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Abstract

In this paper we investigate the numerical approximation of the fractional diffusion, advec-
tion, reaction equation on a bounded interval. Recently the explicit form of the solution to this
equation was obtained. Using the explicit form of the boundary behavior of the solution and Ja-
cobi polynomials, a Petrov-Galerkin approximation scheme is proposed and analyzed. Numerical
experiments are presented which support the theoretical results, and demonstrate the accuracy
and optimal convergence of the approximation method.
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1 Introduction

Of interest in this paper is the approximation of the solution to the fractional diffusion, advection,
reaction equation

Lαr u(x) + b(x)Du(x) + c(x)u(x) = f(x) , x ∈ I , (1.1)

subject to u(0) = u(1) = 0 , (1.2)

where Lαr u(x) := −D
(
rD−(2−α) + (1− r)D−(2−α)∗)Du(x), (1.3)

and I := (0, 1), 1 < α < 2, 0 ≤ r ≤ 1, c(x) − 1
2Db(x) ≥ 0, D denotes the usual derivative operator,

Dα the α-order left fractional derivative operator, and Dα∗ the α-order right fractional derivative
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operator, defined by:

Dαu(x) := D 0D
−(2−α)
x Du(x) = D

1

Γ(2− α)

∫ x

0

1

(x− s)α−1
Du(s) ds , (1.4)

Dα∗u(x) := D xD
−(2−α)
1 Du(x) = D

1

Γ(2− α)

∫ 1

x

1

(s− x)α−1
Du(s) ds . (1.5)

In recent years fractional differential equations have received increased attention as they have been
used in modeling a number of physical phenomena such as contaminant transport in ground water
flow [4], viscoelasticity [29], image processing [7, 15], turbulent flow [29, 35], and chaotic dynamics
[41].

There are two important properties that distinguish a fractional order differential equation from its
integer order counterpart. Firstly, as can be noted from (1.3), fractional differential equations are
nonlocal in nature. Secondly, the solution of fractional differential equations (typically) have a lack
of regularity at the boundary of the domain. Finite difference methods [10, 27, 34, 37, 38], finite
element methods [14, 23, 28, 39], discontinuous Galerkin methods [40], and mixed methods [8, 26],
have all been developed for fractional differential equations. These methods typically exhibit slow
convergence due to the lack of regularity of the solution at the boundary. In [22, 24] an enriched
subspace was given for one sided fractional differential equations, where the boundary behavior of
the solution was included in the finite element trial space. Mao and Shen in [33] extended the work
of Gui and Babuška in [17] to establish that, for an assumed boundary behavior of the solution,
a geometrically spaced mesh with increasing polynomial degree trial function on the subintervals
resulted in an exponential rate of converge for the approximation. For a special class of self-adjoint
fractional differential equations a spectral approximation scheme was presented in [42] using a special
class of functions, polyfractonomials. Spectral methods, exploiting a special property satisfied by
fractional diffusion operator applied to Jacobi polynomials (see (2.16)) has been particularly effective
for the approximation of the solution to fractional diffusion equations [9, 13, 25, 30, 32, 31, 43, 44].

Three recent papers have established the explicit form of the solution to fractional diffusion, advec-
tion, reaction equation on a bounded domain in R1. In [20], Hao and Zhang studied the case for
r = 1/2, for which Lαr is a symmetric operator. The general fractional diffusion reaction, equation
was investigated by Hao, Lin and Zhang in [19]. (As commented by the authors in their summary,
the regularity results obtained in [19] are not optimal.) The work in these papers was extended
in [12] to the general fractional diffusion, advection, reaction equation. The solution was shown
to have the form u(x) = (1 − x)α−βxβφ(x), where φ is contained in the weighted Sobolev space
Hα+ s̃

(α−β , β)(I) (defined in Section 2), where β and s̃ are explicit functions of α, r, and the regularity

of the right hand side function, f (see Theorems 2.2 and 2.3 below). Of particular note is that for
the fractional diffusion, reaction problem, and the fractional diffusion, advection, reaction problem,
the regularity of the solution u is bounded, regardless of the regularity of f . This boundedness in
the regularity of u is not the case for the fractional diffusion, advection, reaction equation on R, as
was recently established by Ginting and Li in [16].

The numerical approximation scheme presented below is accurate as, using [12], the precise boundary
behavior of the solution is incorporated into the approximate solution. Additionally, using the special
property of the fractional diffusion operator applied to Jacobi polynomials (see (2.16))

Lαr ω(x) Ĝ
(α−β , β)
k (x) = λk Ĝ

(β , α−β)
k (x) ,
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and that {Ĝ(α−β , β)
k }∞k=0 is a basis for Hr

(α−β , β)(I), the approximation scheme using Jacobi polyno-

mial is efficient in that if the solution is C∞(I) (very rarely the case) the approximation converges
exponentially. If the solution has bounded regularity (typically the case) the approximation con-
verges optimally at an algebraic rate of convergence.

This paper is organized as follows. In the following section definitions, notation, and several known
results are summarized. Section 3 contains the Petrov-Galerkin weak formulation for (1.1),(1.2),
and establishes the existence and uniqueness of its solution. The analysis follows the work of Jin,
Lazarov and Zhou in [24], wherein the lower order terms are handled using the Petree-Tartar Lemma.
The approximation scheme is given in Section 4, and associated error estimates derived. Numerical
experiments are presented in Section 5.

2 Notation and Properties

Jacobi polynomials have an important connection with fractional order diffusion equations [2, 13,
31, 30]. We briefly review their definition and some of their important properties [1, 36].

Usual Jacobi Polynomials, P
(a,b)
n (t), on (−1 , 1).

Definition: P
(a,b)
n (t) :=

∑n
m=0 pn,m (t− 1)(n−m)(t+ 1)m, where

pn,m :=
1

2n

(
n+ a
m

) (
n+ b
n−m

)
. (2.1)

Orthogonality:

∫ 1

−1
(1− t)a(1 + t)b P

(a,b)
j (t)P

(a,b)
k (t) dt =

{
0, k 6= j

|‖P (a,b)
j |‖2 , k = j

,

where |‖P (a,b)
j |‖ =

(
2(a+b+1)

(2j + a + b + 1)

Γ(j + a+ 1) Γ(j + b+ 1)

Γ(j + 1) Γ(j + a+ b+ 1)

)1/2

. (2.2)

In order to transform the domain of the family of Jacobi polynomials to [0, 1], let t → 2x − 1 and

introduce G
(a,b)
n (x) = P

(a,b)
n (t(x)). From (2.2),∫ 1

−1
(1− t)a(1 + t)b P

(a,b)
j (t)P

(a,b)
k (t) dt =

∫ 1

0
2a (1− x)a 2b xb P

(a,b)
j (2x− 1)P

(a,b)
k (2x− 1) 2 dx

= 2a+b+1

∫ 1

0
(1− x)a xbG

(a,b)
j (x)G

(a,b)
k (x) dx

=

{
0, k 6= j ,

2a+b+1 |‖G(a,b)
j |‖2 , k = j .

where |‖G(a,b)
j |‖ =

(
1

(2j + a + b + 1)

Γ(j + a+ 1) Γ(j + b+ 1)

Γ(j + 1) Γ(j + a+ b+ 1)

)1/2

.

(2.3)
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From [30, equation (2.19)] we have that

dk

dtk
P (a,b)
n (t) =

Γ(n+ k + a+ b+ 1)

2k Γ(n+ a+ b+ 1)
P

(a+k , b+k)
n−k (t) . (2.4)

Hence,

dk

dxk
G(a,b)
n (x) =

Γ(n+ k + a+ b+ 1)

Γ(n+ a+ b+ 1)
G

(a+k , b+k)
n−k (x) . (2.5)

Note that, from Stirling’s formula, we have that

lim
n→∞

Γ(n+ σ)

Γ(n)nσ
= 1 , for σ ∈ R. (2.6)

For compactness of notation, let

ω(a,b) = ω(a,b)(x) := (1− x)a xb . (2.7)

We let N0 := N∪ 0 and use yn ∼ np to denote that there exists constants c and C > 0 such that, as
n → ∞, c np ≤ |yn| ≤ C np. Additionally, we use a . b to denote that there exists a constant C
such that a ≤ C b.

For t ∈ R, btc is used to denote the largest integer that is less than or equal to t, and dte is used to
denote the smallest integer that is greater than or equal to t.

Function space L2
σ(I).

For σ(x) > 0, x ∈ (0, 1), let

L2
σ(I) := {f(x) :

∫ 1

0
σ(x) f(x)2 dx < ∞} . (2.8)

Associated with L2
σ(0, 1) is the inner product, (·, ·)σ, and norm, ‖ · ‖σ, defined by

(f , g)σ :=

∫ 1

0
σ(x) f(x) g(x) dx , and ‖f‖σ := (〈f , f〉σ)1/2 .

The set of orthogonal polynomials {G(a,b)
j }∞j=0 form an orthogonal basis for L2

ω(a,b)(I), and for

Ĝ
(a,b)
j := G

(a,b)
j /|‖G(a,b)

j |‖, {Ĝ(a,b)
j }∞j=0 form an orthonormal basis for L2

ω(a,b)(I).

Without a subscript, (·, ·) denotes the usual L2(I) inner product.

Function space Hs
(a,b)(I).

The weighted Sobolev spaces Hs
(a,b)(I) differ from the usual Hs(I) spaces in that the associated norms

apply a polynomial weight at each endpoint of I, namely, xb and (1 − x)a. These weights increase
with the order of the derivative. We give two equivalent definitions for the Hs

(a,b)(I) spaces. In the

first definition the spaces Hs
(a,b)(I), for 0 < s 6∈ N, are defined by the K- method of interpolation.

The second definition is based on the decay rate of the coefficients of a function expanded in terms
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of the Jacobi polynomials Ĝ
(a,b)
j (x). Both definitions are useful, and used in the analysis below. The

equivalence of the spaces is discussed in [12].

Definition: [Based on the K- method of interpolation.]
Following Babuška and Guo [3], and Guo and Wang [18], we introduce the weighted Sobolev spaces
Hs
ω(a,b)(I).

Definition 2.1 Let s, a, b ∈ R, s ≥ 0, a, b > −1. Then

Hs
ω(a,b)(I) :=

{
v : ‖v‖2

s,ω(a,b) :=

s∑
j=0

∥∥Djv
∥∥2

ω(a+j,b+j) <∞
}
. (2.9)

Definition (2.9) is extended to s ∈ R+ using the K- method of interpolation. For s < 0 the spaces
are defined by (weighted) L2 duality.

Definition: [Based on the decay rate of Jacobi polynomial coefficients.]
Next we define function spaces in terms of the decay rate of the Jacobi coefficients of their member
functions.

Given v, let

vj =

∫ 1

0
ω(a,b)(x) v(x) Ĝ

(a,b)
j (x) dx . (2.10)

Note that for v ∈ L2
ω(a,b)(I),

v(x) =
∞∑
j=0

vj Ĝ
(a,b)
j (x) . (2.11)

Definition 2.2 Let s, a, b ∈ R, a, b > −1, L2
(a,b)(I) := L2

ω(a,b)(I), and vj be given by (2.10). Then,
define

Hs
(a,b)(I) := {v :

∞∑
j=0

(1 + j2)s v2
j < ∞} (2.12)

as the (a, b)-weighted Sobolev space of order s.

Theorem 2.1 [12, Theorem 4.1] The spaces Hs
(a,b)(I) and Hs

ω(a,b)(I) coincide, and their correspond-
ing norms are equivalent.

With the structure of the Hs
(a,b)(I) spaces, and properties (2.5) and (2.3), it is straight forward to

show that D is a bounded mapping from Hs
(a,b)(I) onto Hs−1

(a+1 , b+1)(I).

Lemma 2.1 [12, Lemma 4.5] For s, a, b ∈ R, a, b > −1, the differential operator D is a bounded
mapping from Hs

(a,b)(I) onto Hs−1
(a+1 , b+1)(I).

For convenience, from hereon we use Hs
(a,b)(I) to represent the spaces Hs

ω(a,b)(I) and Hs
(a,b)(I).
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Definition: Condition A
The parameters a, b, and r and constant c∗∗ satisfy: 1 < α < 2, α− 1 ≤ β , α− β ≤ 1, 0 ≤ r ≤ 1

c∗∗ =
sin(πα)

sin(π(α− β)) + sin(πβ)
, (2.13)

where β is determined by

r =
sin(π β)

sin(π(α− β)) + sin(π β)
. (2.14)

For compactness of notation, for α and r defined in (1.1) and β defined in (2.14) we introduce

ω(x) := ω(α−β,β)(x) = (1− x)α−β xβ , and ω∗(x) := ω(β,α−β)(x) = (1− x)β xα−β . (2.15)

Additionally, we use 〈·, ·〉ω to denote the weighted L2 duality pairing between functions ifH−s(α−β , β)(I)

and Hs
(α−β , β)(I).

From [13, 21],

Lαr ω(x) Ĝ
(α−β , β)
k (x) = λk Ĝ

(β , α−β)
k (x) , where λk = −c∗∗

Γ(k + 1 + α)

Γ(k + 1)
, k = 0, 1, 2, . . . , (2.16)

and c∗∗ given by (2.13). Also, using (2.6), λk ∼ kα.

Let SN denote the space of polynomials of degree less than or equal to N . We define the weighted
L2 orthogonal projection PN : L2

ω(I)→ SN by the condition(
v − PNv , φN

)
ω

= 0 , ∀φN ∈ SN . (2.17)

Note that PNv =
∑N

j=0 vj Ĝ
(a,b)
j (x), where vj =

∫ 1
0 ω(x) v(x) Ĝ

(a,b)
j (x) dx.

Lemma 2.2 [18, Theorem 2.1] For µ ∈ N0 and v ∈ Ht
ω(I), with 0 ≤ µ ≤ t, there exists a constant

C, independent of N, α and β such that∥∥v − PNv‖Hµ
ω(I) ≤ C Nµ−t ‖v‖Ht

ω(I). (2.18)

Remark: In [18] (2.18) is stated for t ∈ N0. The result extends to t ∈ R+ using interpolation.

The regularity of the solution to (1.1) can be influenced by the regularity of b(x) and c(x). The
following lemma enables us to insulate the influence of these terms.

Introduce the space W k,∞
w (I) and its associated norm, defined for k ∈ N0, as

W k,∞
w (I) :=

{
f : (1− x)j/2xj/2Djf(x) ∈ L∞(I), j = 0, 1, . . . , k

}
, (2.19)

‖f‖
Wk,∞
w

:= max
0≤j≤k

‖(1− x)j/2xj/2Djf(x)‖L∞(I) . (2.20)

The subscript w denotes the fact that W k,∞
w (I) is a weaker space than W k,∞(I) in that the derivative

of functions in W k,∞
w (I) may be unbounded at the endpoints of the interval.
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Lemma 2.3 [12, Lemma 7.1] Let s ≥ 0, α, β > −1, k ≥ s, and f ∈W k,∞
w (I). For

(i) g ∈ Hs
(α,β)(I) then fg ∈ Hs

(α,β)(I), and for (2.21)

(ii) g ∈ H−s(α,β)(I) then fg ∈ H−s(α,β)(I). (2.22)

Theorem 2.2 [12, Theorem 7.1] Let s ≥ −α, β be determined by Condition A,

c ∈W dmin{s , α+ (α−β) + 1 , α+β+ 1}e,∞
w (I) satisfying c(x) ≥ 0 and

f ∈ H−α/2(I) ∩Hs
(β , α−β)(I). (2.23)

Then there exists a unique solution u(x) = (1 − x)α−β xβ φ(x), with

φ(x) ∈ Hα+ min{s , α+ (α−β) + 1 , α+β+ 1}
(α−β , β) (I), to

Lαr u(x) + c(x)u(x) = f(x) , x ∈ I, subject to u(0) = u(1) = 0 . (2.24)

The inclusion of an advection term can significantly reduced the regularity of the solution.

Theorem 2.3 [12, Theorem 7.2] Let s ≥ −α, β be determined by Condition A,

b, c ∈W dmin{s , α+ (α−β)− 1 , α+β− 1}e,∞
w (I) satisfying c(x) − 1/2Db(x) ≥ 0, and

f ∈ H−α/2(I) ∩Hs
(β , α−β)(I). (2.25)

Then there exists a unique solution u(x) = (1 − x)α−β xβ φ(x), with

φ(x) ∈ Hα+ min{s , α+ (α−β)− 1 , α+β− 1}
(α−β , β) (I), to

Lαr u(x) + b(x)Du(x) + c(x)u(x) = f(x) , x ∈ I, subject to u(0) = u(1) = 0 . (2.26)

Introduce s̃ defined by

s̃ :=

{
min{s, α+ (α− β) + 1, α+ β + 1}, if b = 0 (see Theorem 2.2)
min{s, α+ (α− β)− 1, α+ β − 1}, if b 6= 0 (see Theorem 2.3) .

(2.27)

3 Weak Formulation

In place of (1.1), (1.2), we consider the following problem.

Given H
−α/2
ω∗ (I), and b and c satisfying

b ∈W dmin{s , α+ (α−β)− 1 , α+β− 1}e+1,∞
w (I), c ∈W dmin{s , α+ (α−β)− 1 , α+β− 1}e,∞

w (I),
c(x) − 1/2Db(x) ≥ 0, x ∈ I ,

}
(3.1)

determine φ ∈ Hα/2
ω (I) such that u(x) = ω(x)φ(x) satisfies

〈Lαr u + bDu + c u , ψ〉ω∗ = 〈f , ψ〉ω∗ , ∀ψ ∈ Hα/2
ω∗ (I) . (3.2)

7



Remark: The assumption on b(·) is stronger than that required for Theorem 2.3, and that of f(·)
is weaker. This extra regularity for b(·) is needed in the proof of Lemma 3.5, where Theorem 2.3 is
applied to the adjoint of equation (2.26) (see (3.22)).

Note that the formulation (3.2) has different test and trial spaces. With this in mind we recall the
Banach-Nečas-Babuška theorem.

Theorem 3.1 [11, Pg. 85, Theorem 2.6] Let H1 and H2 denote two real Hilbert spaces, B(·, ·) :
H1 ×H2 → R a bilinear form, and F : H2 → R a bounded linear functional on H2. Suppose there
are constants C1 <∞ and C2 > 0 such that

(i) |B(w, v)| ≤ C1 ‖w‖H1 ‖v‖H2 , for all w ∈ H1 , v ∈ H2 , (3.3)

(ii) sup
06=v∈H2

|B(w, v)|
‖v‖H2

≥ C2 ‖w‖H1 , for all w ∈ H1 , (3.4)

(iii) sup
w∈H1

|B(w, v)| > 0 , for all v ∈ H2 , v 6= 0 . (3.5)

Then there exists a unique solution w0 ∈ H1 satisfying B(w0 , v) = F (v) for all v ∈ H2. Further,
‖w0‖H1 ≤ C2‖F‖H2.

For f ∈ H−α/2ω∗ (I), and b and c satisfying (3.1), let B : H
α/2
ω ×Hα/2

ω∗ → R, and F : H
α/2
ω∗ → R be

defined by

B(φ, ψ) := 〈Lαr ωφ + bDωφ + c ωφ , ψ〉ω∗ , (3.6)

F (ψ) := 〈f , ψ〉ω∗ . (3.7)

3.1 Continuity of B(·, ·)

In order to establish that B(·, ·) is well defined and continuous we need to determine which Ht
(a,b)(I)

space ω φ lies in.

The Hs
(a,b)(I) space a function f lies in is determined by its behavior at: (i) the left endpoint

(x = 0), (ii) the right endpoint (x = 1), and (iii) away from the endpoints. In order to separate
the consideration of the endpoint behaviors, following [6], we introduce the following function space
Hs

(γ)(J). Let J := (0, 3/4), and

Λ∗ :=

{
(x, y) :

2

3
x < y <

3

2
x, 0 < x <

1

2

}
∪
{

(x, y) :
3

2
x− 1

2
< y <

2

3
x+

1

3
, 1/2 ≤ x < 3/4

}
:= Λ ∪ Λ1 (see Figure 3.1) .
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Figure 3.1: Domain Λ∗ = Λ ∪ Λ1.

Introduce the semi-norm and norm

|f |2Hs
(γ)

(J) :=

∫∫
Λ
xγ+s |Dbscf(x) − Dbscf(y)|2

|x − y|1 + 2(s−bsc) dy dx +

∫∫
Λ1

xγ+s |Dbscf(x) − Dbscf(y)|2

|x − y|1 + 2(s−bsc) dy dx

:= |f |2Hs
(γ)

(Λ) + |f |2Hs
(γ)

(Λ1) ,

and ‖f‖2Hs
(γ)

(J) :=


∑s

j=0 ‖Djf‖2
L2
(γ+j)

(J)
, for s ∈ N0∑bsc

j=0 ‖Djf‖2
L2
(γ+j)

(J)
+ |f |2Hs

(γ)
(J) , for s ∈ R+\N0

,

where ‖g‖2L2
(γ)

(J) :=

∫
J
xγ g2(x) dx .

Then, Hs
(γ)(J) := {f : f is measurable and ‖f‖Hs

(γ)
(J) < ∞}.

Note: A function f(x) is in Hs
(a,b)(I) if and only if f(3

4x) ∈ Hs
(b)(J) and f(3

4(1− x)) ∈ Hs
(a)(J).

From [12] we have the following theorem.

Theorem 3.2 [12, Theorem 6.4] Let n ≤ s < n + 1, n ∈ N0, p ≥ n, µ > −1, and ψ ∈ Hs
(µ)(J).

Then xp ψ ∈ Ht
(σ)(J) provided

0 ≤ t ≤ s , σ + 2p ≥ µ , σ + 2p − t > −1 , and σ + 2p + t ≥ µ + s . (3.8)

Additionally, when (3.8) is satisfied, there exists C > 0 (independent of ψ) such that ‖xp ψ‖Ht
(σ)

(J) ≤
C ‖ψ‖Hs

(µ)
(J).
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Lemma 3.1 The terms 〈Lαr ωφ, ψ〉ω∗, 〈bDωφ , ψ〉ω∗ and 〈c ωφ , ψ〉ω∗ are well defined. Additionally,

there exists C > 0 such that for φ(x) ∈ Hα/2
ω (I) and ψ(x) ∈ Hα/2

ω∗ (I)

|B(φ, ψ)| = |〈Lαr ωφ + bDωφ + c ωφ , ψ〉ω∗ | ≤ C ‖φ‖
H
α/2
ω (I)

‖ψ‖
H
α/2
ω∗ (I)

. (3.9)

Proof : We begin by considering the 〈bDωφ , ψ〉ω∗ term.

From Theorem 3.2, with s = α/2, µ = β, p = β, and choosing σ = α−β−1 we have that t ≤ α/2.

Hence for φ0 ∈ Hα/2
β (J), xβφ0(x) ∈ Hα/2

(α−β−1)(I), with ‖xβφ0(x)‖
H
α/2
(α−β−1)

. ‖φ0(x)‖
H
α/2
(β)

.

Again, using Theorem 3.2, with s = α/2, µ = α− β, p = α− β, and choosing σ = β we have that

t ≤ α/2. Hence for φ1 ∈ Hα/2
α−β(J), xα−βφ1(x) ∈ Hα/2

(β−1)(I) with ‖xα−βφ1(x)‖
H
α/2
(β−1)

. ‖φ1(x)‖
H
α/2
(α−β)

.

Combining the above two applications of Theorem 3.2 we have that for φ ∈ H
α/2
ω (I), ωφ ∈

H
α/2
(β−1 , α−β−1)(I) with

‖ωφ‖
H
α/2
(β−1 , α−β−1)

(I)
. ‖φ‖

H
α/2
ω (I)

. (3.10)

A similar application of Theorem 3.2 establishes that for φ ∈ Hα/2
ω (I), ωφ ