisfied)

demand by UD(x) = ∆(x) – f*(s, t; x) ≥ 0, where f*(s, t; x) is the maximum flow possible

from node s to node t in realization x. We wish to calculate certain measures of the average

performance of this stochastic system: (a) the probability π that positive unmet demand

occurs, and (b) the expected amount of unmet demand UD
—

 . The latter is a

“performability” measure [1, 18] that captures the joint contribution of reliability and

capacity to system effectiveness.

Since it is known that exact computation of the performance measures π and UD
—

 is

difficult (namely, NP-hard), the focus of the present paper is on deriving approximations to

7

these quantities. Our approach will utilize certain state space approximation methods

previously developed in the literature [1, 18] to obtain bounds on system performance. A

different approach to improving bounds on performability measures has been recently

investigated by Yang and Kubat [28] for networks whose components have two states.

Other (static) bounds on the expected value of maximum flows in stochastic networks have

been studied by Carey and Hendrickson [7] and by Nagamochi and Ibaraki [19].

Alternative exact approaches to the stochastic network flow problem have been discussed by

Bellovin [5], Doulliez and Jamoulle [9], Evans [10], Shogan [23], and Somers [24]. In

addition, a variety of simulation approaches have been developed by Fishman and

colleagues [3, 11, 12, 13].

Section 2 presents a formal statement of the stochastic network flow problem and

discusses how state space generation methods can be applied to this problem. A new state

generation rule, particularly appropriate for the stochastic flow problem, is developed in

Section 3. Section 4 shows how improved bounds can be derived on the unknown quantities

π and UD
—

 . Computational schemes necessary for implementing this approach in an

effective way are described in the final section.

2. State Space Generation

Suppose that the given network G has source node s, sink node t, and edges designated

1, 2, …, m. Any edge i assumes a finite number mi of modes, each corresponding to a

distinct capacity level for that edge. The modes for edge i are numbered 0, 1, …, mi – 1. Let

pij denote the probability that edge i is found in mode j and let cij denote the capacity of

edge i in mode j. Thus a state of the system is represented by the vector x = (j1, j2, …, jm)

where ji is the mode assumed by edge i. Under the (simplifying) assumption that edges

operate independently, the probability of occurrence of state x is given by

8

p(x) = ∏
i = 1

m
pi,ji

 . (2.1)

Let D denote those edges, all terminating at t, associated with demand requirements. In

each state x = (j1, j2, …, jm) of the system, all edges have fixed capacities. In particular those

edges i ∈ D have fixed demand requirements. To determine if the total demand into node t

in realization x

∆(x) = ∑
i ∈ D

ci,ji

can be satisfied, we calculate the maximum flow f*(s, t; x) from node s to node t in G,

relative to the capacities specified by x. Notice that the edges incident to node t form an s-t

cut, so f*(s, t; x) ≤ ∆(x) certainly holds. If f*(s, t; x) = ∆(x) then all demands can be

satisfied and UD(x) = 0. Otherwise, the system incurs an unmet demand of UD(x) = ∆(x) –

f*(s, t; x) > 0. The overall performance of the system can then be measured by the

probability π of positive unmet demand and the expected amount of unmet demand UD
—

 :

π = Pr{UD(x) > 0} = ∑
UD(x) > 0

p(x), (2.2)

 UD
—

 = ∑
x

UD(x) p(x). (2.3)

Since the entire state space is exponentially large, consisting of ∏ mi states, determining

these quantities by brute force enumeration is impractical. To illustrate, even in the small

example of Figure 1.2, the entire state space consists of 4,704,480 states. The small database

example described by Table 1.2, consisting of seven users and three databases (with perfect

communication links), produces 59,049 states. In each of these states x one would need to

find the value of UD(x) in order to evaluate the performance measures (2.2)–(2.3).

One approach employed to deal with the state space explosion problem has been to use

partial state space enumeration [15, 17, 21, 22]. Namely, instead of generating all states of

the system, we generate the states one at a time in order of non-increasing probability. This

9

has proved to be an effective method for approximating the performance of certain

communication systems, such as in estimating system reliability or average delay. A number

of algorithms have been proposed in the literature to carry out the enumeration of “most

probable states” for multimode systems [8, 14, 27]. A recent computational study [6] has

found that the algorithm of Gaebler and Chen [14] is typically the most effective one in

practice. In Section 3 we will describe the main steps of that algorithm as well as a new

generation procedure, which (unlike the Gaebler–Chen approach) can be used to produce

states in “most important” order.

First, let us suppose that a subset of states x1, x2, …, xr has been generated,

corresponding (say) to the r most probable states: p(x1) ≥ p(x2) ≥ … ≥ p(xr). Then upper

and lower bounds on π and UD
—

 are easily obtained. To express these bounds, let S(r)

denote the set of states xi, 1 ≤ i ≤ r, for which UD(xi) > 0. We then have

∑
x∈S(r)

p(x) ≤ π ≤ ∑
x∈S(r)

p(x) + [1 – ∑
i = 1

r
p(xi)], (2.4)

 ∑
i = 1

r
UD(xi) p(xi) ≤ UD

—
 ≤ ∑

i = 1

r
UD(xi) p(xi) + [1 – ∑

i = 1

r
p(xi)] UDmax, (2.5)

where UDmax is the unmet demand when all edges i ∈ D are set to their largest capacity

and all edges i ∉ D are set to their smallest capacity. These bounds will be most useful

when the number of generated states is relatively small yet the accumulated probability (or

average unmet demand) in these states is close to the unknown π (or UD
—

). Another way of

saying this is that the generated states should be the most significant of the entire state space

in terms of the performance measure being estimated.

The example network of Figure 1.2 provides some important insights into the quality of

this approximation approach. Figure 2.1 displays the cumulative probability ∑
i = 1

r
p(xi) as a

function of the number of states r when the states of this example are generated in most

probable order. It is seen that most of the probability of the state space is found in relatively

10

few of the states; indeed, 99% of the total probability is captured in less than 0.6% of the

states. Unfortunately, unmet demand is zero for all these generated states (though they

account for 99% of the probability), and consequently the bounds (2.4)–(2.5) have mixed

utility. The probability of unmet demand π satisfies 0 ≤ π ≤ 0.01; however, since UDmax =

1145, the bounds on UD
—

 are only 0 ≤ UD
—

 ≤ 11.45. In other words, the most interesting

states (those with positive unmet demand) are not the most probable ones. A similar

situation occurs in the database example of Table 1.2. If the most probable states are

enumerated, then 95% of the total probability is captured by 9332 states. However, only 9 of

these states have positive unmet demand and the bounds 0.0001 ≤ UD
—

 ≤ 0.6001 produced

by (2.5) are not very informative. In this case the exact value is given by UD
—

 = 0.0013.

In these examples, as well as others illustrated in [20], the most important states, and not

those which occur most often, should be the focus of the analysis. Using the most probable

state methodology of [8, 14, 27] will produce unsatisfactory bounds (2.5) when the most

important states (positive unmet demand) correspond to rare events—and this often occurs

in practice. On the other hand, crude Monte Carlo sampling can produce unbiased estimates

of π and UD
—

 , but huge sample sizes will be required before a sufficient number of

interesting states are encountered.

11

•••••••

•

•

•

•

•

•

•0.2

0.4

0.6

0.8

1.0

10 2 10 3 10 4 10 5 10 6 10 7

Number of States

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 2.1. Cumulative probability for most probable states

An alternative approach is to generate the states in a different order, one that permits

enhanced estimation of UD
—

 . Specifically, we propose generating the states x in order of

non-increasing unmet demand UD(x). As shown in the next section, this can be done by

developing a new procedure for producing the most important states of a system. Our

procedure has the added flexibility of being able to generate most probable states as well as

those having highest unmet demand. Information from these two types of state generation

can be combined to yield improved bounds on UD
—

 , as discussed in Section 4.

3. Algorithms for State Space Generation

Here we discuss monotone generation of the states x of a multimode system according

to a given criterion function ϕ(x). Virtually all the previous literature has concentrated on the

case ϕ(x) = p(x), corresponding to monotone generation of most probable states. More

generally, this criterion function could be state probability or it might represent delay,

12

congestion, or unmet demand in the given state. To carry out the generation of states, a list C

of candidate states is initialized to contain only one state x0 having maximum value ϕ(x0)

among all states in the state space. At each step a generated state is produced by removing

from the candidate list C a state x having maximum value ϕ(x). Then all successor states of

x, defined by certain successor rules, are added to the list C and the process is repeated. The

procedure should ensure that each state is generated once and only once by this method, and

that the states are in fact generated in monotone order by non-increasing value of ϕ(x). This

can be assured by successor rules that satisfy the following conditions:

C1.If y is a successor state of x then ϕ(y) ≤ ϕ(x).

C2.If y ≠ x0 is any state of the system then there is a unique (predecessor)

state x such that y is a successor of x.

In effect the monotone generation procedure defines a directed tree rooted at node

(state) x0. Successors y of node x are placed as immediate descendants (“children”) of

node x in the tree. By (C2) there is a unique path from each node y to the root node x0,

traced by following in turn the predecessors of y in the tree. Moreover by (C1) the function

ϕ(x) is guaranteed to be monotone non-decreasing along this path. Of course in practice we

will be interested in generating only a small portion of the entire tree. Figure 3.1 illustrates

the development of this tree at a typical step of the generation procedure. Certain nodes

(denoted by open circles) have already been generated (removed from the candidate list and

their successors inserted on the list), while other nodes remain on the candidate list (denoted

by darkened circles). All other nodes (descendants in the tree of nodes on the candidate list)

remain to be identified.

13

generated state

candidate state

yet to be identified

Figure 3.1. Typical state generation tree

A number of authors [8, 14, 27] have proposed rules for generating the most probable

states of a multimode system in order of non-increasing probability: that is, ϕ(x) = p(x),

with p(x) given by (2.1). We focus on the method of Gaebler and Chen [14], which has

proved to be an especially effective method in empirical studies [6]. The modes associated

with each edge i are first ordered by non-increasing probability: pi,j-1 ≥ pi,j for all 1 ≤ j <

mi. Also the edges i are ordered by non-increasing ratios of mode 1 to mode 0 probabilities:

pi,1 /pi,0 ≥ pi+1,1 /pi+1,0 for all 1 ≤ i < m. Suppose in the given state x = (j1, j2, …, jm) that k

indicates the largest index such that jk > 0. The state successor rule of Gaebler and Chen

produces at most three successor states y0, y1, y2 of x according to:

GC1. if jk < mk – 1 then y0 = x except that edge k of y0 has mode jk + 1;

GC2. if k < m then y1 = x except that edge k + 1 of y1 has mode 1;

GC3. if k < m and jk = 1 (hence jk+1 = 0) then y2 = x except that edge k of

y2 has mode 0 and edge k + 1 of y2 has mode 1.

Because of the presumed ordering of modes (by non-increasing probability for each edge),

then ϕ(y0) ≤ ϕ(x) and ϕ(y1) ≤ ϕ(x) hold. In addition, from the presumed ordering of edges

(by non-increasing ratios), then ϕ(y2) ≤ ϕ(x) holds. Finally, it can be shown that each state

14

y has a unique predecessor state x. Thus (C1)–(C2) are satisfied and this is a valid

successor rule for generating most probable states.

We now present a new successor rule for generating states in “most important” order:

namely, in order of non-increasing ϕ(x) = UD(x). First the modes for each edge i need to

be reordered in the following manner. If i ∈ D then the modes of i are ordered by non-

increasing capacity levels: ci,j-1 ≥ ci,j for all 1 ≤ j < mi. However, if i ∉ D then the modes of

edge i are ordered by non-decreasing capacity levels: ci,j-1 ≤ ci,j for all 1 ≤ j < mi. This

ordering insures that increasing the mode of a single edge will not increase the unmet

demand. No particular ordering of the edges is required, but empirically it appears effective

to order the edges i by non-increasing number of modes: mi ≥ mi+1 for all 1 ≤ i < m.

To describe the new state generation rule applied to state x = (j1, j2, …, jm), suppose

again that k is the largest index such that jk > 0. Then the m – k + 1 successors yj of x are

given by:

JS1. if jk < mk – 1 then y0 = x except that edge k of y0 has mode jk + 1;

JS2. if k < m then for each 1 ≤ j ≤ m – k define yj = x except that

edge k + j of yj has mode 1.

Since modes are ordered by capacity level, it follows that ϕ(yj) ≤ ϕ(x) holds for all j = 0, 1,

…, m – k. Also any state y = (n1, n2, …, nm) has a unique predecessor defined by this rule.

Namely, if k denotes as before the largest index such that nk > 0, then x = (n1, n2, …, nk – 1,

…, nm) is the unique predecessor of y. Thus (JS1)–(JS2) yield a valid successor rule for

generating states in order of non-increasing unmet demand.

It should be emphasized that the Gaebler–Chen rule is not valid for monotone state

generation by unmet demand, since ϕ(y2) ≤ ϕ(x) need not necessarily hold in (GC3) and

thus condition (C1) is not satisfied. To see this, notice that in the Gaebler–Chen rule state y2

corresponds to changing the capacities on two different edges (k and k + 1) in the network.

