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Abstract

This article studies two methods for obtaining excellent mass conservation in finite
element computations of the Navier-Stokes equations using continuous velocity fields.
With a particular mesh construction, the Scott-Vogelius element pair has recently been
shown to be inf-sup stable and have optimal approximation properties, while also pro-
viding pointwise mass conservation. We present herein the first numerical tests of this
element pair for the time dependent Navier-Stokes equations. We also prove that the
limit of the grad-div stabilized Taylor-Hood solutions to the Navier-Stokes problem
converges to the Scott-Vogelius solution as the stabilization parameter tends to infinity.
That is, we provide theoretical justification that choosing the grad-div parameter large
does not destroy the solution. Numerical tests are provided which verify the theory, and
show how both Scott-Vogelius and grad-div stabilized Taylor-Hood (with large stabiliza-
tion parameter) elements can provide accurate results with excellent mass conservation
for Navier-Stokes approximations.

1 Introduction

This article studies two finite element methods for approximating solutions to the Navier-
Stokes equations (NSE) that use continuous velocity fields and provide accurate approx-
imations as well as excellent mass conservation. Under the restriction that the mesh be
created as a barycenter refinement of a triangular/tetrahedral mesh, and that the degree
k of approximating polynomial for velocity be chosen at least as large as the dimension
of the domain space, k ≥ d, the ((Pk)

d, P disck−1 ) pair (called the Scott-Vogelius (SV) pair
[40, 39, 35, 36]), has recently been shown to be inf-sup stable and admit optimal approx-
imation properties [43, 42, 31, 1]. If d = 3 and k = 2, these properties also hold provided
a Powell-Sabin tetrahedral mesh is used (described in Section 2) [44]. The SV pair has the
fundamental physical property that, since ∇ · (Pk)d ⊂ P disck−1 , the weak enforcement of mass
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conservation imposed by the usual Galerkin finite element method for Stokes or the NSE
actually enforces strong (pointwise) conservation of mass.

The second method studied herein is the Galerkin method for the NSE with Taylor-Hood
(TH) elements and grad-div stabilization (with parameter γ). This method is well studied
in the general case [28, 30, 8, 19], and it is well known that the stabilization improves mass
conservation and relaxes the effect of the pressure error on the velocity error. We show
that under conditions where SV elements are LBB stable, the TH solutions corresponding
to a sequence of grad-div parameters γn → ∞ converge to the SV solution. This provides
theoretical justification that one can choose γ significantly larger than O(1) (see [8, 26]), and
still obtain an accurate solution with excellent mass conservation, although computationally
care for numerical roundoff error still must be taken. We also prove that on a regular mesh,
as γn →∞ the TH solutions converge to a solution which is also pointwise mass conservative.

Although the incompressible NSE are one of the most investigated mathematical equa-
tions [37, 38, 18, 12, 15, 9, 13, 4, 11, 33, 6], their numerical solution remains a difficult
challenge, and new methods and strategies for their solution are regularly proposed. Never-
theless, even in the case of laminar, single phase Newtonian fluids, some important aspects
of their numerical approximation are sometimes overlooked, such as the importance of mass
conservation [30, 7, 23, 8, 26, 21, 22]. It is well-known that mixed finite element discretiza-
tions of the incompressible NSE are prone to different kinds of numerical instabilities, when
one combines a certain discrete velocity space Xh in a naive way with a discrete pressure
space Qh. The violation of discrete inf-sup stability [4, 9, 33] is the classical example for
when the discrete pressure space is too large in relation to the discrete velocity space. The
opposite extreme is when the discrete pressure space is too small. In this case the approxi-
mation does not adequately satisfy the conservation of mass equation, thereby giving a poor
approximation to the physical solution. To illustrate this instability, consider the following
linear steady Stokes problem in IR2, Ω = (0, 1)× (0, 1):

−∆u +∇p = Ra

[
0
y

]
, in Ω ,

∇ · u = 0 , in Ω ,

u = 0 , on ∂Ω .

This problem is derived from Rayleigh-Bénard convection with Boussinesq approximation
[24] at large Prandtl numbers. It models the system behavior before there is an onset of
convection, and heat transfer is only conductive and a linear function of y. In this case, the
typical Rayleigh number Ra is of order 108 and the fluid does not move, i.e., the obvious
(mean pressure = 0) solution of the problem is (u, p) = (0, Ra

2 y2 − Ra
6 ). Approximating it

with the ((P2)2, P1) Taylor-Hood element on a coarse mesh as in Figure 1 delivers a velocity
error of:

‖∇u−∇uh‖ ≈ 2.28Ra.

Since the Rayleigh number in this problem is typically large (> 108), the Taylor-Hood
element (P2, P1) is not appropriate for this kind of problem, while the Scott-Vogelius element
(P2, P

disc
1 ) delivers the correct velocity solution uh = 0. The reason for this different

behavior lies in the fact that the velocity solutions of the Taylor-Hood element are not
divergence-free. In fact, the L2-norm of the divergence of the Taylor-Hood solution in
the above problem is ≈ 1.98 Ra. The velocity solution of the Scott-Vogelius element is
the X-projection (〈f , g〉X :=

∫
Ω∇f : ∇g dΩ) of the Taylor-Hood velocity solution into

the subspace of exactly divergence-free velocities. In the terms of Girault and Raviart,
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the Taylor-Hood solution delivers an external approximation of the above mixed problem,
while the Scott-Vogelius solution delivers an internal one ([9], pg. 114). In consequence, for
internal approximations the velocity error is completely decoupled from the pressure error,
which is not true for external approximations ([9] pg. 116).

There are a number of strategies for avoiding poor mass conservation: several element
choices are known to provide pointwise mass conservation [43, 42], discontinuous Galerkin
methods typically admit local mass conservation [32] (several in fact deliver pointwise
divergence-free solutions [5]), penalization techniques such as grad-div stabilization dis-
cussed herein reduce global mass conservation error, and a posteriori methods can be used
to enforce the conservation of mass on already computed solutions [25]. For each technique,
there are naturally both good features and drawbacks, and therefore a determination of
which method is “best” is certainly problem dependent.

Still, in most cases, the use of TH elements with grad-div stabilization is one of the easiest
to implement. For many years TH elements have been a popular choice of approximating
element in fluid flow simulations, and most downloadable finite element packages have some
TH elements implemented. Hence getting a TH code and adding grad-div stabilization is
typically convenient and simple. However, until now, it was believed that the improvement
in mass conservation using grad-div stabilization, although sometimes significant over usual
TH solutions, was limited to an O(1) choice of the stabilization parameter. With this
limitation, one had to decide whether the provided mass conservation was good enough, or
instead if a different element choice or DG should be used. Hence this work provides a simple
solution to correct for poor mass conservation in existing codes, and therefore may lead to
TH elements being a good choice on a much wider set of problems. We note that even though
in TH approximations, the divergence error is optimally accurate in the asymptotic sense
(as ‖∇ · uh‖ = ‖∇ · (uh − u)‖ ≤

√
2 ‖∇(uh − u)‖), the lack of even local mass conservation

makes the approximations unsuitable in modeling some physical problems.
This paper is arranged as follows. In Section 2 we give notation and preliminaries,

including a brief discussion of the SV element. In Section 3 we prove that in the cases
where SV elements are LBB stable and have optimal approximation properties, grad-div
stabilized TH solutions of the NSE converge to SV solutions as the grad-div parameter tends
to ∞. Discussed in Section 4 is the convergence of the TH approximations as γn → ∞ on
regular meshes. Section 5 presents numerical experiments that illustrate the theory.

2 Preliminaries

We will represent the L2 norm and inner product by ‖·‖ and (·, ·), respectively. All other
norms used will be clearly denoted with subscripts.

Recall the time dependent incompressible NSE on a polygonal (2d), or polyhedral (3d),
domain Ω, and for simplicity with homogeneous Dirichlet boundary conditions:

ut − ν∆u + u · ∇u +∇p = f , in Ω× (0, T ], (2.1)

∇ · u = 0, in Ω× (0, T ], (2.2)

u(x, 0) = u0, in Ω (2.3)

u = 0 on ∂Ω× (0, T ]. (2.4)

Here, u represents velocity, p the (zero-mean) pressure, f an external force, and ν the
kinematic viscosity.
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Throughout the report, (Xh, Qh) ⊂ (H1
0 (Ω), L2

0(Ω)) will denote either the Taylor-Hood
or Scott-Vogelius element pair. For Taylor-Hood elements (Xh, Qh) are well known to be
inf-sup stable. For Scott-Vogelius elements with degree k ≥ d and the mesh constructed by
a barycenter refinement of a quasi-uniform mesh (details in the following section), or k = 2
and d = 3 with a Powell-Sabin tetrahedralization, (Xh, Qh) is inf-sup stable.

The following lemma is used in the analysis below.

Lemma 2.1. There exists a constant C∗(Ω), dependent only on the size of Ω, that satisfies
∀u,v,w ∈ H1

0 (Ω),

|(u · ∇v,w)|+ |((∇ · u)v,w)| ≤ C∗ ‖∇u‖ ‖∇v‖ ‖∇w‖1/2 ‖w‖1/2 (2.5)

|(u · ∇v,w)|+ |((∇ · u)v,w)| ≤ C∗ ‖∇u‖ ‖∇v‖ ‖∇w‖ (2.6)

Proof. The first inequality follows from Holder’s inequality, Ladyzhenskaya inequalities and
the Sobolev imbedding theorem. The second follows directly from the first with the Poincaré
inequality in H1

0 (Ω).

2.1 Scott-Vogelius and Taylor-Hood elements

The SV element pair is not yet very well known, and so we now give a brief description of
it. In essence, the SV pair is the same as the TH pair except that the pressure space is
discontinuous and either
(i) for k ≥ d, the mesh is a barycenter refinement of a regular mesh, or
(ii) for k = 2, d = 3, the mesh is formed from a barycenter refined mesh by connecting the
barycenter nodes (i.e. a Powell-Sabin tetrahedralization).
In short, polynomials of degree k and k − 1 are used to approximate the velocity and
pressure spaces respectively, and the mesh Th that is used must be derived from a regular
triangularization (tetrahedralization) of Ω, where each element is refined as stated above.
With these mesh constructions, it was proved by Zhang in [42, 44] that the SV elements
are LBB stable, and consequently also have optimal approximation properties. It is well
known that the TH pair is LBB stable and admits optimal approximation properties for
these cases as well [9]. We will restrict our definition of SV elements to these cases where
they are LBB stable.

We now formally define the element pairs. In space dimension d, for both TH and
SV elements we define Xh to be the space of continuous element-wise vector functions of
polynomial order k on Th

Xh :=
{
vh ∈ [C(Ω)]d : vh|T ∈ [Pk(T )]d, for all T ∈ Th , vh = 0 on ∂Ω

}
.

For Taylor-Hood, we define

QTH
h :=

{
qh ∈ C(Ω): qh|T ∈ Pk−1, for all T ∈ Th,

∫
Ω
qhdΩ = 0

}
,

while the pressure space of the Scott-Vogelius element only differs from Taylor-Hood’s in
that its pressures are discontinuous:

QSV
h :=

{
qh ∈ L2(Ω): qh|T ∈ Pk−1, for all T ∈ Th,

∫
Ω
qhdΩ = 0

}
.

Note that the dimension of the pressure space for SV elements is significantly larger than
that for TH elements. This creates a greater total number of degrees of freedom needed
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for linear solves using SV elements, however it is not immediately clear whether this will
lead to a significant increase in computational time if preconditioners such as Augmented
Lagrangian type are used [2]. The authors plan to consider this question in future studies.

Although the velocity spaces of the TH and SV elements are the same, the spaces of
discretely divergence free subspaces are different, and will be denoted by

V TH
h := {vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ QTHh } ,
V SV
h := {vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ QSVh } .

The SV element is very interesting from the mass conservation point of view since its
discrete velocity space and its discrete pressure space fulfill an important property, namely

∇ ·Xh ⊂ QSV
h . (2.7)

Thus, using SV elements, weak mass conservation via

(∇ · uh, qh) = 0 , ∀qh ∈ Qh

implies strong (pointwise) mass conservation since we can choose the special test function
qh = ∇ · uh to get

‖∇ · uh‖2 = 0 .

In general, the same pressure test function cannot be used in the Taylor-Hood case, since
∇ · Xh 6⊂ QTH

h . Hence, in general, approximations obtained using TH elements are not
pointwise mass conservative.

2.2 Finite element methods for the NSE

We will study finite element methods for approximating both the steady and time-dependent
Navier-Stokes equations. Let ‖ · ‖∗ denotes the norm in X∗, the dual space of X = H1

0 (Ω)
endowed with the norm ‖v‖X := ‖∇v‖.

For the steady case, we consider the skew symmetrized finite element scheme for the
NSE [18]: Given f ∈ X∗, find (uh, ph) ∈ Xh × Qh, with Qh ∈ {QTH

h , QSV
h } satisfying

∀(vh, qh) ∈ Xh ×Qh

ν(∇uh,∇vh)− (ph,∇ · vh) + γ(∇ · uh,∇ · vh) + (uh · ∇uh,vh)

+
1

2
((∇·uh)uh,vh) = (f ,vh), (2.8)

(∇ · uh, qh) = 0, (2.9)

where Qh is either QSVh or QTHh . Note if Qh = QSVh , then trivially 1
2((∇·uh)uh,vh) =

γ(∇ · uh,∇ · vh) = 0.
The temporal-spatial discretization we study is the Crank-Nicolson Galerkin method,

in skew symmetrized form. Denoting u
n+1/2
h := 1/2(unh + un+1

h ), it is given by:
Given f ∈ X∗, find (un+1

h , p̃h
n+1) ∈ Xh ×Qh with Qh ∈ {QTH

h , QSV
h } such that ∀(vh, qh) ∈

Xh ×Qh for n = 0, 1, 2, . . . ,M − 1, where M = T/∆t,

1

∆t
(un+1

h − unh,vh)− (p̃h
n+1,∇ · vh) + ν(∇un+ 1

2
h ,∇vh) + γ(∇ · un+ 1

2
h ,∇ · vh)

+(u
n+ 1

2
h · ∇un+ 1

2
h ,vh) +

1

2
((∇ · un+ 1

2
h )u

n+ 1
2

h ,vh) = (fn+ 1
2 ,vh) (2.10)

(∇ · un+1
h , qh) = 0 . (2.11)
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Note that p̃h
n+1 is solved for directly, and no initial condition for pressure is required.

However, since this is a Crank-Nicolson scheme, p̃h
n+1 approximates p(tn+1/2).

We assume the discrete initial velocity, u0
h, is pointwise mass conservative. (There are

several stable and optimally accurate ways to ensure this [10, 3], the simplest being to
project the initial condition u0 into V SV

h .
Throughout we assume that the discrete approximating system of equations of the time

dependent NSE, (2.10)-(2.11), is uniquely solvable. This requires ∆t be chosen small enough
(dependent on problem data and the meshwidth h, but not on γ). We refer the interested
reader to [18, 38] for discussions on the unique solvability of (2.10)-(2.11).

3 Relationship between the Taylor-Hood and the Scott-Vogelius
element

Section 2 shows that the Taylor-Hood and the Scott-Vogelius element are not unrelated to
each other, as they differ only in their pressure space. But it turns out that much more can
be said. For example, it is relatively easy to show that the X-projection of the TH solution
to the Stokes problem into the space of divergence free functions is the SV solution of that
Stokes problem (independent of grad-div stabilization). However, the results for the NSE
are much more interesting.

We prove, under the restrictions where SV elements are LBB stable, that as γ → ∞,
the TH solutions to the NSE schemes in Section 2 converge to the SV solution. Roughly
speaking, this result can be understood in the following sense: Under the appropriate mesh
restrictions discussed above, the grad-div stabilized TH solutions “live between” the TH
and SV solutions, which are both LBB stable and have optimal approximation properties.
Thus, raising γ significantly larger than O(1) in TH computations can provide excellent
mass conservation without “destroying” the solution.

We begin with the steady case.

Theorem 3.1. Under conditions where SV elements are LBB stable, for any sequence
{uh}γi of TH velocity solutions to (2.8)-(2.9), there is a subsequence which converges to a
SV velocity solution as the grad-div parameter γi →∞. The corresponding sequence of TH
“modified pressure” solutions, {ph−γi∇·uh}γi, converges to the corresponding SV pressure.

Moreover, if the SV solution is unique, then the entire sequence converges to the unique
SV solution.

Proof. For notational convenience, in the proof we suppress the dependence on h.
We begin with the a priori bound for the steady state approximations, which follows

from choosing vh = uh in (2.8) and qh = ph in (2.9) and adding the equations. Recall that
for this choice of vh, as (u · ∇u, u) = 1/2 ((∇ · u)u, u) the nonlinearity vanishes. This
leaves

ν ‖∇u‖2 + 2γ ‖∇ · u‖2 ≤ 1

ν
‖f‖2∗ = C(data) , (3.1)

where, for the SV approximation, ‖∇ · u‖ = 0.
Let {γi}∞i=1 →∞ and ui denote the corresponding TH velocity solutions to (2.8)-(2.9).

Then, as ui is a bounded sequence in a finite dimensional space, we have that there exists
w ∈ Xh such that a subsequence ui′ → w. Again, for notational convenience, we identify
the converging subsequence with the entire sequence of Taylor-Hood solutions. From (2.8)-

6



(2.9) with v = ui, q = p, we have that

‖∇ · ui‖ ≤
1

γi

(
‖f‖∗‖ ‖∇ui‖+ ν‖∇ui‖2

)
≤ 1

γi
C . (3.2)

As ui′ → w, then ∇ · ui′ → ∇ ·w, (using the equivalence of norms in a finite dimensional
space), and as ‖∇ · ui′‖ → 0, we have that

‖∇ ·w‖ = 0 , i.e. w ∈ V SV
h .

Next we show that w is a SV velocity solution. Consider, for v ∈ V SV
h

res(v) := ν(∇w,∇v) + (w · ∇w,v)− (f ,v) . (3.3)

Since we are in finite dimensions, the above a-priori estimates imply ∇ui, ∇·ui, and ui ·∇ui
are bounded in L∞(Ω). Then, we obtain by the bounded convergence theorem for Lebesgue
integration that

res(v) = ν(∇w,∇v) + (w · ∇w,v)− (f ,v)

= lim
i→∞

ν(∇ui,∇v) + lim
i→∞

γi(∇ · ui,∇ · v) + lim
i→∞

(ui · ∇ui,v)− (f ,v)

= lim
i→∞

( ν(∇ui,∇v) + γi(∇ · ui,∇ · v) + (ui · ∇ui,v)− (f ,v) )

= 0

holds, since ui is a TH solution and satisfies (2.8). Thus w is a SV velocity solution.
Using the LBB stability of the Scott-Vogelius element on barycentric refined meshes, we

get an a-priori bound for pi − γi∇ · ui by

‖pi − γi∇ · ui‖ ≤
1

β

(
ν ‖∇ui‖+ ‖∇ui‖2 + ‖f‖∗

)
,

where β is the discrete inf-sup constant of the Scott-Vogelius element.
Similar to the above argument, we obtain that a subsequence of pi − γi∇ · ui converges

to some p̄ and we obtain for all fixed v ∈ Xh

(p̄,∇ · v) = lim
i→∞

(pi − γi∇ · ui,∇ · v)

= lim
i→∞

(ν(∇ui,∇v) + (ui · ∇ui,v)− (f ,v))

= ν(∇w,∇v) + (w · ∇w,v)− (f ,v)

= (pSV ,∇ · v).

Since (QTHh + ∇ · Xh) ⊂ QSVh , we conclude from the LBB condition that p̄ = pSV . Since
the pressure pSV is unique, we further conclude in a classical way that the entire sequence
pi − γi∇ · ui converges, and not only a subsequence.

Finally, if the SV solution is unique, a simple contradiction argument implies the entire
sequence of stabilized Taylor-Hood solutions converges to the SV solution.

Next we consider the approximation of the unsteady NSE.

Theorem 3.2. Any sequence {uh}γi of TH velocity solutions to (2.10)-(2.11) converges to
the SV velocity solution as the grad-div parameter γi →∞. The corresponding TH “modified
pressure” solutions {p̃h − γi∇ · uh}γi converge to the SV pressure solution.
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Proof. We begin again with the a priori bound on the SV and TH solutions, which can be

found by choosing the test function vh = u
n+1/2
h in (2.10) and qh = p̃n+1

h in (2.11), then
summing over timesteps: For 0 ≤ j ≤M

∥∥∥ujh∥∥∥2
+ ∆t

j−1∑
n=0

(
ν
∥∥∥∇un+1/2

h

∥∥∥2
+ 2γ

∥∥∥∇ · un+1/2
h

∥∥∥2
)

≤ ∆t

ν

j−1∑
n=0

∥∥∥fn+1/2
∥∥∥2

∗
+
∥∥u0

h

∥∥2
= C(data) . (3.4)

For the SV solution
∥∥∥∇ · un+1/2

h

∥∥∥ = 0. The key step for this bound is the vanishing of the

nonlinearities for the choice of test function, similar to the steady case.
In addition, by assumption of the existence and uniqueness of the SV solution (which

is independent of γ) and LBB stability we have the SV pressure is bounded independent of
γ. In particular we have that for 2 ≤ j ≤M

∆t

j−1∑
n=0

∥∥p̃n+1
SV

∥∥2 ≤ C(data) . (3.5)

The key steps for this bound is to majorize the nonlinearity with Holder’s inequality, La-
dyzhenskaya’s inequalities, and Poincaré’s inequality, then use that the velocity solution is
uniformly bounded in H1 since we are using a fixed mesh and timestep.

Note that from (3.4) it follows that as γ →∞, ∇·un+1/2
h → 0 for n = 0, . . .M−1. Also,

as ∇ · u0
h = 0, then ∇ · un+1

h → 0 for n = 0, . . .M − 1. In addition, as
∥∥∥ujh∥∥∥2

is uniformly

bounded, then the terms
∥∥∥∇ujh∥∥∥2

and
∥∥∥∇ · ujh∥∥∥2

are also uniformly bounded. In these later

cases the bound will depend upon the mesh parameter h. However, as we are discussing
convergence on a fixed mesh, h can be considered a fixed constant.

Let e := uSV − uTH ∈ V TH
h , where (uSV , p̃SV ) and (uTH , p̃TH) denote the SV and TH

solutions respectively. (For convenience, in this proof we suppress the dependence on h.)
For v ∈ V TH

h , we have that (p̃n+1
TH ,∇ · v) = 0 and thus that

1

∆t
(en+1 − en,v)− (p̃n+1

SV ,∇ · v) + ν(∇en+ 1
2 ,∇v) + γ(∇ · en+ 1

2 ,∇ · v)

+(u
n+ 1

2
SV · ∇un+ 1

2
SV ,v)− (u

n+ 1
2

TH · ∇u
n+ 1

2
TH ,v) +

1

2
((∇·un+ 1

2
SV )u

n+ 1
2

SV ,v)

−1

2
((∇·un+ 1

2
TH )u

n+ 1
2

TH ,v) = 0 , (3.6)

which can be written as

1

∆t
(en+1 − en,v) + ν(∇en+ 1

2 ,∇v) + γ(∇ · en+ 1
2 ,∇ · v)

= −(en+1/2 · ∇un+ 1
2

SV ,v) − (u
n+ 1

2
TH · ∇e

n+1/2,v)− 1

2
((∇· en+1/2)u

n+ 1
2

SV ,v)

−1

2
((∇·un+ 1

2
TH )en+1/2,v) + (p̃n+1

SV ,∇ · v) . (3.7)

With v = en+ 1
2 , the identity

(u
n+ 1

2
TH · ∇e

n+1/2, en+ 1
2 ) +

1

2
((∇·un+ 1

2
TH )en+1/2, en+ 1

2 ) = 0 ,
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and using Lemma 2.1, equation (3.7) becomes

1

2∆t
(
∥∥en+1

∥∥2 − ‖en‖2) + ν
∥∥∥∇en+1/2

∥∥∥2
+ γ

∥∥∥∇ · en+1/2
∥∥∥2

= −1

2
((∇· en+ 1

2 )u
n+ 1

2
SV , en+1/2)− (en+ 1

2 · ∇un+ 1
2

SV , en+1/2) + (p̃n+1
SV ,∇ · en+1/2)

≤ C
∥∥∥∇en+1/2

∥∥∥2 ∥∥∥∇un+1/2
SV

∥∥∥+
∥∥p̃n+1

SV

∥∥∥∥∥∇ · en+1/2
∥∥∥ . (3.8)

Since the mesh is fixed, uniform boundedness, equivalence of norms in finite dimensions,
and Young’s inequality imply

1

2∆t
(
∥∥en+1

∥∥2 − ‖en‖2) + ν
∥∥∥∇en+1/2

∥∥∥2
+ γ

∥∥∥∇ · en+1/2
∥∥∥2

≤ C
∥∥∥en+1/2

∥∥∥2
+
γ

2

∥∥∥∇ · en+1/2
∥∥∥2

+
1

2γ

∥∥p̃n+1
SV

∥∥2
. (3.9)

With
∥∥e0
∥∥ = 0, subtracting γ

2

∥∥∇ · en+1/2
∥∥2

from both sides of (3.9), then summing from
n = 0 to j − 1, 2 ≤ j ≤M , we have

∥∥ej∥∥2
+ ∆t

j−1∑
n=0

(
2ν
∥∥∥∇en+1/2

∥∥∥2
+ γ

∥∥∥∇ · en+1/2
∥∥∥2
)

≤ C∆t

j∑
n=0

‖en‖2 +
∆t

γ

j−1∑
n=0

∥∥p̃n+1
SV

∥∥2
. (3.10)

The discrete Gronwall inequality [14] then implies that (for ∆t sufficiently small)

∥∥ej∥∥2
+ ∆t

j−1∑
n=0

(
2ν
∥∥∥∇en+1/2

∥∥∥2
+ γ

∥∥∥∇ · en+1/2
∥∥∥2
)
≤ C

∆t

γ

j−1∑
n=0

∥∥p̃n+1
SV

∥∥2

≤ C
1

γ
.

Hence, as γ →∞,
∥∥ej∥∥→ 0, j = 1, 2, . . . ,M , i.e. uTH → uSV .

With the convergence of the velocity established, we now prove convergence of the
modified TH pressure to the SV pressure. Subtracting the TH solution from the SV solution,
and using the notation as above, we get ∀vh ∈ Xh,

((p̃n+1
TH − γ∇ · u

n+ 1
2

TH )− p̃n+1
SV ,∇ · vh) =

1

∆t
(en+1 − en,vh) + ν(∇en+ 1

2 ,∇vh)

+(en+ 1
2 ·∇un+ 1

2
TH ,vh)+(u

n+ 1
2

SV ·∇e
n+ 1

2 ,vh)+
1

2
((∇·en+ 1

2 )u
n+ 1

2
TH ,vh)+

1

2
((∇·un+ 1

2
SV )en+ 1

2 ,vh)

(3.11)

Now dividing both sides by ‖∇vh‖, applying Lemma 2.1 and Cauchy-Schwarz to the right
hand side, again using that solutions are uniformly bounded, then reducing, gives

((p̃n+1
TH − γ∇ · u

n+ 1
2

TH )− p̃n+1
SV ,∇ · vh)

‖∇vh‖
≤ C(‖en‖+

∥∥en+1
∥∥). (3.12)
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Since (p̃n+1
TH − γ∇ · u

n+ 1
2

TH ) ∈ QSVh and the restriction on the mesh and k are such that SV
elements are LBB stable, the inf-sup condition for (Xh, Q

SV
h ) implies∥∥∥∥(p̃n+1

TH − γ∇ · u
n+ 1

2
TH )− p̃n+1

SV

∥∥∥∥ ≤ C(‖en‖+
∥∥en+1

∥∥), (3.13)

and thus since e→ 0, we have that∥∥∥∥(p̃n+1
TH − γ∇ · u

n+ 1
2

TH )− p̃n+1
SV

∥∥∥∥→ 0. (3.14)

Note that since it is the time-level n+ 1
2 pressures that are directly solved for in the Crank-

Nicolson scheme, it is this convergence result that is relevant, not the n or n + 1 time
levels.

4 Convergence of the TH approximations as γ → ∞ on a
regular mesh

In Section 3 we showed that, as the grad-div parameter, γ, goes to infinity the TH velocity
approximations converge to the SV velocity approximation. The SV approximation, as
described above, requires a barycenter refined mesh. In this section we investigate the
question of convergence of the TH approximations as γ →∞ on a regular mesh. It is known
that taking γ too large in the general case can have an over-stabilizing effect [26], although
it is also known that with larger γ comes improved mass conservation. Our intention is to
further investigate this phenomenon.

4.1 Limiting result

We first show that the approximations converge, and identify the limit function. Analogous
to the previous section, it is again a modified pressure that converges to the limit pressure.

We consider the steady-state problem. The extension to the time dependent case is
straight-forward, following Section 3. With the notation as introduced above, let

V 0
h := {vh ∈ Xh : ∇ · vh|T = 0 , for all T ∈ Th} .

Note that V 0
h ⊂ V TH

h and, under the mesh restrictions so that SV elements are LBB stable,
V 0
h = V SV

h .
Let zh ∈ V 0

h be defined by

ν(∇zh,∇vh) + (zh · ∇zh,vh) = (f ,vh) , ∀vh ∈ V 0
h . (4.1)

Since V 0
h is a closed subspace of V = {v ∈ H1

0 (Ω), ∇ · v = 0}, the Leray-Schauder fixed
point theorem can be applied to show solutions to (4.1) exist, in the same way that it is
used when the solution and test function space is V (Section 6.3 of [18]). We assume the
data is sufficiently small that solutions to (4.1) exist uniquely (e.g. the small data condition
given in Section 6.2 of [18]).

Let rh ∈ QTHh be defined by

(rh,∇ · vh) = ν(∇zh,∇vh) + (zh · ∇zh,vh)− (f ,vh) , ∀vh ∈ (V TH
h )⊥ , (4.2)

10



where (V TH
h )⊥ denotes the orthogonal complement of V TH

h in Xh with respect to the in-
nerproduct 〈v,w〉 = (∇v , ∇w). In addition, for {uh}γi ∈ Xh, let ρh,i ∈ QTHh be defined
by

(ρh,i , ∇ · vh) := (∇ · uh,i , ∇ · vh) , ∀vh ∈ (V TH
h )⊥ . (4.3)

The existence and uniqueness of rh and ρh,i follows from (Xh, Q
TH
h ) satisfying the LBB

condition, and the generalized Lax-Milgram theorem.

Theorem 4.1. For any sequence {(uh, ph)}γi of TH solutions to (2.8)-(2.9) we have that
{(uh , (ph − γiρh))}γi converges to (zh, rh) as the grad-div parameter γi →∞.

Remark 4.1. Similar to the limit case for steady NSE in Section 3, if the SV solution is
not unique, then a subsequence of TH solutions converges to a SV solution.

Proof. For notational convenience, in the proof we surpress the dependence on h.
With V SV

h replaced by V 0
h , the proof that {ui} → z follows verbatim the proof of

Theorem 3.1.
Using the LBB condition, Xh = V TH

h ⊕ (V TH
h )⊥, and ei = z− ui

β‖r − (pi − γiρi)‖ ≤ sup
v∈Xh

(r,∇ · v) − (pi,∇ · v) + (γiρi,∇ · v)

‖v‖X

= sup
v∈(V TH

h )⊥

(r,∇ · v) − (pi,∇ · v) + (γiρi,∇ · v)

‖∇v‖

= sup
v∈(V TH

h )⊥

ν(∇ei,∇v) + (z · ∇z,v)− (ui · ∇ui,v)− 1
2(∇· (ui)ui,v)

‖∇v‖

≤ ν‖∇ei‖+ ‖ei · ∇z‖+ ‖ui · ∇ei‖+
1

2
‖∇· (ei)ui‖ .

From the boundedness of z, ui, and that ei → 0 as γi →∞, we have that (pi − γiρi)→ r.

4.2 The dimension of V 0
h

We have that with γ = 0, the TH approximation lies in V TH
h and with γ = ∞ the TH

approximation lies in V 0
h . In terms of satisfying the momentum equation, for γ = 0 the

velocity piece of the momentum equation is satisfied for all v ∈ V TH
h , whereas for γ = ∞

the velocity piece of the momentum equation only holds for v ∈ V 0
h . However, for γ = 0

the conservation of mass equation is only weakly enforced over QTHh , whereas for γ = ∞
conservation of mass is imposed pointwise.

Clearly, satisfying both conservation equations is important. Increasing the value of γ
adds additional emphasis to satisfying the conservation of mass equation, while dimenshing
the emphasis of satisfying the velocity piece of the momentum equation.

Below we investigate the relative dimensions of the spaces V TH
h and V 0

h for a family of
regular meshes, and a family of barycenter refined meshes. Note that for Xh = [P2]2, only
for the barycenter refined mesh do we know that V 0

h has optimal approximation properties.
However, it is interesting to note from Tables 1, 2, that, proportionally, dim(V 0

h ) can actually
be larger for the regular meshes than the barycenter refined meshes.

Presented in Table 1 are dim(Xh) (assuming homogeneous boundary conditions for
the velocity), dim(V TH

h )/dim(Xh) %, and dim(V 0
h )/dim(Xh) % for a sequence of triangu-

lations of the unit square. Table 2 contains the same statistics for a sequence of barycenter
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Figure 1: (LEFT) Regular 3 × 3 triangulation of the unit square; (RIGHT) The 3 × 3
barycenter refined triangulation of the unit square.

refined meshes. The dimensions of the spaces were computed using the rank command
in MATLAB. For both triangulations dim(V TH

h )/dim(Xh) is approximately 87%. The
dim(V 0

h )/dim(Xh) is slightly higher ( ≈ 30 %) for the regular triangulations than for the
barycenter refined triangulations ( ≈ 24 %).

dim(Xh) dim(QTHh )
dim(V TH

h )

dim(Xh) %
dim(V 0

h )

dim(Xh)%

8× 8 450 80 82.2 23.8
16× 16 1922 288 85.0 27.6
20× 20 3042 440 85.5 28.4
28× 28 6050 840 86.1 29.2
32× 32 7938 1088 86.3 29.5

Table 1: Dimensions of V TH
h and V 0

h for regular triangulations of the unit square.

dim(Xh) dim(QTHh )
dim(V TH

h )

dim(Xh) %
dim(V 0

h )

dim(Xh)%

4× 4 354 56 84.2 18.9
8× 8 1474 208 85.9 21.9

12× 12 3362 456 86.4 22.9
16× 16 6018 800 86.7 23.5
20× 20 9442 1240 86.9 23.8

Table 2: Dimensions of V TH
h and V 0

h for barycenter refined triangulations of the unit square.

5 Numerical Experiments

In this section we investigate the convergence theory of the previous sections. We numer-
ically verify that if the mesh requirements of the theorems are met, then as the grad-div
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parameter goes to infinity the TH approximations to NSE converge to the SV approxima-
tion.

5.1 Numerical Experiment 1: 2d channel flow around a cylinder on a
barycenter refined mesh

The benchmark problem of 2d channel flow around a cylinder has been studied in numerous
works, e.g. [34, 16, 17, 19], and is well documented in [34]. The domain is the rectangle
[0, 2.2]× [0, 0.41] representing the channel with flow in the positive x direction, with a circle
radius 0.05 centered at (0.2, 0.2) representing the cylinder. No slip boundary conditions are
prescribed on the top and bottom of the channel as well as on the cylinder, and the time
dependent inflow and outflow velocity profiles are given by

u(0, y, t) = u(2.2, y, t) =

[
6

0.412
sin(πt/8)y(0.41− y) , 0

]T
, 0 ≤ y ≤ 0.41.

The forcing function is set to zero, f = 0, and the viscosity at ν = 0.001, providing a time
dependent Reynolds number, 0 ≤ Re(t) ≤ 100. The initial condition is u = 0, and we
compute to final time T = 8 with time-step ∆t = 0.01.

An accurate approximation of this flow’s velocity field will show a vortex street forming
behind the cylinder by t = 4, and a fully formed vortex street by t = 7. However, there is
more than one way to measure accuracy. That is, even if the vortex street forms and the
velocity vector field “appears” correct, if the velocity field does not conserve mass, then for
many applications the solution may be unacceptable.

Solutions are computed for (P2, P
disc
1 ) SV elements and for (P2, P1) TH elements with

γ = 0, 1, 100, 10, 000, all on the same barycenter refined mesh of a Delauney triangulation.
This provides 6,578 velocity degrees of freedom, dof, and 4,797 pressure dof for the SV
pressure, and 845 pressure degrees of freedom for the TH simulation. Results of these
simulations are shown in Table 3, and Figures 2 and 3.

γ
∥∥∇uγTH(t = 7)−∇uSV (t = 7)

∥∥
0 5.7086

1 0.7616

100 7.9856e-3

10,000 8.5311e-5

Table 3: The table above shows convergence of the grad-div stabilized TH approximations
to the SV approximation for Numerical Experiment 1.

Table 3 shows convergence of the TH approximations to the SV approximation as
γ → ∞. This agrees with the theory of Section 3. Figure 2 shows the plots of the ve-
locity field, speed contours and pressure contours for SV and TH approximations with
γ = 0, 1, 100, 10, 000. The convergence as γ gets large of the TH approximations to the
SV approximation is clear.

The benefit to mass conservation of increasing γ is shown in Figure 3. Here we see with
γ = 10, 000, excellent mass conservation is achieved. Also we note that for the unstabilized
TH approximation, ‖∇ · unh‖ = O(1).
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Figure 2: The t=7 velocity fields, speed contours, and pressure contour plots for approx-
imations obtained using TH elements without grad-div stabilization (top), TH elements
with γ = 1 (second from top), TH elements with γ = 10, 000 (third from top), and the SV
element approximation (bottom), on a barycentric mesh and k = 2. Convergence to the
SV approximation as γ increases is clear. The SV and TH with γ = 10, 000 approximations
are nearly indistinguishable and agree well with known results [34, 16, 17]. Some slight
differences with these and the plotted solution for TH elements with γ = 1 can be seen in
the speed contours, and the γ = 0 solution is clearly underresolved.
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Figure 3: Shown above are the plots of ‖∇ · unh‖ vs. time for the SV and TH approximations
for Numerical Experiment 1, with varying γ.

5.2 Numerical Experiment 2: 2d flow around a cylinder on a regular
mesh

For our next experiment, we investigate the effect of large γ with TH elements (k = 2)
on a regular mesh (Delauney triangulation). We proved in Section 4 that velocity so-
lutions converge as γ → ∞. Illustrated in Figure 4 are TH solutions corresponding to
γ = 0, 1, 100, 10, 000, using a mesh with 7,414 velocity degrees of freedom and 915 pres-
sure degrees of freedom. This mesh is somewhat finer that in Experiment 1, and we see in
the plot of the solution in Figure 4 that the γ = 0 solution has a more resolved velocity
field than the γ = 0 solution of Experiment 1.

From Figure 4, we note that as γ increases, the solutions appear to converge, in agree-
ment with the theory. Conservation of mass improves in the same manner as in Experiment
1 on the barycenter refined mesh (plot omitted).

5.3 Numerical Experiment 3: The 3d driven cavity on a barycenter re-
fined mesh

We next consider the benchmark problem of the 3d lid-driven cavity. This problem has been
well-studied, [41, 27], and the description is as follows. The domain Ω is the (−1, 1)3 cube,
for boundary conditions the top of the box (lid) is prescribed the velocity u = [1, 0, 0]T

with the velocity on the the sides and bottom set to zero (u = 0), and the viscosity
ν = 1/50, giving the Reynolds’ number Re = 2 ·1 ·50 = 100. We compute with a barycenter
refinement of a uniform tetrahedral mesh, consisting of 51,119 total dof for the (P3, P2)
TH elements (46,038 velocity and 5,081 pressure) and 76,038 total dof for (P3, P

disc
2 ) SV

elements (46,038 velocity and 30,000 pressure). The problem is solved directly for the steady
state approximation with a Newton iteration, using as the initial guess u(x) = 0, x ∈ Ω.
Five iterations were required to converge to a tolerance of 10−10 for each of the tests.

We compare the SV approximation and TH approximations with stabilization param-
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Figure 4: The t=7 velocity fields, speed contours, and pressure contour plots for solutions
obtained using TH elements without grad-div stabilization (TOP), TH elements with γ = 1,
γ = 100, and γ = 10, 000 (BOTTOM), using a general (non-barycentric) mesh.
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Figure 5: Velocity profiles and divergence contours for mid-sliceplanes, for the lid-driven
cavity problem with SV elements. Pointwise mass conservation is observed.

eters γ = 0, 1, 100, 10, 000. Plots of the TH (γ = 0) and SV approximations’ midplane
velocity vector fields and divergence contours are presented in Figures 5-6. A visual in-
spection of the velocity fields indicates they appear the same, and in agreement with the
known solution [41]. However, the divergence contours show these solutions are in fact quite
different. While the SV solution conserves mass up to roundoff error, the TH solution has
O(1) mass conservation in the upper corners, and thus has poor physical accuracy. For the
TH approximations using grad-div stabilization, we observe the velocity vector fields look
identical to TH and SV plots as in Figures 5 and 6, and the magnitude of the divergence
contours decreases as γ increases (pictures omitted).

The convergence of the TH velocity approximations to the SV velocity approximation
is shown in Table 4, giving verification to the theory of Section 3. Also shown in this table
is the improvement in mass conservation from raising γ.

γ
∥∥∇uγTH −∇uSV ∥∥ ∥∥∇ · uγTH∥∥

0 1.0653 4.601E-1

1 0.2093 5.409E-2

100 0.0029 7.056E-4

10,000 2.951E-5 7.081E-6

Table 4: Convergence of the grad-div stabilized TH approximations toward the SV approx-
imation as γ →∞ for the Re = 100 3d driven cavity problem.
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Figure 6: Velocity profiles and divergence contours for mid-sliceplanes, for the lid-driven
cavity problem with TH elements and γ = 0. Very poor mass conservation is observed.

5.4 Numerical Experiment 4: The 3d driven cavity on a regular mesh

In 3d, the (P2, P1) TH element is a popular approximation choice. The theory we devel-
oped in Section 4 shows that as γ becomes large (assuming exact arithmetic) the velocity
approximations converge to a pointwise mass conservative solution zh ∈ V 0

h .
We compute solutions to the Re=100 3d driven cavity problem studied in numerical

experiment 3, with (P2, P1) TH elements on a uniform mesh and 29,114 total dof, using γ = 0
and γ = 10, 000. Sliceplanes of the solutions are shown in Figure 7, and while we see that
the γ = 0 solution appears correct and matches the solutions from numerical experiment 3,
the solution with γ = 10, 000 appears to be visibly worse: while the xz midplane appears
close to accurate, the xy and yz midplane plots are both visibly inaccurate. As expected,
mass conservation is significantly improved for larger γ,

‖∇ · uγ=10,000
h ‖ = 4.394E − 5, ‖∇ · uγ=0

h ‖ = 3.7634E − 1 .

We remark that, for this mesh, the added emphasis (γ = 10, 000) on conservation of
mass occurs at the detriment of the conservation of momentum and, consequently, the flow
field.

5.5 Numerical Experiment 5: Optimal γ

Recent work with grad-div stabilization suggests that the optimal γ for many problems is
O(1) [29, 28, 19, 20, 26]. While we do not contest this conjecture, we suggest O(1) should
instead be a starting point to finding an optimal γ. Experiment 1 illustrates a problem
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Figure 7: Velocity profiles for mid-sliceplanes, for the lid-driven cavity problem with (P2, P1)
elements, with γ = 0 (TOP) and γ = 10, 000 (BOTTOM), for numerical experiment 4.

where γ large gave excellent results. For Experiment 4, γ large (>> O(1)) lead to an
unsatisfactory deterioration in the approximation of the flow field. Additionally, what one
considers an optimal γ can change depending on criteria. Specifically, if mass conservation
is important (as it often is) and a computed solution’s incompressibility (or lack thereof) is
considered, e.g. if the H(div) norm is used instead of L2, then an optimal value of γ can
change significantly. Recall the H(div) norm is defined by

‖φ‖H(div) :=

√
‖φ‖2 + ‖∇ · φ‖2.

The setup for this experiment is as follows: Using the selected NSE solution

u =

(
2x2(x− 1)2y(2y − 1)(y − 1)
−2x(x− 1)(2x− 1)y2(y − 1)2

)
, p = sin(x),

on the unit square domain with ν = 0.0001, h = 1/16 (regular mesh), solutions were
computed using (P2, P1) TH elements and varying values of the parameter γ. The computed
solution was then compared to the true solution, and the L2 and H(div) norms of the error
were calculated. Results are given in Table 5, and show that the optimal γ for minimizing
the L2 and H1 velocity error is O(1). However, for the H(div) velocity and the L2 pressure
errors, the optimal γ is significantly larger. In fact, the H(div) velocity error for the γ = 100
solution is less than half of that for γ = O(1).
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γ
∥∥uγTH − utrue

∥∥ ∥∥uγTH − utrue
∥∥
H1

∥∥uγTH − utrue
∥∥
H(div)

∥∥pγTH − ptrue∥∥
0 6.61E-2 3.28E-1 2.99E-1 8.5010E-5

0.1 5.53E-5 4.50E-3 4.77E-4 7.3178E-5

1 2.67E-5 2.12E-3 5.78E-5 7.3165E-5

10 2.72E-5 2.15E-3 2.77E-5 7.3165E-5

100 2.73E-5 2.16E-3 2.73E-5 7.3165E-5

1,000 2.73E-5 2.16E-3 2.73E-5 7.3164E-5

10,000 2.73E-5 2.16E-3 2.73E-5 7.3164E-5

100,000 2.73E-5 2.16E-3 2.73E-5 7.3164E-5

Table 5: L2, H1 and H(div) velocity errors and L2 pressure error for various stabilization
parameters for Numerical Experiment 5.

6 Conclusions and Future Directions

We have proven and illustrated numerically that under some mild restrictions, for the
Navier-Stokes problem as the grad-div stabilizaion parameter, γ, goes to ∞ the TH ap-
proximations (k ≥ d) on a barycenter refined mesh converge to the SV approximation.
On a regular mesh we have proven that the TH approximations converge to a pointwise
divergence-free solution as γ →∞.

Little effort is needed to incorporate grad-div stabilization into an existing finite ele-
ment approximation of the NSE. Also, due to the similarity of Taylor-Hood elements and
Scott-Vogelius elements, many existing codes using Taylor-Hood elements can be easily con-
verted to use Scott-Vogelius elements (provided the mesh is created appropriately). Hence
the methods discussed in this paper may be of significant interest to engineers and fluid
dynamicists interested in better mass conservation with reasonable development cost.

The “optimal” choice for γ is an interesting and open question. In [26, 8] Olshanskii
et al. investigated optimal values for γ. In [26], they remarked “ . . . the search of an
optimal γ as a trade-off between mass and energy balance in the FE system.” From their
investigations, they found that an optimal value of γ ∈ [0.1, 1.0] was optimal for minimizing
the L2 and H1 errors in the TH approximations. Note that for γ = O(1) in the numerical
examples presented in Section 5 the TH approximations gave large divergence error, which
for many physical problems would be unacceptable. If so, a more appropriate physical
criteria for determining an optimal value for γ may be to minimize the error in the H(div)
norm, or to determine γ which minimizes the H1 error subject to ‖∇· (uh)‖ < tol. We plan
to investigate appropriate choices for γ in subsequent work.
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Birhäuser Advanced Texts. Birkhäuser Verlag Basel, Boston, Berlin, 2001.

[38] R. Temam. Navier-Stokes Equations : Theory and Numerical Analysis. Elsevier North-
Holland, 1979.

[39] M. Vogelius. An analysis of the p-version of the finite element method for nearly
incompressible materials. uniformly valid, optimal error estimates. Numer. Math.,
41:39–53, 1983.

[40] M. Vogelius. A right-inverse for the divergence operator in spaces of piecewise poly-
nomials. Application to the p-version of the finite element method. Numer. Math.,
41:19–37, 1983.

[41] K.L. Wong and A.J. Baker. A 3d incompressible Navier-Stokes velocity-vorticity weak
form finite element algorithm. International Journal for Numerical Methods in Fluids,
38:99–123, 2002.

[42] S. Zhang. A new family of stable mixed finite elements for the 3d Stokes equations.
Math. Comp., 74(250):543–554, 2005.

[43] S. Zhang. A family of Qk+1,k × Qk,k+1 divergence-free finite elements on rectangular
grids. SIAM J. Numer. Anal., 47(3):2090–2107, 2009.

[44] S. Zhang. Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids.
Submitted, Available as technical report at http://www.math.udel.edu/∼szhang/,
2010.

23


