
SOLVABILITY AND APPROXIMATION OF TWO-SIDE
CONSERVATIVE FRACTIONAL DIFFUSION PROBLEMS WITH

VARIABLE-COEFFICIENT BASED ON LEAST-SQUARES ∗

SUXIANG YANG ‡ , † , HUANZHEN CHEN ‡ , VINCENT J. ERVIN § , AND HONG WANG ¶

Abstract. In this article, we investigate the solvability theory and numerical simulation for two-
side conservative fractional diffusion equations (CFDE) with variable-coefficient K(x). We introduce
u = −KDp as an intermediate variable to isolateK(x) from the nonlocal operator, and then apply the
least-squares to formulate a mixed-type variational formulation for the unknown and the intermediate
variable. Correspondingly, the admissible space for the solution is decomposed as a direct sum of
a regular fractional Sobolev space and a space spanned by two known kernel-dependent singular
functions by proving that the two-side fractional derivative operator is a bijective mapping from
its admissible space to L2(Ω). The solution p and u then are represented as a sum of a regular
part and a kernel-dependent singular part with two undetermined constant coefficients, which can
be expressed by prescribed boundary conditions and derived orthogonal decomposition for L2(Ω)
respectively. Thus, a new regularity theory for the solution is established in terms of the right-hand
side only, which extends those regularity results of one side CFDE in [17, 39], and of fractional Laplace
operator corresponding to θ = 1

2
in [1, 14] to more general CFDE with variable diffusive coefficients

for 0 < θ < 1. Then, we design a kernel-independent least-squares mixed finite element procedure
(LSMFE). Theoretical analysis and numerical experiments conducted in this article demonstrate
that the LSMFE can capture the singular part of the solution exactly, approximate the solution with
optimal-order accuracy, and be easily implemented.
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1. Introduction. We consider the following two-side conservative fractional dif-
fusion equation(CFDE) with variable coefficient K(x) and 0 < β < 1,

−{θ0D
1−β
x − (1− θ)xD1−β

1 }(K(x)Dp) = f(x), x ∈ Ω := (0, 1),

p(0) = p(1) = 0,
(1.1)

where D = d
dx represents the first-order spatial derivative; θ (0 ≤ θ ≤ 1) indicates the

relative weight of forward versus backward transition probability; K(x) is a diffusive
coefficient with positive upper and lower bounds, i.e.,

0 < K∗ ≤ K(x) ≤ K∗,
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and f(x) refers to the source or sink term. 0D
1−β
x , xD

1−β
1 denote the left and right

Riemann-Liouville fractional derivatives of order 1− β defined by [29, 30]

0D
1−β
x v = d

dx (0I
β
x v), 0I

β
x v = 1

Γ(β)

∫ x
0

(x− t)β−1v(t)dt,

xD
1−β
1 v = − d

dx (xI
β
1 v), xI

β
1 v = 1

Γ(β)

∫ 1

x
(t− x)β−1v(t)dt,

(1.2)

with Γ(·) being the Euler gamma function.

The CFDE (1.1), derived by incorporating Darcy’s law with the fractional mass
balance [10, 37], describes a physical phenomena exhibiting anomalous diffusion in
subsurface fluid flow [3] and solute transport [26], and thus has attracted considerable
attention. Many numerical methods, mainly based on the finite difference framework,
have been developed (see [7, 18, 20, 22, 25, 27, 28, 36, 38, 40, 42] and the references
cited therein).

As the mathematical structure and properties of the CFDE (1.1) is not com-
pletely understood, it is reasonable to develop its Galerkin variational formulation for
predicting its mathematical properties and also inducing an easily-computed finite
element procedure. In this line, Ervin and Roop [11, 12, 13] proposed a theoretical
framework for the Galerkin finite element approximation to the fractional diffusion
equation with constant diffusion coefficient. Subsequently, the discontinuous Galerkin
method [9], Petrov-Galerkin method [17, 19, 32, 33] and mixed finite element [6, 16]
were developed successively for its constant coefficient version. However, there has
been little research on direct finite element simulations for the CFDE with variable
coefficient K(x).

The difficulties in finite element simulation for the variable-coefficient CFDE (1.1)
lie in that the coercivity of the Galerkin weak formulation may not be true, and thus
the finite element solution may not converge as pointed out in [32, 33]. To over-
come these difficulties, [34] developed a Petrov-Galerkin procedure with an optimal-
order convergence for sufficiently smooth solutions. However, it needs to construct a
K(x)−dependent and nonlocal test function space from its trial function space by a
nonlocal transform to ensure the LBB constraint, which may increase its computing
burden.

Recently, we developed a series of mixed finite element procedures in as in our
previous work [6, 16, 23, 31, 39] for the CFDE (1.1) corresponding to θ = 1 based on
the intuitional decomposition for the admissible space of one-side differential operator
as a direct sum of this subspace and the kernel space. But these results can not be
generalized in parallel to two-side case and the solution structure of (1.1) is far from
clear, which becomes a major impediment for better understanding and simulation to
these diffusion processes governed by (1.1).

In this article, we introduce u = −KDp as an intermediate variable to isolate
K(x) from the nonlocal operator and combine the least-squares technique to propose
a mixed-type Galerkin formulation and corresponding mixed finite element procedure.
The main objectives are to: (1) prove the two-side differential operator of order 1−β
is a surjective mapping from admissible space of the operator to L2(Ω). Especially,
the surjective mapping becomes bijective as the kernel function is wiped out from the
admissible space to ensure the existence and uniqueness of the solution to (1.1); (2)
decompose accordingly the admissible space as a direct sum of a regular fractional
Sobolev space and a space spanned by two known kernel-dependent singular func-
tions and express the solution p, u as a sum of a regular part and a kernel-dependent
singular part, respectively, with two undetermined constant coefficients which can be
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calculated from prescribed boundary conditions and derived orthogonal decomposi-
tion for L2 space, respectively. Thus, a new regularity theory for the solution of (1.1)
is established in terms of the right-hand side only, which clarifies the structure of the
solution to (1.1), and also extends those results of one side CFDE in [17, 39] and
of fractional Laplace operator in [1, 14] to general fractional diffusion operator (1.1)
with variable coefficient and 0 < θ < 1; (3) design a least-squares mixed finite element
procedure (LSMFE), from which, the regular part of the solution can be computed
with an optimal order convergence rate and the singular part can be calculated almost
exactly combined with the expression of the two undetermined constant coefficients.
This guarantees that the procedure can capture the singular part of the solution ex-
actly and keep the convergence order optimal whatever the solution to (1.1) is. In
addition, the corresponding algorithm is easily implemented since the approximation
spaces involved are typical finite element spaces; (4) prove rigorously the optimal con-
vergence for the LSMFE and conduct numerical experiments to verify the robustness
of the proposed finite element procedure.

The outline of this article is as follows. In Section 2, we review the definitions and
properties of fractional operators and fractional spaces, and then prove the equivalence
between two-side fractional derivative space and classical Sobolev space. In Section 3,
we discuss kernel space, boundness and invertibility of two-side fractional differential
operator, prove the two-side differential operator of order 1−β is a surjective mapping
from its admissible space to L2(Ω) and also a bijective as the kernel function is wiped
out from the admissible space, so to clarify solution structure of fractional equation
of order 1 − β to be a regular part and a kernel-dependent singular part with two
unknown constant coefficients, and then determine the unknown coefficient by giving
a orthogonal decomposition of L2(Ω). In Section 4, we develop a least-squares mixed
formulation for the CFDE (1.1) by introducing the intermediate variable u, in which
the admissible space of the solution u is decomposed into a direct sum of fractional
Sobolev space and the known kernel-spanned space, so as to express the solution (u, p)
by its regular part and singular part with undetermined coefficient. Subsequently, we
demonstrate the solvability and regularity of the solution to the CFDE (1.1). In
Section 5, we propose a least-squares mixed finite element method (LSMFE) and
demonstrate its solvability and optimal-order convergence. In Section 6, we apply
numerical experiments to verify our theoretical results.

2. Fractional Derivative Space and Fractional Sobolev Space. In this
section, we shall review the definitions and properties of the fractional derivative
spaces and then discuss their equivalences to the fractional Sobolev spaces.

We first recall the definitions of fractional Sobolev space. For any s ≥ 0, we denote
space Hs(Ω) to be the Sobolev space of order s endowed with the norm ‖ · ‖Hs(Ω)

and seminorm | · |Hs(Ω), and Hs
0(Ω), a subspace of Hs(Ω), to be the closure of C∞0 (Ω)

under the norm ‖ · ‖Hs(Ω), where C∞0 (Ω) denotes the set of all functions in C∞(Ω)
with compact support in Ω. Define Hs

L(Ω) and Hs
R(Ω) to be the subspace of fractional

Sobolev space Hs(Ω) as

Hs
L(Ω) = {v ∈ Hs(Ω) : v(k)(0) = 0, for nonnegative integer k < s− 1

2},
Hs
R(Ω) = {v ∈ Hs(Ω) : v(k)(1) = 0, for nonnegative integer k < s− 1

2},

respectively.
For the space Hs

0(Ω), we have the following lemma [24].
Lemma 2.1. [24] Assume that Ω is bounded. Then, C∞0 (Ω) is dense in Hs(Ω)

for 0 ≤ s < 1
2 . In this case, Hs(Ω) = Hs

0(Ω).
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Next, we present the definitions of fractional derivative spaces. We introduce the
one-side fractional derivative spaces as follows.

Definition 2.2. [11, 39] Define the left fractional derivative space JsL(Ω) to be
the closure of C∞0 (Ω) for 0 ≤ s < 1

2 , and the closure of C∞(Ω) for 1
2 < s ≤ 1, under

the norm

‖ · ‖JsL(Ω) = {‖ · ‖2 + ‖0Ds
x·‖2}

1
2 .(2.1)

Similarly, the right fractional derivative space JsR(Ω) can be defined.
For the left derivative space JsL(Ω), we have the following decomposition lemma

proved in [39].
Lemma 2.3. [39] Let 0 ≤ s ≤ 1. Then

JsL(Ω) =

{
Hs(Ω), for 0 ≤ s < 1

2 ,

Hs
L(Ω)⊕ span{xs−1}, for 1

2 < s ≤ 1.

Further, for any v ∈ Hs
L(Ω), there exist positive constants C1 and C2 such that

C1|v|JsL(Ω) ≤ |v|Hs(Ω) ≤ C2|v|JsL(Ω).(2.2)

The proof as in Lemma 2.3 can be applied to derive the decomposition for the
right fractional derivative space JsR(Ω).

Lemma 2.4. Let 0 ≤ s ≤ 1. Then

JsR(Ω) =

{
Hs(Ω), for 0 ≤ s < 1

2 ,

Hs
R(Ω)⊕ span{(1− x)s−1}, for 1

2 < s ≤ 1.

Further, for any v ∈ Hs
R(Ω), there exist positive constants C1 and C2 such that

C1|v|JsR(Ω) ≤ |v|Hs(Ω) ≤ C2|v|JsR(Ω).(2.3)

To study the two-side fractional diffusion equation (1.1), we define the corre-
sponding two-side fractional derivative spaces as follows.

Definition 2.5. [11] For 0 < θ < 1, define the two-side fractional derivative
spaces Jsθ (Ω) to be the closure of C∞0 (Ω) for 0 < s < 1

2 , and the closure of C∞(Ω) for
1
2 < s < 1, under the norm

‖ · ‖Jsθ (Ω) = {‖ · ‖2 + | · |2Jsθ (Ω)}
1
2 ,(2.4)

with semi-norm

| · |Jsθ (Ω) = {θ2‖0Ds
x · ‖2 + (1− θ)2‖xDs

1 · ‖2}
1
2 .(2.5)

Remark 2.1. For s = 0 and 1, the fractional derivative in this definition reduces
to an identity operator and first-order derivative [30] respectively, and thus the space
Jsθ (Ω) reduces to L2(Ω) and H1(Ω), respectively, and the corresponding CFDE sim-
plifies to the classical first-order and second-order differential equation, which have
been extensively studied. In addition, for θ = 0 and 1, (1.1) simplifies to the left-side
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or right-side fractional differential equation, respectively, which have been studied in
[6, 16, 39]. Therefore, we focus only on the case 0 < s < 1 and 0 < θ < 1, or
equivalently, 0 < β < 1 and 0 < θ < 1 in the CFDE (1.1).

Next, we present the relationship between the fractional derivative space Jsθ (Ω)
and the fractional Sobolev space Hs(Ω). Analogous to Lemma 2.3 and Lemma 2.4
we have the following theorem.

Theorem 2.6. Assume 0 < θ < 1, 0 < s < 1 and s 6= 1
2 . Then Jsθ (Ω) is

equivalent to Hs
0(Ω) and with equivalent semi-norm and norm.

Proof. As 0 < s < 1
2 , we directly obtain the equivalence between the fractional

derivative spaces Jsθ (Ω) and the fractional Sobolev space Hs
0(Ω) by combining the the

definition of the two-side fractional derivative spaces Jsθ (Ω), Lemma 2.3 and Lemma
2.4.

For 1
2 < s < 1 and v ∈ Jsθ (Ω), the definition of Jsθ (Ω) implies that v ∈ JsL(Ω) and

v ∈ JsR(Ω). Then, for 0 < θ < 1, v can be decomposed as, by Lemma 2.3 and Lemma
2.4,

v = v1 + c1vx
s−1,

v = v2 + c2v(1− x)s−1,

where v1 ∈ Hs
L(Ω), v2 ∈ Hs

R(Ω) and c1v, c
2
v are constants. Subtracting these two

equalities, we have

v1 − v2 = c2v(1− x)s−1 − c1vxs−1.

Sobolev imbedding theorem Hs(Ω) ↪→ C0(Ω), s > 1
2 , implies that v1−v2 is continuous

over Ω, which forces c1v = c2v = 0 and thus v1 = v2 = v. It follows that v ∈ Hs
L(Ω) ∩

Hs
R(Ω) = Hs

0(Ω).
Conversely, for any v ∈ Hs

0(Ω), then v ∈ Hs
L(Ω) and v ∈ Hs

R(Ω). Applying
Lemma 2.3 and Lemma 2.4 again, we obtain that v ∈ Jsθ (Ω). This completes the
proof.

As a straightforward result from Theorem 2.6, we have the following corollary
concerning the fractional operators.

Corollary 2.7. Assume 0 < θ < 1, 0 < s < 1 and s 6= 1
2 . Then, the following

properties hold, for any v ∈ Jsθ (Ω)

0I
s
x0D

s
xv = 0D

s
x0I

s
xv = v,

xI
s
1xD

s
1v = xD

s
1xI

s
1v = v.

(2.6)

3. The properties of two-side fractional derivative operator D1−β
θ . In

this section, we shall discuss the mathematical properties of the two-side fractional
differential operator D1−β

θ defined by, for 0 < β < 1 and 0 < θ < 1,

D1−β
θ w := θ0D

1−β
x w − (1− θ)xD1−β

1 w,(3.1)

which are closely related to the solvability of the fractional equation

D1−β
θ w = g in L2(Ω).(3.2)

For the kernel space of the operator D1−β
θ , we have the following characterization

(from (4.14) and (4.15) of Lemma 4.3 in [10]).
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Lemma 3.1. ([10]) Ker(D1−β
θ ), the kernel space of the operator D1−β

θ , is given
by

Ker(D1−β
θ ) = span{κ(x)},(3.3)

where κ(x) := xr1(1− x)r2 , r1, r2 and β satisfy

(a) r1 + r2 = −β, with − β ≤ r1, r2 ≤ 0,
(b) θ sin(π(−r2)) = (1− θ) sin(π(−r1)).

(3.4)

Remark 3.1. Although D1−β
θ κ(x) = 0 for 0 < θ < 1, κ(x) /∈ J1−β

θ (Ω) since

0D
1−β
x κ(x) =

Γ(r1 + 1)

Γ(−r2)
x−r2−1(1− x)−r1−1 /∈ L2(Ω).

3.1. Properties of D1−β
θ and Solution Structure of (3.2). In this subsec-

tion, we shall decompose the admissible space of (3.2) as a sum of H1−β
0 (Ω) and the

kernel-spanned space, and prove that D1−β
θ is a bijective mapping from its admissible

space to L2(Ω). Thus, the solution structure can be clarified.

For this purpose, we begin by showing the boundness of the operator D1−β
θ over

the space J1−β
θ (Ω) or H1−β

0 (Ω) in the following two lemmas.

Lemma 3.2. Assume 0 < θ < 1, 0 < β < 1
2 . For any v ∈ J1−β

θ (Ω) (or H1−β
0 (Ω)),

there exists constants M > 0 such that

‖D1−β
θ v‖2 ≥M‖v‖2

J1−β
θ (Ω)

(or ‖D1−β
θ v‖2 ≥M‖v‖2

H1−β
0 (Ω)

).(3.5)

Proof. It suffices to show the first inequality (3.5) since H1−β
0 (Ω) is equivalent to

J1−β
θ (Ω).

Since

‖D1−β
θ v‖2 = ‖θ0D

1−β
x v − (1− θ)xD1−β

1 v‖2

= θ2‖0D1−β
x v‖2 + (1− θ)2‖xD1−β

1 v‖2 − 2θ(1− θ)(0D
1−β
x v, xD

1−β
1 v)

= |v|2
J1−β
θ (Ω)

− 2θ(1− θ) cos(π(1− β))‖−∞D1−β
x ṽ‖2L2(R),

(3.6)

where

(0D
1−β
x v, xD

1−β
1 v) = (−∞D

1−β
x ṽ, xD

1−β
+∞ ṽ)L2(R) = cos(π(1− β))‖−∞D1−β

x ṽ‖L2(R),

is used and ṽ is the extension of v by zeros outside of Ω (See Lemma 2.4, [11]).
Since 0 < β < 1

2 , cos(π(1− β)) ≤ 0, so

‖θ0D
1−β
x v − (1− θ)xD1−β

1 v‖2 ≥ |v|2
J1−β
θ (Ω)

,(3.7)

which implies the first inequality (3.5).

Lemma 3.3. Let 0 < θ < 1, 0 < β < 1
2 . The operator D1−β

θ is a bounded

linear operator from H1−β
0 (Ω) onto its range R(D1−β

θ ). Further, the range is a closed

subspace of L2(Ω) and the operator D1−β
θ has a bounded inverse on the range.
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Proof. We begin the proof by applying Theorem 2.6 and the inequality

‖D1−β
θ φ‖ ≤ θ‖0D1−β

x φ‖+ (1− θ)‖xD1−β
1 φ‖ ≤ C‖φ‖H1−β

0 (Ω)(3.8)

to conclude that D1−β
θ is a well-defined and bounded linear operator from H1−β

0 (Ω)

into L2(Ω), and thus onto R(D1−β
θ ).

The remaining is to prove the closeness and invertibility, which is split into the
following three steps.

I. The operator D1−β
θ is one-to-one from H1−β

0 (Ω) to L2(Ω). In fact, for

g ∈ R(D1−β
θ ), if there exist ϕ1, ϕ2 ∈ H1−β

0 (Ω) satisfying

D1−β
θ ϕ1 = g, D1−β

θ ϕ2 = g,

then,

D1−β
θ (ϕ1 − ϕ2) = 0,

which implies that ϕ1 − ϕ2 is a kernel function and also lies in H1−β
0 (Ω). This forces

ϕ1 − ϕ2 = 0 by Remark 3.1, that is, ϕ1 = ϕ2. Then, D1−β
θ is a one-to-one mapping

from H1−β
0 (Ω) to L2(Ω).

II. The range R(D1−β
θ ) is a closed subspace of L2(Ω). It suffices to prove

the range’s closeness since one can easily verify that R(D1−β
θ ) is a subspace in L2(Ω).

Let {gn}∞n=1 ⊂ R(D1−β
θ ) be a sequence that converges to g ∈ L2(Ω). By the defini-

tion ofR(D1−β
θ ), there exists a sequence {ϕn}∞n=1 ⊂ H

1−β
0 (Ω) such thatD1−β

θ ϕn = gn.
Using (3.5), we have

1√
M
‖ϕn − ϕm‖H1−β

0 (Ω) ≤ ‖D
1−β
θ ϕn −D1−β

θ ϕm‖ = ‖gn − gm‖,

which implies that {ϕn}∞n=1 is a Cauchy sequence in H1−β
0 (Ω), and thus ϕn converges

to a ϕ ∈ H1−β
0 (Ω). Further, as n tends to ∞

‖D1−β
θ ϕ− g‖ ≤ ‖D1−β

θ ϕ−D1−β
θ ϕn‖+ ‖D1−β

θ ϕn − g‖
≤ ‖ϕ− ϕn‖H1−β

0 (Ω) + ‖gn − g‖ → 0,

which implies D1−β
θ ϕ = g and R(D1−β

θ ) is a closed subspace of L2(Ω).

III. D1−β
θ has a bounded inverse on the range. The invertibility of the

operator D1−β
θ follows immediately from the operator being one-to-one and onto from

H1−β
0 (Ω) to R(D1−β

θ ), given in Step I and at the very beginning of the proof. Then,
using the definition of the operator norm and (3.5), we derive the boundness of its
inverse,

‖(D1−β
θ )−1‖ = sup

g∈R(D1−β
θ )

‖(D1−β
θ )−1g‖

H
1−β
0 (Ω)

‖g‖ ≤ sup
g∈R(D1−β

θ )

1√
M
‖D1−β

θ (D1−β
θ )−1g‖

‖g‖

≤ sup
g∈R(D1−β

θ )

1√
M
‖g‖
‖g‖ = 1√

M
.

Combining the conclusions of I, II and III, we complete the proof.
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Checking the proof of Lemma 3.3, we notice that D1−β
θ : H1−β

0 (Ω) → L2(Ω) is

not surjective, since, for xκ(x) /∈ H1−β
0 (Ω), 0 < β < 1

2

D1−β
θ (xκ(x)) = −C∗∗Γ(2− β) := C∗ ∈ L2(Ω) with C∗∗ = sin(πβ)

sin(πr1)+sin(πr2) .(3.9)

This shows that the admissible space for (3.2) is larger than H1−β
0 (Ω) and should

contain, at least, the function xκ(x). Fortunately, when xκ(x) is added, the operator

D1−β
θ becomes a bijective mapping from H1−β

0 (Ω) ⊕ span{xκ(x)} to L2(Ω). This is
the following theorem.

Theorem 3.4. Let 0 ≤ β < 1
2 , 0 < θ < 1. Then, the operator D1−β

θ is bijective

from H1−β
0 (Ω)⊕ span{xκ(x)} to L2(Ω).

Proof. Applying Theorem 2.6 and (3.9), we conclude that D1−β
θ is well-defined on

H1−β
0 (Ω)⊕ span{xκ(x)}. We next prove the operator is injective and also surjective

mapping, respectively.
The operator D1−β

θ is an injective mapping from H1−β
0 (Ω)⊕ span{xκ(x)}

into L2(Ω). In fact, for a given g ∈ L2(Ω), suppose that there exist ϕ1, ϕ2 ∈ H1−β
0 (Ω)

and constants C1, C2 such that

D1−β
θ (ϕ1 + C1xκ(x)) = g, D1−β

θ (ϕ2 + C2xκ(x)) = g.

Then, by applying (3.9), we get

D1−β
θ (ϕ1 − ϕ2) = (C2 − C1)C∗.

By Lemma 2.1 in [5], we obtain

ϕ1 − ϕ2 = (C2 − C1)xκ(x) + C3κ(x),

where C3 is an arbitrary constant. Noting that ϕ1−ϕ2 ∈ H1−β
0 (Ω) and κ(x), xκ(x) /∈

H1−β
0 (Ω), we obtain ϕ1 = ϕ2, C2 = C1, which implies that the operator D1−β

θ is an

injective mapping from H1−β
0 (Ω)⊕ span{xκ(x)} into L2(Ω).

The operator D1−β
θ is a bijective mapping from H1−β

0 (Ω) ⊕ span{xκ(x)}
onto L2(Ω). Let R̃(D1−β

θ ) be the range of the operatorD1−β
θ toH1−β

0 (Ω)⊕span{xκ(x)}.
Obviously, R̃(D1−β

θ ) ⊂ L2(Ω).

Now we are to show that R̃(D1−β
θ ) = L2(Ω). It suffices to show that if g ∈

(R̃(D1−β
θ ))⊥, the orthogonal complement of R̃(D1−β

θ ) in L2(Ω), then g = 0. In fact,

for any ϕ ∈ H1−β
0 (Ω) and any constant C,

(g,D1−β
θ (ϕ+ Cxκ(x))) = 0,

which implies

(g,D1−β
θ ϕ) + CC∗(g, 1) = 0,

by applying (3.9). Taking ϕ = 0 and C = 0, respectively, in above formula, we obtain

(g, 1) = 0,(3.10)

and

(g,D1−β
θ ϕ) = 0, ∀ϕ ∈ H1−β

0 (Ω).(3.11)
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Let ϕn = x(1 − x)κ(x)xn, n = 0, 1, 2, · · · . Then, by simple calculation, we get ϕn ∈
H1−β

0 (Ω) and

D1−β
θ ϕn =

n+1∑
k=0

bn,kx
k := pn+1(x),(3.12)

where

bn,k = (−1)nC∗∗Γ(r2 + 2)
(−1)k+1Γ(2− β + k)

Γ(r2 − n+ k + 1)Γ(n− k + 2)Γ(k + 1)
.(3.13)

Taking ϕ = ϕn in (3.11) and applying (3.10), we obtain

(g, pn(x)) = 0, n = 0, 1, 2, · · · ,(3.14)

where p0(x) = 1. The separability of L2(Ω) implies that {pn(x)}∞0 is dense in L2(Ω),

and then, any g ∈ L2(Ω) can be expressed as g(x) =
∞∑
k=0

Ckpk(x). Applying (3.14),

we obtain

(g, g) = (g,

∞∑
k=0

Ckpk(x)) =

∞∑
k=0

Ck(g, pk(x)) = 0,

which implies g = 0.
This shows that (R̃(D1−β

θ ))⊥ = {0} and R̃(D1−β
θ ) = L2(Ω).

Combined the above two conclusions, we obtain D1−β
θ is bijective from H1−β

0 (Ω)⊕
span{xκ(x)} onto L2(Ω).

Remark 3.2. Although the operator D1−β
θ is bijective from H1−β

0 (Ω)⊕span{xκ(x)}
to L2(Ω), we can not select H1−β

0 (Ω)⊕span{xκ(x)} as the admissible space of solution
to Equation (3.2) since the kernel function κ(x) multiplied by any constants may also
be its solution. Therefore, the admissible space of solution to Equation (3.2) should

be H1−β
0 (Ω)⊕ span{κ(x), xκ(x)}.
Consequently, its solution can be decomposed as

w = w̃ + Cκ1xκ(x) + Cκκ(x),(3.15)

and Equation (3.2) is reduced to

D1−β
θ w̃ = g̃ := g − Cκ1C∗.(3.16)

where w̃ ∈ H1−β
0 (Ω) can be solved by the variational formulation of (3.16) when

the coefficients Cκ1 and Cκ are known. In fact, Cκ can be determined by the pre-
scribed boundary conditions (see Section 4), and Cκ1 is expressed by the following
L2-orthogonal decomposition theorem.

3.2. Decomposition of L2(Ω). In this subsection, we shall give a decomposition
of space L2(Ω), and then, the coefficient Cκ1 can be determined.

Theorem 3.5. Let 0 < θ < 1 and 0 < β < 1
2 . Then, L2(Ω) can be orthogonally

decomposed as

L2(Ω) = R(D1−β
θ )⊕ span{1− r(x)},(3.17)
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where r(x) = D1−β
θ ṽ2 and ṽ2 ∈ H1−β

0 (Ω) is decided by

(D1−β
θ ṽ2,D1−β

θ v) = (1,D1−β
θ v), ∀v ∈ H1−β

0 (Ω).(3.18)

Proof. Noting (3.9) and applying Theorem 3.4, we obtain the direct sum decom-
position,

L2(Ω) = R(D1−β
θ )⊕ span{1}.(3.19)

However, this decomposition is not orthogonal since (1,D1−β
θ v) 6= 0 for some v ∈

H1−β
0 (Ω).

By the definition of r(x), we have,

(1− r,D1−β
θ v) = 0, ∀ v ∈ H1−β

0 (Ω),

which indicates that the decomposition (3.17) is orthogonal.
We next prove that

L2(Ω) = R(D1−β
θ )⊕ span{1− r}.

For any g(x) ∈ L2(Ω), there exist a function ϕg ∈ H1−β
0 (Ω) and a constant Cg, by

Theorem 3.4, such that

g = D1−β
θ ϕg + Cg

= D1−β
θ ϕg + Cgr(x) + Cg(1− r(x))

= D1−β
θ (ϕg + Cg ṽ2) + Cg(1− r(x))

∈ R(D1−β
θ )⊕ span{1− r(x)},

(3.20)

and

(D1−β
θ (ϕg + Cg ṽ2), 1− r(x)) = 0,

by noting ϕg+Cg ṽ2 ∈ H1−β
0 (Ω). This implies that the decomposition is L2-orthogonal

decomposition, and thus complets the proof.
Remark 3.3. Based on the orthogonal decomposition, we can determine the

constant Cκ1 for given g ∈ L2(Ω) as follows:

Cκ1 =
(g, 1− r)
C∗(1, 1− r)

,(3.21)

where C∗ see (3.9) and r = D1−β
θ ṽ2 with ṽ2 ∈ H1−β

0 (Ω) is decided by (3.18). In fact,
by applying (3.20), we can get

(g − Cg(1− r), 1− r) = 0,

which and (r, 1− r) = 0 (since r ∈ R(D1−β
θ )) indicate that

Cg =
(g, 1− r)
(1, 1− r)

, and g − Cg ∈ R(D1−β
θ ).(3.22)

The fact that g̃ ∈ R(D1−β
θ ) in (3.16) forces C∗Cκ1 = Cg, which and above formula

imply (3.21).
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4. Variational Formulation for (1.1) Based on Least Squares. In this
section we shall establish a least squares mixed Galerkin variational formulation inde-
pendent of the kernel function, prove its solvability over H1

L(Ω)×H1−β
0 (Ω) and show

its equivalence to (1.1).

Let u = −KDp. Then, the CFDE (1.1) is split as

(a) −KDp = u,

(b) D1−β
θ u = f,

(c) p(0) = p(1) = 0.

(4.1)

From the analysis in §3, we known that the admissible space of solution u to the
second equation of (4.1) is H1−β

0 (Ω) ⊕ span{κ(x), xκ(x)}, and then, the solution u
can be expressed as

u = ũ+ Cκ1xκ(x) + Cκκ(x),

where ũ ∈ H1−β
0 (Ω) and Cκ1 and Cκ be undetermined constants. However, xκ(x) and

κ(x) may result in a singularity at x = 0 and 1, and may heavily influence the con-
vergence rate of the corresponding numerical procedure if the variational formulation
is formed based upon (4.1) directly.

Let

ũ = u− us1 − us, p̃ = p− ps1 − ps,(4.2)

where

us1 = Cκ1xκ(x), ps1 = −
∫ x

0

K−1us1dξ,

us = Cκκ(x), ps = −
∫ x

0

K−1usdξ,
(4.3)

Equation (4.1) can be rewritten as

−KDp̃ = ũ,

D1−β
θ ũ = f̃ ,

p̃(0) = 0,

(4.4)

with f̃ = f − Cκ1C∗ ∈ R(D1−β
θ ).

The undetermined constant Cκ1 can be derived by (3.3) and the analysis of §3

Cκ1 =
(f, 1− r)
C∗(1, 1− r)

,(4.5)

where C∗ see (3.9) and r = D1−β
θ ṽ2 with ṽ2 ∈ H1−β

0 (Ω) is decided by (3.18). The
other undetermined constant Cκ can be determined by the second boundary condition
p(1) = 0 and p̃, or specifically by the following formula

p̃(1)−
∫ 1

0

K−1(us1 + us)dξ = 0,
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i.e.,

Cκ =
p̃(1)− Cκ1

∫ 1

0
K−1xκ(x)dx∫ 1

0
K−1κ(x)dx

=
−
∫ 1

0
K−1ũdx− Cκ1

∫ 1

0
K−1xκ(x)dx∫ 1

0
K−1κ(x)dx

.

(4.6)

As a conclusion, solving (4.1) is equivalent to solving (4.4) over the admissible

space H1
L(Ω)×H1−β

0 (Ω) with p̃ = p−ps1 −ps and ũ = u−us1 −us. This allows us to
discuss the mathematical and numerical issues of (4.1) ( or (1.1)) through (4.4) and
(ps1 , us1), (ps, us)−term in the coming sections.

4.1. Variational formulation. Define the functional

L([q, v]) = 1
2{

∫
Ω
|KDq + v|2dx+

∫
Ω
|D1−β
θ v − f̃ |2dx},(4.7)

which is to be minimized overH1
L(Ω) andH1−β

0 (Ω).Define the bilinear form B([·, ·]; [·, ·]) :

(H1
L(Ω)×H1−β

0 (Ω))× (H1
L(Ω)×H1−β

0 (Ω)) 7→ R as

B([p̃, ũ]; [q, v]) = (KDp̃+ ũ,KDq + v) + (D1−β
θ ũ,D1−β

θ v),(4.8)

and the linear functional F ([·, ·]) : H1
L(Ω)×H1−β

0 (Ω) 7→ R as

F ([q, v]) =

∫
Ω

f̃D1−β
θ vdx.(4.9)

The minimization leads to the following variational formulation: find [p̃, ũ] ∈ H1
L(Ω)×

H1−β
0 (Ω) such that

B([p̃, ũ]; [q, v]) = F ([q, v]), [q, v] ∈ H1
L(Ω)×H1−β

0 (Ω).(4.10)

Theorem 4.1. The minimizing problem L([p̃, ũ]) = min
[q,v]∈H1

L(Ω)×H1−β
0 (Ω)

L([q, v])

is equivalent to the variational formulation (4.10).
Proof. For any s ≥ 0, we define a quadratic function

Φ(s) = L([p̃+ sq, ũ+ sv]).

Noting that

Φ(s) = L([p̃+ sq, ũ+ sv])

= 1
2{‖KD(p̃+ sq) + (ũ+ sv)‖2 + ‖D1−β

θ (ũ+ sv)− f̃‖2}
= 1

2{(KDp̃+ ũ,KDp̃+ ũ) + (D1−β
θ ũ− f̃ , {D1−β

θ ũ− f̃)}
+s{(KDp̃+ ũ,KDq + v) + (D1−β

θ ũ− f̃ ,D1−β
θ v)}

+ s2

2 {(KDq + v,KDq + v) + (D1−β
θ v,D1−β

θ v)}.

Obviously, if [p̃, ũ] minimizes the functional L, then Φ′(0) = (KDp̃ + ũ,KDq + v) +

(D1−β
θ ũ − f̃ ,D1−β

θ v) = 0. This shows that [p̃, ũ] solves the variational formulation
(4.10).
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Conversely, if [p̃, ũ] solves the variational formulation (4.10), then for any s > 0,

Φ(s) = Φ(0) +
s2

2
{‖KDq + v‖2 + ‖D1−β

θ v‖2} > Φ(0),

which implies Φ(0) = min
s≥0

Φ(s), and so [p̃, ũ] minimizes the functional L.

With the help of Lemma 3.2 we can prove the solvability of the variational for-
mulation.

Theorem 4.2. For β 6= 1
2 , there exists a unique solution [p̃, ũ] ∈ H1

L(Ω) ×
H1−β

0 (Ω) to variational formulation (4.10).
Proof. For the coerciveness, we first note that from the definition of the bilinear

form B([·, ·]; [·, ·]) and Lemma 3.2,

B([q, v]; [q, v]) ≥ (KDq + v,KDq + v),

B([q, v]; [q, v]) ≥ ‖D1−β
θ v‖2 ≥M‖v‖2

J1−β
θ (Ω)

,
(4.11)

which leads to

(1 + 1
M )B([q, v]; [q, v])

≥ (KDq + v,KDq + v)‖+ ‖v‖2
J1−β
θ

≥ (KDq,KDq) + 2(KDq, v) + 2‖v‖2

≥ (KDq,KDq)− 2‖KDq‖‖v‖+ 2‖v‖2

= 1
2 (KDq,KDq) + { 1

2 (KDq,KDq)− 2‖KDq‖‖v‖+ 2‖v‖2}
= 1

2 (KDq,KDq) + { 1√
2
‖KDq‖ −

√
2‖v‖}2

≥ 1
2‖KDq‖

2.

Applying the equivalence of the semi-norm and norm over H1
L(Ω) and Theorem 2.6,

we obtain, with constant M0 > 0, the final coercivity of the bilinear form

2B([q, v]; [q, v]) ≥ M
2(1+M)‖KDq‖

2 +M2‖v‖2
J1−β
θ

≥M0{‖q‖21 + ‖v‖2H1−β(Ω)}.
(4.12)

The continuity of the bilinear form follows from an application of Cauchy-Schwarz
inequality and the triangle inequality

B([p̃, ũ]; [q, v]) = (KDp̃+ ũ,KDq + v) + (D1−β
θ ũ,D1−β

θ v)

≤ (‖KDp̃‖+ ‖ũ‖)(‖KDq‖+ ‖v‖) + ‖D1−β
θ ũ‖‖D1−β

θ v‖
≤ 2max{K∗, 1}(‖p̃‖21 + ‖ũ‖2)

1
2 (‖q‖21 + ‖v‖2)

1
2

+
√

2(θ2‖0D1−β
x ũ‖2 + (1− θ)2‖xD1−β

1 ũ‖2)
1
2

·
√

2(θ2‖0D1−β
x v‖2 + (1− θ)2‖xD1−β

1 v‖2)
1
2

≤ 2max{K∗, 1}(‖p̃‖21 + ‖ũ‖2)
1
2 (‖q‖21 + ‖v‖) 1

2 + 2‖ũ‖J1−β
θ (Ω)‖v‖J1−β

θ (Ω)

≤ M2(‖p̃‖21 + ‖ũ‖2H1−β )
1
2 (‖q‖21 + ‖v‖2H1−β(Ω))

1
2 .

(4.13)

The continuity of the linear form F ([q, v]) = (f̃ ,D1−β
θ v) over the space H1

L(Ω)×
H1−β

0 (Ω) is obvious.
Applying the Lax-Milgram lemma, we obtain the existence and uniqueness of the

variational form.
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Now we shall clarify the equivalence between the variational formulation and the
CFDE (1.1).

Theorem 4.3. Assume that f ∈ L2(Ω) and 0 < β < 1
2 . If [p̃, ũ] solves the

variational formulation (4.10), then p = p̃ + ps1 + ps ∈ H1
0 (Ω) is the solution of

the FDE (1.1) and u = −KDp. Conversely, if p ∈ H1
0 (Ω) solves (1.1), then p̃ =

p− ps1 − ps ∈ H1
L(Ω) and ũ = −KDp̃ ∈ H1−β

0 (Ω) are the solution of the variational
formulation (4.10).

Proof. The analysis at the beginning of this section and the derivation of the
variational formulation presented in Theorem 4.1 and Theorem 4.2 imply the second
assertion of this theorem. Therefore we only need to show that the first assertion
holds.

The key idea of proof is to decompose the variational formulation (4.10) into a
system for p̃ and a system for ũ by carefully selecting test functions.

Taking v = 0 to obtain the decomposed equation for p

(KDp̃+ ũ,KDq) = 0, ∀q ∈ H1
L(Ω).(4.14)

For any w ∈ L2(Ω), let qw =
∫ x

0
K−1wdξ ∈ H1

L(Ω). Substituting it into (4.14),
we derive

(KDp̃+ ũ, w) = 0 ∀w ∈ L2(Ω),

which leads to that p̃ ∈ H1(Ω) satisfies

−KDp̃ = ũ in L2(Ω)− sence.(4.15)

To obtain the decomposed equation for ũ, we substitute (4.15) into (4.10) to
derive

(D1−β
θ ũ,D1−β

θ v) = (f̃ ,D1−β
θ v), ∀v ∈ H1−β

0 (Ω).(4.16)

This equation is viewed as another variational formulation, in which the bilinear form
defined by

(D1−β
θ ũ,D1−β

θ v) : H1−β
0 (Ω)×H1−β

0 (Ω)→ R

is continuous and coercive from Lemma 3.2, and the linear form

(f̃ ,D1−β
θ v) : H1−β

0 (Ω)→ R

is continuous. Using Lax-Milgram lemma again, we know that there exists a unique
solution ũ ∈ H1−β

0 (Ω) to (4.16).
Next we shall show that

D1−β
θ ũ = f̃ .(4.17)

Nothing that f̃ ∈ R(D1−β
θ ), i.e., there exists a function ρ(x) ∈ H1−β

0 (Ω) such that

D1−β
θ ρ(x) = f̃ . Taking v = ũ− ρ in (4.16), we obtain ũ = ρ, which implies (4.17).

Substituting (3.9), (4.3) into (4.15) and (4.17), we have

−KDp = u,(4.18)

D1−β
θ u = f,(4.19)
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which lead to the first equation of (1.1).
Finally, we verify the boundary condition. Applying (4.15), we solve p̃ as

p̃ = −
∫ x

0

K−1ũdξ.(4.20)

which, (4.3), the expression Cκ1 (4.5) and the expression Cκ (4.6) lead to

p(0) = 0,

p(1) = p̃(1) + ps1(1) + ps(1)

= −
∫ 1

0

K−1ũdx− Cκ1

∫ 1

0

K−1xκ(x)dx− Cκ
∫ 1

0

K−1κ(x)dx = 0.

This completes the proof.
From Theorem 4.2 and the proof of Theorem 4.3, we obtain the following corollary

immediately.
Corollary 4.4. Under the condition of Theorem 4.3, variational formulation

(4.10) is equivalent to (4.14) and (4.16).
Suppose that Cκ1 = Cκ = 0 in Theorem 4.3. Then us1 = us = 0 and ps1 = ps = 0,

which leads to the following corollary
Corollary 4.5. Suppose 0 < β < 1

2 , 0 < θ < 1, f ∈ L2(Ω) and Cκ1 =

Cκ = 0. If [p̃, ũ] ∈ H1
L(Ω) × H1−β

0 (Ω) solves variational formulation (4.10), then
p = p̃ ∈ H2−β(Ω) ∩ H1

0 (Ω) satisfies fractional diffusion (1.1). Conversely, if p ∈
H2−β(Ω) ∩ H1

0 (Ω) satisfies (1.1), then [p, u = −KDp] ∈ H1
L(Ω) × H1−β

0 (Ω) solves
(4.10).

Remark 4.1. Theorem 4.3 implies that for the solution of equation (1.1) (or
(4.1)), we only need to solve variational formulation (4.10) and then add the Cκ1, Cκ-
term to express the solution as

p = p̃− Cκ1

∫ x

0

K−1xκ(ξ)dξ − Cκ
∫ x

0

K−1κ(ξ)dξ,

u = ũ+ Cκ1xκ(x) + Cκκ(x),
(4.21)

where Cκ1 and Cκ are determined by (4.5) and (4.6), respectively.

4.2. Regularity. In this subsection, we shall discuss the regularity using (4.15),

and (4.17), and the properties of integral operator D1−β
θ proved in Section 3.

Theorem 4.6. Assume that f ∈ L2(Ω), 0 < β < 1
2 and 0 < θ < 1. For

0 < γ < 1
2 , the solution p of the fractional diffusion (1.1) ( or (4.1) ) satisfies the

following regularity estimates in terms of the right-hand side f

(a) Assume Cκ1 = Cκ = 0. Then p ∈ H2−β(Ω) ∩H1
0 (Ω) and

‖p‖H2−β(Ω) ≤ C‖u‖H1−β(Ω) ≤ C‖f‖L2(Ω);

(b) Assume Cκ1 6= 0, Cκ = 0. Then p ∈ H2−β(Ω)⊕Hr2+1+γ
0 (Ω) and

‖p‖Hr2+1+γ(Ω) ≤ C‖f‖L2(Ω);

(c) Assume Cκ1, Cκ 6= 0. Then p ∈ H2−β(Ω)⊕Hmin{r1,r2}+1+γ
0 (Ω) and

‖p‖Hmin{r1,r2}+1+γ(Ω) ≤ C‖f‖L2(Ω);

(d) Assume Cκ1 6= 0, Cκ 6= 0. Then, p̃ ∈ H2−β(Ω) ∩H1
0 (Ω) and

‖p̃‖H2−β(Ω) ≤ C‖ũ‖H1−β(Ω) ≤ C‖f̃‖L2(Ω),
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where p̃ = p− ps1 − ps, ũ = u− us1 − us.
Proof. Using (4.1), the solution can be rewritten as

u = Cκ1xκ(x) + Cκκ(x) + (D1−β
θ )−1f̃ ,

p = −
∫ x

0
K−1udξ.

(4.22)

and f̃ ∈ R(D1−β
θ ).

Assume Cκ1 = Cκ = 0 and f ∈ L2(Ω). In this case, f̃ = f , and u = (D1−β
θ )−1f̃ by

(4.22). Then, applying Theorem 3.3, we can derive the regularity of u: u ∈ H1−β
0 (Ω),

and the regularity of p: p ∈ H2−β(Ω) ∩H1
0 (Ω). Applying the boundness of integral

operator (D1−β
θ )−1 : R(D1−β

θ ) ⊂ L2(Ω) → H1−β
0 (Ω) and

∫ x
0

: H1−β
0 (Ω) → H2−β(Ω),

we obtain

‖p‖H2−β(Ω) ≤ C‖u‖H1−β(Ω) ≤ C‖f‖L2(Ω).

Next, assume Cκ1 6= 0, Cκ = 0. In this case, u = Cκ1xκ(x) + (D1−β
θ )−1f̃ by

(4.22). The solution u contains singular parts xκ(x) ∈ Hr2+γ(Ω) and a regular

part (D1−β
θ )−1f̃ ∈ H1−β

0 (Ω). This implies u ∈ H1−β
0 (Ω) ⊕ Hr2+γ(Ω), and thus p ∈

H2−β(Ω) ⊕ Hr2+1+γ(Ω). The appearance of singular parts xκ(x) and H2−β(Ω) ⊂
Hr2+1+γ(Ω), since r2 + 1 + γ ≤ 2 − β, implies that p ∈ Hr2+1+γ(Ω), no matter how
regular the right term f is. By a simple computation we obtain |Cκ1| ≤ C‖f‖L2(Ω),
and

‖u‖Hr2+γ(Ω) ≤ C|Cκ1|+ C‖f̃‖L2(Ω) ≤ C‖f‖L2(Ω),

‖p‖Hr2+1+γ(Ω) ≤ C‖u‖Hr2+γ(Ω) ≤ C‖f‖L2(Ω).

Assume Cκ1, Cκ 6= 0. The solution u contains singular parts xκ(x) ∈ Hr2+γ(Ω),

κ(x) ∈ Hmin{r1,r2}+γ(Ω) and a regular part (D1−β
θ )−1f̃ ∈ H1−β

0 (Ω). This implies

u ∈ H1−β
0 (Ω)⊕Hmin{r1,r2}+γ(Ω), and thus p ∈ H2−β(Ω)⊕Hmin{r1,r2}+1+γ(Ω). The

appearance of singular parts xκ(x), κ(x) and H2−β(Ω) ⊂ Hmin{r1,r2}+1+γ(Ω), since
min{r1, r2}+ 1 + γ ≤ 2 − β, implies that p ∈ Hmin{r1,r2}+1+γ(Ω), no matter how
regular the right term f is. By a simple computation we obtain |Cκ1| ≤ C‖f‖L2(Ω),

|Cκ| ≤ C‖ũ‖L2(Ω) ≤ C‖f̃‖L2(Ω), and

‖u‖Hmin{r1,r2}+γ(Ω) ≤ C{|Cκ1|+ |Cκ|+ ‖f̃‖L2(Ω)} ≤ C‖f‖L2(Ω),

‖p‖Hmin{r1,r2}+1+γ(Ω) ≤ ‖u‖Hmin{r1,r2}+γ(Ω) ≤ C‖f‖L2(Ω).

Similar to the proof of (a), we derive the result of (d). This completes the proof.

Remark 4.2. It is easily seen that when θ = 1
2 and K = constant, the fractional

diffusion operator on the left hand side of (1.1) is equivalent to the fractional Laplace
operator defined by Riesz potential. In this sense, Theorem 4.6 extends the regularity
result proved in [1, 14] for fractional Laplace operator, corresponding to θ = 1

2 and
K(x) = constant, to general fractional diffusion operator (1.1) for 0 < θ < 1 and
variable coefficient K(x).

5. Finite Element Approximation. In this section, we shall develop a least
squared mixed finite element scheme over those typically used finite element spaces
based on the variational formulation (4.10) and then conduct the optimal convergence
analysis.
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Let =h be a uniform partition of the domain Ω

=h = {Ij = (xj−1, xj); j = 1, 2, · · · , N}

with xj = jh, j = 0, 1, 2, · · · , N , and the mesh step h = 1
N . Let Hh and Vh be the

finite dimensional subspaces of H1
L(Ω) and H1−β

0 (Ω):

Hh = {qh ∈ H1
L(Ω) ∩ C0(Ω̄) : qh|Ii ∈ Pk(Ii), i = 1, 2, · · · , N}, k ≥ 1,

Vh = {vh ∈ H1−β
0 (Ω) : vh|Ii ∈ Pl(Ii), i = 1, 2, · · · , N}, l ≥ 1.

(5.1)

Here Pk(Ii) denotes the set of polynomials of degree not larger than k on Ii.
Then, the mixed finite element formulation based on least squares techniques is

to find [p̃h, ũh] ∈ Hh × Vh such that

B([p̃h, ũh]; [qh, vh]) = Fh([qh, vh]), ∀[qh, vh] ∈ (Hh × Vh).(5.2)

where Fh([qh, vh]) = (f̃h, D1−β
θ vh), f̃h = f − Chκ1C∗, C∗ see (3.9), Chκ1 is determined

by (5.3). The solvability of the problem (5.2) is guaranteed by the coercivity and
continuity of the bilinear form B([:, :]; [:, :]) and presented by the following theorem.

Theorem 5.1. For 0 < β < 1
2 , there exists a unique solution [p̃h, ũh] ∈ Hh × Vh

to the least squares mixed finite element formulation (5.2).

Proof. Since Hh × Vh are subspaces of H1
L(Ω) × H1−β

0 (Ω), by the analogous
argument as in Theorem 4.2 and Lax-Milgram lemma, we obtain the conclusion of
this theorem.

Remark 5.1. In the implementation we can use (4.16) and (4.14) to design a
decoupled scheme to compute ũh and p̃h, and then to compute uh and ph.

Step 1. Determine Chκ1.

Chκ1 =
(f, 1− rh)

C∗(1, 1− rh)
,(5.3)

where C∗ satisfies (3.9) and rh = D1−β
θ ṽ2,h with ṽ2,h ∈ Vh is determined by

(D1−β
θ ṽ2,h,D1−β

θ vh) = (1,D1−β
θ vh), ∀vh ∈ Vh.(5.4)

Step 2. Determine ũh satisfying

(D1−β
θ ũh,D1−β

θ vh) = (f̃h,D1−β
θ vh), ∀vh ∈ Vh,(5.5)

where f̃h = f − Chκ1C∗.
Step 3. Determine p̃h satisfying

(KDp̃h,KDqh) = −(ũh,KDqh), ∀qh ∈ Hh.(5.6)

Step 4. Determine ph, uh. we define

ph = p̃h − Chκ1

∫ x

0

K−1ξκ(ξ)dξ − Chκ
∫ x

0

K−1κ(ξ)dξ,

uh = ũh + Chκ1xκ(x) + Chκκ(x)
(5.7)
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to approximate p and u of the solution of (1.1) (or (4.1)) with

Chκ =
p̃h(1)− Chκ1

∫ 1

0
K−1xκ(x)dx∫ 1

0
K−1κ(x)dx

,(5.8)

or Chκ =
−
∫ 1

0
K−1ũhdx− Chκ1

∫ 1

0
K−1xκ(x)dx∫ 1

0
K−1κ(x)dx

(5.9)

to be the approximation for Cκ.
Remark 5.2. During the computation of Chκ1, we can choose a different h from

the discrete formulation (5.5). In order to improve accuracy, the step size h can be
chosen sufficiently large for the computation of ṽ2,h and of Chκ1. So without loss of
generality, we assume ṽ2,h = ṽ2, which leads to Chκ1 = Cκ1. In the coming convergence
analysis, we assume Chκ1 = Cκ1.

Example 5.3. Let f = 1, the solution of diffusion equation (1.1) is

p = −Cκ1

∫ x

0

K−1ξκ(ξ)dξ − Cκ
∫ x

0

K−1κ(ξ)dξ,

fractional flux : u = −K(x)Dp = Cκ1xκ(x) + Cκκ(x),

where Cκ1 = 1
C∗
, Cκ = −Cκ1

∫ 1
0
K−1xκ(x)dx∫ 1

0
K−1κ(x)dx

.

In this example, the regular part of p, u is p̃ = 0, ũ = 0.
Now we are to verify the feasibility of the numerical scheme by solving Example

5.3 numerically. When f ≡ 1, from the expression (5.3), we derive Chκ1 = 1
C∗

, which

equals Cκ1. So ũh = 0 by (5.5) since f̃h = 0, and p̃h = 0 by (5.6). Substituting these

into (5.8), we derive that Chκ = −Chκ1

∫ 1
0
K−1xκ(x)dx∫ 1

0
K−1κ(x)dx

, which is just Cκ. Comparing

with (4.21) and (5.7), we obtain that ph, uh are consistent with the exact solution
p, u. i.e., the fraction diffusion equation (1.1) is exactly solved by LSMFE for right
term f = 1.

Now we shall give the error estimates. The error between Chκ and Cκ is estimated
as follows.

Lemma 5.2. Let Cκ and Chκ be defined by (4.6) and (5.8) or (5.9), respectively.
Then, the following estimates hold

|Cκ − Chκ | ≤
CK∗

B(1 + r1, 1 + r2)
‖p̃− p̃h‖H1(Ω)(5.10)

and

|Cκ − Chκ | ≤
K∗

K∗B(1 + r1, 1 + r2)
‖ũ− ũh‖.(5.11)

Proof. Since the diffusion coefficient K(x) has positive lower and upper bounds
K∗ and K∗, we calculate the integral directly to deduce

(K∗)−1B(1 + r1, 1 + r2) ≤
∫ 1

0
K−1κ(x)dx ≤ K−1

∗ B(1 + r1, 1 + r2),

where B(1 + r1, 1 + r2) = Γ(1+r1)Γ(1+r2)
Γ(2+r1+r2) is the Beta function. Therefore, a direct

application of the Sobolev imbedding theorem leads to

|Cκ − Chκ | =
|p̃(1)− p̃h(1)|
|
∫ 1

0
K−1κ(x)dx|

≤ CK∗

B(1 + r1, 1 + r2)
‖p̃− p̃h‖H1(Ω)
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and application of Cauchy-Schwarz inequality ensures,

|Cκ − Chκ | =
|
∫ 1
0
K−1(ũ−ũh)dx|

|
∫ 1
0
K−1κ(x)dx| ≤

K∗

K∗B(1+r1,1+r2)‖ũ− ũh‖.

Remark 5.4. This corollary only gives some upper bounds in accordance with

‖ũ−ũh‖ or ‖p̃−p̃h‖H1(Ω). In fact, the exact bounds,
|
∫ 1
0
K−1(ũ−ũh)dx|

|
∫ 1
0
K−1κ(x)dx| or |p̃(1)−p̃h(1)|

|
∫ 1
0
K−1κ(x)dx| ,

can be much smaller than these estimates.
In the coming convergence analysis, we shall use two interpolation operators

Ikh : Hs(Ω) → Hh and I lh : Ht(Ω) → Vh which satisfy the following approximation
properties [4, 8].

Lemma 5.3. Let q ∈ Hs(Ω) and w ∈ Ht(Ω) with s ≥ 1, t ≥ 1 − β. Then, there
exists a constant C > 0 such that

(a) ‖q − Ikhq‖H1(Ω) ≤ Chmin{k,s−1}‖q‖Hs(Ω),

(b) ‖w − I lhw‖H1−β(Ω) ≤ Chmin{l+β,t−1+β}‖w‖Ht(Ω).
(5.12)

With the help of Lemma 5.3, we shall conduct the error estimates of ũ− ũh and
p̃− p̃h in the energy-norm.

Theorem 5.4. Assume 0 < β < 1
2 , 0 < θ < 1 and s ≥ 2 − β. Let p̃ ∈

Hs(Ω)∩H1
E(Ω) and ũ ∈ Hs−1(Ω)∩H1−β

0 (Ω). Let [p̃, ũ] and [p̃h, ũh] denote solutions of
the variational formulation (4.10) and discrete formulation (5.2), respectively. Then,
there exist constants C such that

‖p̃− p̃h‖H1(Ω) + ‖ũ− ũh‖H1−β(Ω)

≤ Chmin{s−2+β,k,l+β}{‖p̃‖Hs(Ω) + ‖ũ‖Hs−1(Ω)}.
(5.13)

Proof. Subtracting (5.2) from (4.10), we obtain the error equation

B([p̃− p̃h, ũ− ũh]; [qh, vh]) = 0, ∀[qh, vh] ∈ Hh × Vh.(5.14)

Take qh = Ikh p̃− p̃h ∈ Hh, vh = I lhũ− ũh ∈ Vh in (5.14) to derive,

B([Ikh p̃− p̃h, I lhũ− ũh]; [Ikh p̃− p̃h, I lhũ− ũh]) = B([Ikh p̃− p̃, I lhũ− ũ]; [Ikh p̃− p̃h, I lhũ− ũh]).

Applying the coercivity and continuity of the bilinear form B([·, ·]; [·, ·]) and the ap-
proximation properties (5.12), we conclude

‖Ikh p̃− p̃h‖H1(Ω) + ‖Ikh ũ− ũh‖H1−β(Ω)

≤ Chmin{s−1,k}‖p̃‖Hs(Ω) + Chmin{s−2+β,l+β}‖ũ‖Hs−1(Ω).
(5.15)

A direct application of the triangle inequality and (5.12) to this estimate will lead to
(5.13), which completes the proof.

Remark 5.5. The estimate of ‖ũ− ũh‖H1−β(Ω) in Theorem 5.4 is optimal only if
s−2+β ≤ min{k, l+β}. This arises from the involvement of p̃ and ũ in the resulting
error equation (5.14).

We can sharpen the estimate for ‖ũ− ũh‖H1−β(Ω) by directly applying the error
equation resulting from (4.16) and (5.5).

Corollary 5.5. Under the assumptions of Theorem 5.4, there exists a constant
C such that the following optimal energy norm estimate for ũ holds,

‖ũ− ũh‖H1−β(Ω) ≤ Chmin{l+β,s−2+β}‖ũ‖Hs−1(Ω).(5.16)
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Proof. Taking v = vh ∈ Vh in (4.16) and subtracting (5.5), we derive the error
equation,

(D1−β
θ (ũ− ũh),D1−β

θ vh) = 0, ∀vh ∈ Vh.(5.17)

Taking vh = I lhũ− ũh in (5.17), then applying the approximation properties (5.12b),
the inequality (3.5) and the triangle inequality, we obtain the optimal estimate (5.16)
for ũ.

What remains is to compute ph and uh, and estimate their error bounds.
Since the kernel function κ(x) and function xκ(x) only belongs to L1(Ω), we select

the the following metrics for u and p to measure their errors,

‖|u‖| := ‖ũ‖H1−β(Ω) + ‖Cκκ(x)‖L1(Ω)

and

‖|p‖| := ‖p̃‖H1(Ω) + ‖Cκ
∫ x

0

K−1κ(ξ)dξ‖W 1,1(Ω)

Combining the estimates for [p̃, ũ] in Theorem 5.4 and for Cκ in Lemma 5.2, we
obtain the following error estimates for [p, u].

Theorem 5.6. Assume 0 < β < 1
2 , and 0 < θ < 1. Let [p, u] be the solution to

(4.1) and [ph, uh] to (5.7). Then, there exist constants C such that

‖|p− ph‖|+ ‖|u− uh‖| ≤ Chmin{s−2+β,k,l+β}{‖p̃‖Hs(Ω) + ‖ũ‖Hs−1(Ω)}.(5.18)

Proof. Subtracting (4.21) from (5.7) and taking the metrics ‖| · ‖|, we have

‖|p− ph‖| = ‖p̃− p̃h‖H1(Ω) + ‖(Cκ − Chκ )
∫ x

0
K−1κ(ξ)dξ‖W 1,1(Ω)

≤ ‖p̃− p̃h‖H1(Ω) + |Cκ − Chκ | ‖
∫ x

0
K−1κ(ξ)dξ‖W 1,1(Ω)

and

‖|u− uh‖| = ‖ũ− ũh‖H1−β(Ω) + ‖(Cκ − Chκ )κ(x)‖L1(Ω)

≤ ‖ũ− ũh‖H1−β(Ω) + |Cκ − Chκ | ‖κ(x)‖L1(Ω).

Noting that

‖κ(x)‖L1(Ω) =

∫ 1

0

κ(x)dx = B(1 + r1, 1 + r2),

‖
∫ x

0
K−1κ(ξ)dξ‖L1 ≤ K−1

∗ B(1 + r1, 1 + r2),

‖
∫ x

0
K−1κ(ξ)dξ‖W 1,1(Ω) = ‖

∫ x
0
K−1κ(ξ)dξ‖L1(Ω) + ‖D

∫ x
0
K−1κ(ξ)dξ‖L1(Ω)

≤ 2K−1
∗ B(1 + r1, 1 + r2),

we then apply Lemma 5.2 to obtain the estimates

‖|p− ph‖| ≤ ‖p̃− p̃h‖H1(Ω) + 2K∗

K∗
‖p̃− p̃h‖H1(Ω)

≤ (1 + 2K∗

K∗
)‖p̃− p̃h‖H1(Ω),

‖|u− uh‖| ≤ ‖ũ− ũh‖H1−β(Ω) + K∗

K∗
‖ũ− ũh‖

≤ (1 + K∗

K∗
)‖ũ− ũh‖H1−β(Ω),
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which, combining with Theorem 5.4, completes the proof.

Analogous to Corollary 5.5, we immediately obtain a sharper estimate for u.

Corollary 5.7. Under the assumption of Theorem 5.6, there exists a constant
C such that the following optimal error estimate holds,

‖|u− uh‖| ≤ Chmin{l+β,s−2+β}‖ũ‖Hs−1(Ω).(5.19)

Remark 5.6. The theoretical results derived in Section 3, 4 and 5 only include
the case 0 < β < 1

2 . This stems from Lemma 3.2 concerning the coerciveness of
the fractional operator, which remain an open question as for the case 1

2 < β < 1.
However, the numerical computations in section Numerical Experiments suggest that
the convergence result for 1

2 ≤ β < 1 are consistent with those for 0 < β < 1
2 .

6. Numerical Experiments. In this section, we employ piecewise linear finite
element approximation (k = l = 1) and conduct three numerical experiments to verify
our theoretical findings: the first one is for a regular solution, i.e., Cκ1 = Cκ = 0 and
the others are for a singular solution, i.e., Cκ1 6= 0 or Cκ 6= 0.

Example 6.1. Let K(x) = x + 1 and θ = sin(πq1)
sin(πq1)+sin(πq2) with q1, q2 ∈ (0, 1),

q1 + q2 = 2 − β. The analytic solution p and the right-hand side function f are
prescribed respectively to be

p(x) = xq1+1(1− x)q2+1,

f(x) = −(1− θ) sin(πβ)
sin(πq2)Γ(q2 + 2){−Γ(2−β)

6Γ(q2) ((1− β)q2 + 4β − 7)

+ Γ(3−β)
2Γ(q2+1) ((2− β)q2 + 2β − 6)x− Γ(4−β)

2Γ(q2+2) ((3− β)q2 − 1)x2

+ Γ(5−β)
6Γ(q2+2) (4− β)x3}.

In this example Cκ1 = Cκ = 0, f ∈ Hγ(Ω), p̃ = p ∈ Hs
0(Ω) ∩ H1

L(Ω) and ũ = u =

−K(x)Dp ∈ Hs−1(Ω) ∩H1−β
0 (Ω) with s = min{q1, q2}+ 1 + γ, 0 < γ < 1/2.

We take different β = 0.1, 0.25, 0.5, 0.75 and 0.9 to investigate the β dependence
on the convergence rates.

From Theorem 5.4 and Theorem 5.6, the predicted convergence rate for ‖p̃ −
p̃‖H1(Ω) and ‖|p−ph‖| are hmin{1+β,1,s−2+β} = hγ+min{1−q1,1−q2}. From Corollary 5.5
and Corollary 5.7, the predicted convergence rate for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖|
are hmin{1+β,s−2+β} = hγ+min{1−q1,1−q2}.

For β = 0.10, θ = 0.60, q1 = 0.94, q2 = 0.96. Table 6.1 and Table 6.2 suggest that
the convergence rates for ‖p̃− p̃h‖H1(Ω) and ‖|p− ph‖| are h1, which are higher than
that of predicted by Theorem 5.4 and Theorem 5.6, h0.54, and in accordance with
that of interpolation h1 (see (5.12)(a)); the convergence rates for ‖ũ− ũh‖H1−β(Ω) and
‖|u−uh‖| are higher than that of predicted h0.54, and almost in accordance with that
of interpolation h0.54 (see (5.12)(b)).

For β = 0.25, θ = 0.60, q1 = 0.85, r2 = 0.90. Table 6.1 and Table 6.2 suggest that
the convergence rates for ‖p̃− p̃h‖H1(Ω) and ‖|p− ph‖| are h1, which are higher than
that of predicted by Theorem 5.4 and Theorem 5.6, h0.60, and in accordance with
that of interpolation h1 (see (5.12)(a)); the convergence rates for ‖ũ− ũh‖H1−β(Ω) and
‖|u−uh‖| are higher than that of predicted h0.60, and almost in accordance with that
of interpolation h0.60 (see (5.12)(b)).

Example 6.2. Let K(x) = x + 1, 0 < θ < 1. The analytic solution p and the
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Table 6.1
Numerical results for Example 6.1 with θ = 0.6

β, q1, q2 h ||p̃− p̃h‖H1(Ω) rates ‖ũ− ũh‖H1−β(Ω) rates |Cκ − Chκ |
2−4 1.75e-2 1.48e-1 6.35e-4

β=0.10 2−5 8.75e-3 1.00 7.29e-2 1.02 2.62e-4
q1 = 0.94 2−6 4.37e-3 1.00 3.68e-2 0.99 1.16e-4
q2 = 0.96 2−7 2.19e-3 1.00 1.93e-2 0.93 5.44e-5

2−8 1.09e-3 1.00 1.06e-2 0.86 2.62e-5
Pred. rates 0.54 0.54

2−4 1.99e-2 9.70e-2 2.01e-3
β=0.25 2−5 1.00e-2 1.00 4.91e-2 0.98 9.17e-4
q1 = 0.85 2−6 5.00e-3 1.00 2.65e-2 0.89 4.37e-4
q2 = 0.90 2−7 2.50e-3 1.00 1.52e-2 0.80 2.13e-4

2−8 1.25e-3 1.00 9.21e-3 0.73 1.06e-4
Pred. rates 0.60 0.60

2−4 2.56e-2 4.76e-2 4.03e-3
β=0.50 2−5 1.30e-2 0.98 2.48e-2 0.94 1.92e-3
q1 = 0.69 2−6 6.58e-3 0.98 1.38e-2 0.85 9.38e-4
q2 = 0.81 2−7 3.31e-3 0.99 8.00e-2 0.79 4.63e-4

2−8 1.67e-3 0.99 4.75e-3 0.75 2.29e-4
Pred. rates 0.69 0.69

2−4 3.44e-2 2.09e-2 4.79e-5
β=0.75 2−5 1.84e-2 0.90 9.67e-3 1.11 1.91e-5
q1 = 0.48 2−6 9.74e-3 0.92 4.76e-3 1.02 9.87e-6
q2 = 0.77 2−7 5.13e-3 0.93 2.44e-3 0.97 5.39e-6

2−8 2.69e-3 0.93 1.29e-3 0.92 3.49e-6
Pred. rates 0.73 0.73

2−4 6.36e-2 6.84e-2 6.17e-6
β=0.90 2−5 3.62e-2 0.81 3.56e-2 0.94 1.55e-5
q1 = 0.26 2−6 2.09e-2 0.79 1.94e-2 0.88 1.14e-5
q2 = 0.84 2−7 1.22e-2 0.78 1.08e-2 0.84 6.42e-6

2−8 7.13e-3 0.77 6.18e-3 0.81 3.13e-6
Pred. rates 0.66 0.66

right-hand side function f are prescribed respectively to be

p(x) = 3x2 − 2x3 − Cκ
∫ x

0
K−1κ(ξ)dξ,

f(x) = 6θ(
6

Γ(3 + β)
x2+β − 1

Γ(1 + β)
xβ)

+6(1− θ)( 6

Γ(3 + β)
(1− x)2+β +

6

Γ(2 + β)
(1− x)1+β +

2

Γ(1 + β)
(1− x)β),

where Cκ = (
∫ 1

0
K−1xr1(1− x)r2dx)−1, r1 and r2 are determined by (3.4).

In this example, Cκ1 = 0, Cκ 6= 0, p̃ = 3x2 − 2x3 ∈ H2+γ(Ω) and ũ = 6x3 − 6x ∈
H1+γ(Ω) with γ ∈ (0, 1/2), which can be selected as possible as close to 1

2 .
We take different β = 0.1, 0.25, 0.5, 0.75 and 0.9 to investigate the β dependence

on the convergence rates. From (3.4), the index of singular kernel are r1 = −0.06,
r2 = −0.04, as β = 0.10, θ = 0.6; r1 = −0.15, r2 = −0.10, as β = 0.25, θ = 0.6; r1 =
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Table 6.2
Numerical results for Example 6.1 with θ = 0.6

β, q1, q2 h ‖|p− ph‖| rates ‖|u− uh‖| rates |Cκ1 − Chκ1|
2−4 1.92e-2 1.50e-1 2.54e-3

β=0.10 2−5 9.38e-3 1.03 7.37e-2 1.03 9.28e-4
q1 = 0.94 2−6 4.64e-3 1.02 3.71e-2 0.99 3.63e-4
q2 = 0.96 2−7 2.30e-3 1.01 1.94e-2 0.93 1.53e-4

2−8 1.14e-3 1.00 1.07e-2 0.86 6.91e-5
Pred. rates 0.54 0.54

2−4 2.53e-2 1.04e-1 6.40e-3
β=0.25 2−5 1.23e-2 1.03 5.19e-2 1.00 2.67e-4
q1 = 0.85 2−6 6.08e-3 1.02 2.78e-2 0.90 1.19e-3
q2 = 0.90 2−7 3.02e-3 1.01 1.59e-2 0.81 5.61e-4

2−8 1.51e-3 1.00 9.52e-3 0.74 2.72e-4
Pred. rates 0.60 0.60

2−4 3.94e-2 6.40e-2 1.20e-2
β=0.50 2−5 1.95e-2 1.02 3.24e-3 0.98 5.49e-3
q1 = 0.69 2−6 9.69e-3 1.01 1.75e-2 0.89 2.62e-3
q2 = 0.81 2−7 4.85e-3 1.00 9.80e-3 0.83 1.28e-3

2−8 2.43e-3 1.00 5.64e-3 0.80 6.36e-4
Pred. rates 0.69 0.69

2−4 4.09e-2 3.13e-2 1.09e-2
β=0.75 2−5 2.12e-2 0.95 1.41e-2 1.15 4.69e-3
q1 = 0.48 2−6 1.10e-2 0.94 6.78e-3 1.06 2.12e-3
q2 = 0.77 2−7 5.73e-3 0.94 3.38e-3 1.00 9.92e-4

2−8 2.97e-3 0.95 1.73e-3 0.96 4.68e-4
Pred. rates 0.73 0.73

2−4 9.88e-2 1.23e-1 5.61e-2
β=0.90 2−5 5.38e-2 0.88 6.27e-2 0.97 2.79e-2
q1 = 0.26 2−6 3.01e-2 0.83 3.36e-2 0.90 1.45e-2
q2 = 0.84 2−7 1.72e-2 0.81 1.85e-2 0.86 7.88e-3

2−8 9.90e-3 0.79 1.05e-2 0.82 4.39e-3
Pred. rates 0.66 0.66

−0.31, r2 = −0.19, as β = 0.50, θ = 0.6; r1 = −0.52, r2 = −0.23, as β = 0.75, θ = 0.6;
r1 = −0.74, r2 = −0.16, as β = 0.90, θ = 0.6.

The value of s in Theorem 5.4 is given by s = 2 + γ ≈ 2.5. From Theorem 5.4
and Theorem 5.6, the predicted convergence rate for ‖p̃ − p̃‖H1(Ω) and ‖|p − ph‖|
are: hmin{1+β,1,s−2+β} = hmin{1,2.5−2+β} = hmin{1,0.5+β}. From Corollary 5.5 and
Corollary 5.7, the predicted convergence rate for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖| are:

hmin{1+β,s−2+β} = hmin{2.5−2+β} = hmin{0.5+β}.

For β = 0.1, Table 6.3 and Table 6.4 suggest that the convergence rates for
‖p̃ − p̃h‖H1(Ω) and ‖|p − ph‖| are h1, which are higher than that of predicted h0.6,
and in accordance with that of interpolation h1 (see (5.12)(a)); the convergence rates
for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖| are h1.10, which are higher than that of predicted
h0.6, and in accordance with that of interpolation h1.10 (see (5.12)(b)).

For β = 0.25, Table 6.3 and Table 6.4 suggest that the convergence rates for
‖p̃ − p̃h‖H1(Ω) and ‖|p − ph‖| are h1, which are higher than that of predicted h0.75,
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and in accordance with that of interpolation h1 (see (5.12)(a)); the convergence rates
for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖| are h1.25, which are higher than that of predicted
h0.75, and in accordance with that of interpolation h1.25 (see (5.12)(b)).

Table 6.3
Numerical results for Example 6.2 with θ = 0.6

β, r1, r2 h ||p̃− p̃h‖H1(Ω) rates ‖ũ− ũh‖H1−β(Ω) rates |Cκ − Chκ |
2−4 6.26e-2 2.25e-1 2.11e-3

β=0.10 2−5 3.13e-2 1.00 1.04e-1 1.10 4.47e-4
r1 = −0.06 2−6 1.56e-2 1.00 4.87e-2 1.10 9.14e-5
r2 = −0.04 2−7 7.81e-3 1.00 2.27e-2 1.10 1.71e-5

2−8 3.91e-3 1.00 1.06e-2 1.10 2.42e-6
Pred. rates 0.60 0.60

2−4 6.25e-2 1.01e-1 5.39e-3
β=0.25 2−5 3.12e-2 1.00 4.21e-2 1.26 7.16e-5

r1 = −0.15 2−6 1.56e-2 1.00 1.77e-2 1.26 4.63e-6
r2 = −0.10 2−7 7.81e-3 1.00 7.41e-3 1.25 1.96e-6

2−8 3.91e-3 1.00 3.11e-3 1.25 1.34e-6
Pred. rates 0.75 0.75

2−4 6.25e-2 2.45e-2 9.80e-5
β=0.50 2−5 3.13e-2 1.00 8.39e-3 1.54 4.29e-5

r1 = −0.31 2−6 1.56e-2 1.00 2.92e-3 1.52 1.36e-5
r2 = −0.19 2−7 7.81e-3 1.00 1.03e-3 1.51 3.86e-6

2−8 3.91e-3 1.00 3.61e-4 1.51 1.06e-6
Pred. rates 1.00 1.00

2−4 6.25e-2 6.82e-3 1.54e-4
β=0.75 2−5 3.12e-2 1.00 1.80e-3 1.92 4.01e-5

r1 = −0.52 2−6 1.56e-2 1.00 4.87e-4 1.89 1.03e-5
r2 = −0.23 2−7 7.81e-3 1.00 1.35e-4 1.86 2.61e-6

2−8 3.91e-3 1.00 3.78e-5 1.83 6.57e-7
Pred. rates 1.00 1.25

2−4 6.31e-2 1.35e-2 9.09e-5
β=0.90 2−5 3.13e-2 1.00 3.08e-3 2.13 2.26e-5

r1 = −0.74 2−6 1.56e-2 1.00 7.01e-4 2.14 5.64e-6
r2 = −0.16 2−7 7.81e-3 1.00 1.59e-4 2.14 1.41e-6

2−8 3.91e-3 1.00 3.38e-5 2.23 3.53e-7
Pred. rates 1.00 1.40

Example 6.3. Let K(x) = x + 1. The analytic solution p and the right-hand
side function f are prescribed respectively to be

p(x) = −
∫ x

0
K−1(ξ)ξ(1− ξ)κ(ξ)dξ − Cκ1

∫ x
0
K−1(ξ)ξκ(ξ)dξ − Cκ

∫ x
0
K−1(ξ)κ(ξ)dξ,

f(x) = θ sin(πβ)
sin(πr1)Γ(3− β)x,

where Cκ1 = −(r2 + 1), Cκ is selected to such that p(1) = 0.

In this example Cκ1 6= 0, Cκ 6= 0. The regular part of solution p and u are
p̃ = −

∫ x
0
K−1(ξ)ξ(1−ξ)κ(ξ)dξ ∈ Hs(Ω)∩H1

L((Ω)) and ũ = x(1−x)κ(x) ∈ Hs−1(Ω)∩
H1−β

0 (Ω) with s = min{r1, r2}+ 2 + γ, respectively.
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Table 6.4
Numerical results for Example 6.2 with θ = 0.6

β, r1, r2 h ‖|p− ph‖| rates ‖|u− uh‖| rates |Cκ1 − Chκ1|
2−4 6.38e-2 2.28e-1 1.97e-3

β=0.10 2−5 3.14e-2 1.02 1.05e-1 1.12 5.64e-4
r1 = −0.06 2−6 1.56e-2 1.01 4.89e-2 1.11 1.62e-4
r2 = −0.04 2−7 7.80e-3 1.00 2.27e-2 1.10 4.80e-5

2−8 3.90e-3 1.00 1.06e-2 1.10 1.50e-5
Pred. rates 0.60 0.60

2−4 6.16e-2 1.03e-1 2.77e-3
β=0.25 2−5 3.09e-2 0.99 4.27e-2 1.28 7.12e-4

r1 = −0.15 2−6 1.55e-2 0.99 1.78e-2 1.26 1.83e-4
r2 = −0.10 2−7 7.79e-3 1.00 7.44e-3 1.26 4.74e-5

2−8 3.90e-3 1.00 3.12e-3 1.25 1.27e-5
Pred. rates 0.75 0.75

2−4 6.14e-2 2.66e-2 2.54e-3
β=0.50 2−5 3.10e-2 0.98 8.92e-3 1.58 5.79e-4

r1 = −0.31 2−6 1.56e-2 0.99 3.05e-3 1.55 1.31e-4
r2 = −0.19 2−7 7.80e-3 1.00 1.06e-3 1.53 2.95e-5

2−8 3.90e-3 1.00 3.69e-4 1.52 6.71e-6
Pred. rates 1.00 1.00

2−4 6.20e-2 9.43e-3 2.38e-3
β=0.75 2−5 3.12e-2 0.99 2.38e-3 1.99 5.07e-4

r1 = −0.52 2−6 1.56e-2 1.00 6.13e-4 1.95 1.07e-5
r2 = −0.23 2−7 7.81e-3 1.00 1.62e-4 1.92 2.26e-5

2−8 3.91e-3 1.00 4.37e-5 1.89 4.57e-6
Pred. rates 1.00 1.25

2−4 5.92e-2 2.53e-2 1.18e-2
β=0.90 2−5 3.05e-2 0.96 5.75e-3 2.14 2.65e-3

r1 = −0.74 2−6 1.54e-2 0.98 1.30e-3 2.14 5.89e-4
r2 = −0.16 2−7 7.77e-3 0.99 2.90e-4 2.16 1.29e-4

2−8 3.90e-3 1.00 6.03e-5 2.27 2.58e-5
Pred. rates 1.00 1.40

We take different β = 0.1, 0.25, 0.5, 0.75 and 0.9 to investigate the β dependence
on the convergence rates.

From Theorem 5.4 and Theorem 5.6, the predicted convergence rate for ‖p̃ −
p̃‖H1(Ω) and ‖|p− ph‖| are: hmin{1+β,1,s−2+β} = hγ+min{−r1,−r2}. From Corollary 5.5
and Corollary 5.7, the predicted convergence rate for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖|
are: hmin{1+β,s−2+β} = hγ+min{−r1,−r2}.

For β = 0.10, θ = 0.60, the index of singular kernel is r1 = −0.06, r2 = −0.04.
Table 6.5 and Table 6.6 suggest that the convergence rates for ‖p̃− p̃h‖H1(Ω) and ‖|p−
ph‖| are h1, which are higher than that of predicted by Theorem 5.4 and Theorem 5.6,
h0.54, and in accordance with that of interpolation h1 (see (5.12)(a)); the convergence
rates for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖| are higher than that of predicted h0.54, and
almost in accordance with that of interpolation h0.54 (see (5.12)(b)).

For β = 0.25, θ = 0.60, the index of singular kernel is r1 = −0.15, r2 = −0.10.
Table 6.5 and Table 6.6 suggest that the convergence rates for ‖p̃− p̃h‖H1(Ω) and ‖|p−
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ph‖| are h1, which are higher than that of predicted by Theorem 5.4 and Theorem 5.6,
h0.60, and in accordance with that of interpolation h1 (see (5.12)(a)); the convergence
rates for ‖ũ− ũh‖H1−β(Ω) and ‖|u− uh‖| are higher than that of predicted h0.60, and
almost in accordance with that of interpolation h0.60 (see (5.12)(b)).

Table 6.5
Numerical results for Example 6.3 with θ = 0.6

β, r1, r2 h ||p̃− p̃h‖H1(Ω) rates ‖ũ− ũh‖H1−β(Ω) rates |Cκ − Chκ |
2−4 8.13e-3 3.00e-2 6.87e-4

β=0.10 2−5 4.07e-3 1.00 1.58e-2 0.93 2.27e-4
r1 = −0.06 2−6 2.03e-3 1.00 8.74e-3 0.85 8.85e-5
r2 = −0.04 2−7 1.01e-3 1.00 5.15e-3 0.76 3.58e-5

2−8 5.08e-4 1.00 3.21e-3 0.68 1.62e-5
Pred. rates 0.54 0.54

2−4 9.60e-3 2.61e-2 1.29e-3
β=0.25 2−5 4.81e-3 1.00 1.52e-2 0.78 5.61e-4

r1 = −0.15 2−6 2.41e-3 1.00 9.27e-2 0.71 2.60e-4
r2 = −0.10 2−7 1.20e-3 1.00 5.85e-3 0.66 1.25e-4

2−8 6.02e-4 1.00 3.76e-3 0.64 6.08e-5
Pred. rates 0.60 0.60

2−4 1.35e-2 1.93e-2 2.39e-3
β=0.5 2−5 6.89e-3 0.97 1.13e-2 0.77 1.15e-3

r1 = −0.31 2−6 3.49e-3 0.98 6.75e-3 0.74 5.61e-4
r2 = −0.19 2−7 1.76e-3 0.99 4.10e-3 0.72 2.76e-4

2−8 8.85e-4 0.99 2.51e-3 0.71 1.37e-4
Pred. rates 0.69 0.69

2−4 2.07e-2 9.61e-3 3.25e-5
β=0.75 2−5 1.12e-2 0.88 4.97e-3 0.95 1.53e-5

r1 = −0.52 2−6 6.00e-2 0.90 2.63e-3 0.92 7.96e-6
r2 = −0.23 2−7 3.19e-3 0.91 1.42e-3 0.89 4.20e-6

2−8 1.68e-3 0.92 7.76e-4 0.87 2.57e-6
Pred. rates 0.73 0.73

2−4 4.02e-2 3.18e-2 2.03e-5
β=0.90 2−5 2.45e-2 0.71 1.89e-2 0.75 1.79e-5

r1 = −0.74 2−6 1.48e-2 0.73 1.13e-2 0.75 1.03e-5
r2 = −0.16 2−7 8.82e-3 0.74 6.68e-3 0.75 5.39e-6

2−8 5.27e-3 0.74 4.01e-3 0.74 2.55e-6
Pred. rates 0.66 0.66

All of these numerical results strongly suggest that the proposed LSMFE in this
article captures exactly the singular part of the solution and possesses the optimal-
order approximation property as the approximation spaces involved that those typi-
cally used in the literature of finite element.

7. Concluding Remark. In this work, we have developed a least-squares mixed
variational formulation for two-side fractional diffusion equations with variable coeffi-
cient, by introducing an intermediate variable to isolate the variable coefficient from
the nonlocal operator and by decomposing the admissible spaces of the solution as
a direct sum of a regular fractional Sobolev space and a kernel-dependent singular
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Table 6.6
Numerical results for Example 6.3 with θ = 0.6

β, r1, r2 h ‖|p− ph‖| rates ‖|u− uh‖| rates |Cκ1 − Chκ1|
2−4 8.99e-3 3.08e-2 5.69e-5

β=0.10 2−5 4.35e-3 1.05 1.60e-2 0.94 1.55e-5
r1 = −0.06 2−6 2.14e-3 1.02 8.84e-3 0.86 4.11e-6
r2 = −0.04 2−7 1.06e-3 1.01 5.20e-3 0.77 9.72e-7

2−8 5.28e-4 1.01 3.23e-3 0.69 1.47e-7
Pred. rates 0.54 0.54

2−4 1.15e-2 2.78e-2 9.13e-5
β=0.25 2−5 5.62e-3 1.03 1.59e-2 0.81 1.65e-5

r1 = −0.15 2−6 2.78e-3 1.02 9.60e-3 0.73 1.12e-6
r2 = −0.10 2−7 1.38e-3 1.00 6.01e-3 0.68 3.86e-6

2−8 6.91e-4 1.00 3.84e-3 0.65 3.17e-6
Pred. rates 0.60 0.60

2−4 1.84e-2 2.35e-2 2.22e-4
β=0.50 2−5 9.20e-3 1.00 1.33e-3 0.83 4.58e-5

r1 = −0.31 2−6 4.60e-3 1.00 7.71e-3 0.78 3.32e-7
r2 = −0.19 2−7 2.31e-3 0.99 4.59e-3 0.75 8.80e-6

2−8 1.16e-3 0.99 2.75e-3 0.73 7.61e-6
Pred. rates 0.69 0.69

2−4 2.14e-2 1.05e-2 8.46e-4
β=0.75 2−5 1.16e-2 0.88 5.48e-3 0.94 5.01e-4

r1 = −0.52 2−6 6.25e-3 0.90 2.92e-3 0.91 2.86e-4
r2 = −0.23 2−7 3.32e-3 0.91 1.57e-3 0.89 1.58e-4

2−8 1.76e-3 0.92 8.61e-4 0.87 8.40e-5
Pred. rates 0.73 0.73

2−4 5.57e-2 4.83e-2 1.69e-2
β=0.90 2−5 3.39e-2 0.71 2.90e-2 0.74 1.02e-2

r1 = −0.74 2−6 2.04e-2 0.73 1.73e-2 0.75 6.13e-3
r2 = −0.16 2−7 1.22e-2 0.74 1.03e-2 0.75 3.67e-3

2−8 7.35e-3 0.73 6.23e-3 0.72 2.27e-3
Pred. rates 0.66 0.66

space. The existence and uniqueness of the solution to the CFDE (1.1) via the mixed
formulation has been proved. A new regularity theory for the solution is established
in terms of right-hand side function, which extends the regularity result for fractional
Laplace operator to general fractional diffusion operators. From this, we have de-
signed a kernel-independent least-squares mixed finite element procedure (LSMFE).
The numerical analysis and numerical experiments conducted in this work strongly
suggest that the proposed LSMFE captures exactly the singular part of the solution
and possesses the optimal-order approximation property as the approximation spaces
involved are those typically used in the literature of finite elements.
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