Regardless of how the modes for each edge are ordered, unmet demand can either increase

15

or decrease after both these capacity changes have been made. This justifies the need for our

new successor rule (JS1)–(JS2), which does ensure monotone generation of states for ϕ(x)

= UD(x).

Moreover this new rule can be adapted to the generation of states in most probable

order simply by ordering the modes for each edge by non-increasing probability. It is

advantageous to order edges in the JS scheme by non-decreasing ratios pi,1 /pi,0 rather than

by non-increasing ratios (as in the Gaebler–Chen procedure). In fact, the JS procedure

exhibits significant computational benefits when compared to the GC procedure.

Table 3.1 gives a comparison of the performance of the two procedures when applied to

the power system example described in the first section (Figures 1.1 and 1.2). The

execution times for both the JS and GC procedures are modest although the JS procedure is

generally about 20–25% faster. (Execution times were obtained on a microcomputer

equipped with a 40MHz Motorola 68030/68881 processor.) More importantly, the number

of candidate states generated is significantly higher for GC than for JS. At a cumulative

probability of 0.98, the ratio of GC to JS candidate states is six and increasing. In practical

terms, storage requirements rather than execution times are more likely to restrict the

problem sizes which can be considered, resulting in a significant advantage for JS over GC.

16

Table 3.1. Comparative enumeration of high probability states

Cumulative
State

Number of
States

Number of
Candidate States

Execution
Time (sec)

Probability Enumerated JS GC JS GC

0.101 43 35 65 1 1

0.200 118 71 172 1 1

0.300 237 128 352 1 1

0.400 419 208 639 1 1

0.500 691 302 1060 1 2

0.600 1108 423 1700 2 2

0.700 1791 632 2731 2 2

0.800 3058 974 4601 3 3

0.900 6202 1739 9180 4 5

0.910 6804 1862 10063 4 6

0.920 7518 2067 11114 5 6

0.930 8383 2227 12357 5 7

0.940 9458 2502 13897 6 8

0.950 10832 2845 15870 6 8

0.960 12668 3267 18482 7 10

0.970 15287 3824 22177 9 12

0.980 19472 4635 28020 11 15

0.990 28016 6345 39745 16 21

0.991 29478 6580 41790 17 22

0.992 31166 6961 44073 18 23

0.993 33160 7253 46831 19 25

0.994 35557 7805 †49998 20 27

0.995 38543 8321 — 22 —

† Reached limit of 50,000 candidate states at 0.99396 cumulative probability.

In addition, a series of “random” examples having 10 components and 4 modes per

component were constructed. Specifically, for each component i the probabilities for the

various modes j were obtained by geometrically scaling successive probabilities by a

random factor ri ∈ [1, 5]. Results for such random examples were quite similar, and thus a

17

single representative example is used for comparative purposes in Figure 3.2. This figure

shows the growth in the number of enumerated states with the cumulative probability, as

well as the growth in the size of the candidate list for both the GC and JS procedures. In the

JS procedure, the candidate list grows rather slowly with the cumulative probability, as

contrasted with the GC procedure for which the list grows in step with the number of

enumerated states. At 0.927 cumulative probability the GC procedure reached the imposed

limit of 50,000 candidate states, whereas the JS procedure had only accumulated 7842

candidate states. Moreover, the JS procedure was able to generate all the 410 = 1,048,576

states of this system using at most 23,000 locations to store candidate states; by contrast the

GC procedure reached the 50,000 candidate state limit after enumerating only 54,735 of the

most probable states.

0

10000

20000

30000

40000

50000

60000

0.7 0.75 0.8 0.85 0.9 0.95

nu
m

be
r

of
 s

ta
te

s

cumulative probability

enumerated states

candidate states JS

candidate states GC

Figure 3.2. Comparison of algorithms on random example

18

To summarize, the new rule (JS1)–(JS2) given here can be used to generate most

important states, in order of non-increasing unmet demand ϕ(x) = UD(x). The

Gaebler–Chen algorithm cannot be used to monotonically generate states in order of unmet

demand. Moreover, the JS rule can be adapted to produce states in order of non-increasing

probability ϕ(x) = p(x). In the empirical tests conducted here, the JS rule appears to be

superior to the GC rule when both are used to generate most probable states, notably in

space requirements. The next section describes how information from the most probable

and most important state generation procedures can be combined to yield better estimates of

the desired performance measures (2.2)–(2.3).

4. Improved Bounds on System Performance

As can be seen in (2.3), the value of UD
—

 can be significantly affected by either high

probability states or high unmet demand states. Since both types of states can be generated

by the new procedure (JS1)–(JS2), we will investigate in this section how improved bounds

on the performability measure UD
—

 can be derived by combining information from the two

state generation procedures.

As an alternative to the bounds on UD
—

 given by (2.5), consider the state enumeration

tree shown in Figure 3.1. There are three types of states represented in the tree: generated

states, candidate states, and candidate successor states (yet to be identified). For both the

generated and candidate states, unmet demand is calculated as part of the state generation

procedure. Unmet demand for the candidate successor states is not known, but for any

candidate state x with unmet demand UD(x), condition (C1) for state generation guarantees

that UD(x) is an upper bound on the unmet demand of every successor state of x. In

addition, the total probability of all successor states of x can be easily calculated for the

generation rule (JS1)–(JS2).

19

Let x = (j1, j2, …, jm) and let k be the largest index with jk > 0. Then PS´(x), the total

probability of all successors of x (including x), is given by

PS´(x) = ∏
i =1

k –1
pi,ji

 [1 – ∑
r =0

jk– 1

pk,r] . (4.1)

The above expression for PS´(x) is derived by noting that in (JS1)–(JS2) the successor

states of x are precisely those with any combination of modes for edges k + 1 through m

and with modes jk or higher for edge k. For subsequent analysis, it is convenient to define

PS(x) = PS´(x) – p(x), the probability of all successors of x, not including x.

Using these results, we obtain alternative bounds on UD
—

 :

∑
x∈S∪C

UD(x) p(x) ≤ UD
—

 ≤ ∑
x∈S∪C

UD(x) p(x) + ∑
x∈C

UD(x) PS(x) , (4.2)

where S is the set of generated states and C is the set of candidate states. These bounds can

be further improved by combining (4.2) with the enumeration of high probability states.

This strategy will be illustrated by reference to Figure 4.1, which is a modification of Figure

3.1. The range of the bounds (4.2) depends on the magnitude of the last summation in the

upper bound expression, which is associated with the candidate list successors. Rather than

simply assigning the upper bound UD(x) to all successors of candidate state x, we can

account explicitly for those high probability states previously enumerated that are successor

states of x. These high probability states typically have a much lower unmet demand than

does their ancestor x.

Let SU(x) denote the successor states of x and let H denote the previously enumerated

high probability states. Then the combined bounds on UD
—

 are given by

∑
x∈S∪C∪H

UD(x) p(x) ≤ UD
—

(4.3)

 UD
—

 ≤ ∑
x∈S∪C∪H

UD(x) p(x) + ∑
x∈C

UD(x) [PS(x) – ∑
y∈SU(x)∩H

p(y)] .

20

As illustrated by Figure 4.1, the bounds (4.2) on UD
—

 are derived from bounds on the

unmet demand of the successor states. These bounds are tightened to (4.3) by explicitly

considering the high probability states appearing in each successor set. The efficacy of the

various bounds will be illustrated through several examples.

generated state

candidate state

yet to be identified

high probability

Figure 4.1. Successor states including high probability states

Example 1. Consider the network with 7 nodes and 12 edges shown in Figure 4.2(a). Each

edge has either two or three modes, with capacities and probabilities as specified in Table

4.1. In this stochastic network, there are 20,736 different states, and we are interested in the

expected value f
_
 17 of the maximum flow from node 1 to node 7. To reformulate this

problem in terms of calculation of unmet demand, we add a new sink node 8 and demand

edge (7, 8) with deterministic capacity 100, as shown in Figure 4.2(b). Since UD(x) =

∆(x) – f*(1, 8; x) = 100 – f*(1, 7; x), then UD
—

 = 100 – f
_
 17 and so the expected maximum

flow from 1 to 7 can be found by first calculating UD
—

 for the network G of Figure 4.2(b).

Using the most probable states alone (with 95% coverage), the bounds (2.5) are 74.42 ≤

UD
—

 ≤ 78.97. Using the most important states (with UD ≥ 90) alone, the bounds (4.2) are

0.18 ≤ UD
—

 ≤ 85.91. By combining the most probable and most important state generation

procedures, (4.3) produces the improved bounds 76.14 ≤ UD
—

 ≤ 78.65. A total of 7174

states (out of the 20,736) were enumerated to obtain these latter bounds. This yields the

bounds 21.35 ≤ f
_
 17 ≤ 23.86 on the expected maximum flow from 1 to 7.

21

1

2

3

4

5

6

7 81

2

3

4

5

6

7

(a) (b)

Figure 4.2. A flow network (a) and its transformed network (b)

Table 4.1. Characteristics of the flow network

Edge Capacities Probabilities Edge Capacities Probabilities

(1, 2) 8, 12, 15 0.1, 0.8, 0.1 (3, 6) 2, 5 0.1, 0.9

(1, 3) 8, 12, 15 0.1, 0.8, 0.1 (4, 5) 2, 6 0.1, 0.9

(2, 4) 2, 7 0.1, 0.9 (4, 6) 3, 9 0.1, 0.9

(2, 5) 3, 7 0.1, 0.9 (5, 6) 3, 9 0.1, 0.9

(3, 2) 3, 8 0.1, 0.9 (5, 7) 8, 12, 15 0.1, 0.8, 0.1

(3, 4) 2, 8 0.1, 0.9 (6, 7) 8, 12, 15 0.1, 0.8, 0.1

Example 2. We modify the database example given by Table 1.2 and Figure 1.3, by

allowing edges (2, A), (2, B), (2, F), (2, G) to be failure-prone: each such edge either works

(with probability 0.95) or fails (with probability 0.05). A complete specification of this

problem is given in Table 4.2. Edges of Figure 1.3 not listed in this table are perfect and

have capacity 100. The system now consists of 944,784 states with UDmax = 12. Using the

combined bounds (4.3) with p(x) ≥ 0.94 and UD(x) ≥ 3, we obtain the bounds 0.001 ≤ UD
—

22

≤ 0.061. These bounds require enumerating a total of 57,170 states, representing only 6%

of the total number of states.

Table 4.2. Characteristics of the database network

Edge Capacities Probabilities Edge Capacities Probabilities

(s, 1) 14, 17, 20 0.1, 0.8, 0.1 (E, t) 6, 8, 10 0.15, 0.7, 0.15

(s, 2) 25, 30, 35 0.05, 0.9, 0.05 (F, t) 5, 7, 9 0.25, 0.5, 0.25

(s, 3) 14, 17, 20 0.1, 0.8, 0.1 (G, t) 4, 6, 8 0.2, 0.6, 0.2

(A, t) 4, 6, 8 0.2, 0.6, 0.2 (2, A) 0, 100 0.05, 0.95

(B, t) 5, 7, 9 0.25, 0.5, 0.25 (2, B) 0, 100 0.05, 0.95

(C, t) 6, 8, 10 0.15, 0.7, 0.15 (2, F) 0, 100 0.05, 0.95

(D, t) 7, 9, 11 0.1, 0.8, 0.1 (2, G) 0, 100 0.05, 0.95

Example 3. We analyze the transportation network with 14 nodes and 30 edges described

by Doulliez and Jamoulle [9]. This system has 5 supply nodes, 8 demand nodes, and

2,488,320 states. Using the JS rule with cumulative probability 0.99999 generates 6609

most probable states and 3990 candidate states. In addition, the JS rule produces a set of

high unmet demand states with |S| = 30,240 and |C| = 9200. Altogether 50,039 states are

thus generated (no duplicate states occurred), representing approximately 2% of the total

number of states. The combined high probability/high unmet demand enumerations

combine to produce the bounds

18.26 ≤ UD
—

 ≤ 18.27 and 0.11763 ≤ π ≤ 0.11764.

23

Example 4. We consider the system illustrated in Figure 1.2 having 4,704,480 states.

Using only high probability states (generated and candidate) with cumulative probability

0.9928 gives the bounds 0.000763 ≤ UD
—

 ≤ 8.266. A set of high unmet demand states were

also enumerated with |S| = 115,858 and |C| = 9999; as discussed in Section 5, it is the

magnitude of |C| which nominally limits the scope of the partial enumeration. Applying

(4.2) yields 1.33×10–9 ≤ UD
—

 ≤ 539.8. These bounds are so poor because the total

probability of the generated and candidate states amounts to only 2.351×10–10; the smallest

unmet demand encountered among the generated states is 550 while the smallest unmet

demand among the candidate states is a relatively close 450. (Here UDmax = 1145.)

However, by incorporating the effect of the most probable states, (4.3) yields 0.000763

≤ UD
—

 ≤ 3.894. In obtaining these results, a total of 34,361 high probability states (28,016

generated, 6345 from the candidate list) totaling 0.9928 probability were examined together

with the previously mentioned 115,858 high unmet demand states and 9,999 associated

candidate states. Altogether 160,218 states from a total of 4,704,480 were examined,

corresponding to 3.4% of the state space. This again shows the efficacy of combined

bounds, compared to the use of either most probable or most important states alone, on this

very challenging example.

24

5. Computational Considerations

The basic computational approach taken here derives directly from the new state

generation rule (JS1)–(JS2). In enumerating either high probability or high unmet demand

states, a balanced k-heap [26] provides an effective means for choosing states with

maximum ϕ(x) from the candidate list. As a state is placed on the candidate list, a simple but

effective flow augmentation via breadth first search [26] is used to determine the maximum

flow (and hence unmet demand) for that state.

Although not implemented for the examples given here, maximum flows for successor

states can sometimes be determined directly from the maximum flow of the predecessor

state. (This is more likely to be useful when the enumeration is by decreasing unmet

demand.) An increase in maximum flow through an increase in edge capacity is possible

only when the edge belongs to the minimum cut of its predecessor’s flow network.

Similarly, a decrease in capacity for an edge can produce a change in maximum flow only

when the change in capacity exceeds the residual capacity of that edge in the predecessor’s

flow network. These two conditions can be tested by maintaining a node length array (to

identify the minimum cut) and an edge length array (to identify the current maximum flow)

for each state in the candidate list whose flow pattern differs from that of its predecessor. In

addition, when the first condition holds, the maximum flow for the successor can be found

more efficiently by augmenting the known maximum flow of its predecessor.

Since generated states are not required for subsequent calculations in state enumeration,

these states can be stored off-line or kept by aggregated value (probability, unmet demand).

Hence, the limiting computational factor is the size of the candidate list. As noted in Section

3, a simple heuristic can effectively limit the growth of the candidate list when enumerating

high probability states. For enumeration by decreasing unmet demand, similar behavior is

achieved when edges are ordered by non-increasing number of modes. This heuristic tends

to produce candidate states with relatively few successor states, which are typically

25

examined soon after their introduction into the candidate list. In Example 4, this is

manifested when over 115,000 high unmet demand states are generated before the size of

the candidate list reaches the imposed maximum size of 10,000.

Finally, to compute the bounds given in (4.5), an efficient procedure is needed to

determine which enumerated high probability states y are included in the candidate list

successor states SU(x). This is achieved by first encoding each state x = (j1, j2, …, jm) as an

integer I(x) where

I(x) =
k=1

m
∑ jk

i=k+1

m
∏ mi . (5.1)

(In the above, any product over the empty set is taken to be 1.) The total number of states is

∏
i =1

m

mi and every state x has a unique representation satisfying 0 ≤ I(x) ≤ (∏

i =1

m

mi) – 1. For

a candidate state x = (j1, j2, …, jm) with jk > 0 and jr = 0 for r > k, an observation similar to

that used to derive (4.1) shows that y is a successor state of x if and only if I(x) < I(y) < I(x)

+ (mk – jk)
i=k+1
∏ mi. Hence the problem of determining the predecessor x ∈ C of a state y

is reduced to (a) ordering the states x in the candidate list by their encoded integer I(x), and

(b) using a binary search to determine the largest value I(x) satisfying I(x) < I(y). If I(y) ≥

I(x) + (mk – jk)
i=k+1
∏ mi, then the predecessor of y has already been generated; otherwise, x

is the required predecessor.

6. Summary

Determining the performance of systems which can be modeled as stochastic flow

networks is a computationally difficult problem which involves the enumeration of an

exponentially growing number of states for its complete solution. Bounds on various

performance measures can however be obtained by effective partial enumeration of high

probability and most important states in such systems. A new technique for both types of

enumeration is presented here. Combining the enumeration results for high unmet demand

26

states with those for high probability states produces bounds on measures of system

performance which are superior to those obtained from either approach alone. Several

examples are analyzed using this technique and the feasibility of this combined approach is

demonstrated. Simply enumerating most probable states would be much less effective in

approximating the performance of these examples. Of course, the bounds on unmet demand

obtained here can then provide an improved starting point for subsequent Monte Carlo

techniques, in order to obtain improved estimates for system performance.

7. References

[1] K. K. Aggarwal, Integration of Reliability and Capacity in Performance Measure of

a Telecommunication Network. IEEE Trans. Rel. R-34 (1985) 184–186.

[2] K. K. Aggarwal, Y. C. Chopra, and J. S. Bajwa, Capacity Consideration in

Reliability Analysis of Communication Systems. IEEE Trans. Rel. R-31 (1982)

177–181.

[3] C. Alexopoulos and G. S. Fishman, Characterizing Stochastic Flow Networks

Using the Monte Carlo Method. Networks 21 (1991) 775–798.

[4] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network

Flows. John Wiley, New York (1990).

[5] M. S. Bellovin, Reliability and Shortage Distribution Computations in General

Stochastic Transportation Networks. SOL 86-4, Department of Operations

Research, Stanford University, January 1986.

[6] E. Bibelnieks, J. P. Jarvis, R. J. Lakin, and D. R. Shier, Algorithms for

Approximating the Performance of Multimode Systems. IEEE INFOCOM 90. San

Francisco, CA, 1990, pp. 741–748.

[7] M. Carey and C. Hendrickson, Bounds on Expected Performance of Networks with

Links Subject to Failure. Networks 14 (1984) 439–456.

27

[8] S.-N. Chiou and V. Li, Reliability Analysis of a Communication Network with

Multimode Components. IEEE J. Select. Areas Commun. SAC-4 (1986)

1156–1161.

[9] P. Doulliez and E. Jamoulle, Transportation Networks with Random Arc Capacities.

R.A.I.R.O. 3 (1972) 45–49.

[10] J. R. Evans, Maximum Flows in Probabilistic Graphs — The Discrete Case.

Networks 6 (1976) 161–183.

[11] G. S. Fishman, The Distribution of Maximum Flow with Applications to Multi-

State Reliability Systems. Operations Research 35 (1987) 607–618.

[12] G. S. Fishman, Monte Carlo Estimation of the Maximum Flow Distribution in a

Network with Discrete Stochastic Arc Capacity Levels. Naval Res. Logist. Quart.

36 (1989) 829–849.

[13] G. S. Fishman and T.-Y. D. Shaw, Evaluating Reliability of Stochastic Flow

Networks. Prob. Engin. Infor. Sci. 3 (1989) 493–509.

[14] R. Gaebler and R. Chen, An Efficient Algorithm for Enumerating States of a System

with Multimode Unreliable Components. Technical Report, U.S. Sprint, Overland

Park, KS, 1987.

[15] Y. Lam and V. Li, An Improved Algorithm for Performance Analysis of Networks

with Unreliable Components. IEEE Trans. Commun. COM-34 (1986) 496–497.

[16] S. H. Lee, Reliability Evaluation of a Flow Network. IEEE Trans. Rel. R-29 (1980)

24–26.

[17] V. Li and J. Silvester, Performance Analysis of Networks with Unreliable

Components. IEEE Trans. Commun. COM-32 (1984) 1105–1110.

[18] J. F. Meyer, On Evaluating the Performability of Degradable Computing Systems.

IEEE Trans. Comput. 29 (1980) 720–731.

[19] H. Nagamochi and T. Ibaraki, Maximum Flows in Probabilistic Networks.

Networks 21 (1991) 645–666.

28

[20] B. Sansó and F. Soumis, Communication and Transportation Network Reliability

Using Routing Models. IEEE Trans. Rel. 40 (1991) 29–38.

[21] D. Shier, A New Algorithm for Performance Analysis of Communication Systems.

IEEE Trans. Communications 36 (1988) 516–519.

[22] D. Shier, E. Valvo, and R. Jamison, Generating the States of a Binary Stochastic

System. Discrete Appl. Math. 38 (1992) 489–500.

[23] A. W. Shogan, Modular Decomposition and Reliability Computation in Stochastic

Transportation Networks Having Cutnodes. Networks 12 (1982) 255–275.

[24] J. E. Somers, Maximum Flow in Networks with a Small Number of Random Arc

Capacities. Networks 12 (1982) 241–253.

[25] J. D. Spragins, J. C. Sinclair, Y. J. Kang, and H. Jafari, Current Telecommunication

Network Reliability Models: A Critical Assessment. IEEE J. Select. Areas

Commun. SAC-4 (1986) 1168–1173.

[26] R. E. Tarjan, Data Structures and Network Algorithms. SIAM, Philadelphia (1983).

[27] C.-L. Yang and P. Kubat, Efficient Computation of Most Probable States for

Communication Networks with Multimode Components. IEEE Trans. Commun. 37

(1989) 535–538.

[28] C.-L. Yang and P. Kubat, An Algorithm for Network Reliability Bounds. ORSA J.

Comput. 2 (1990) 336–345.

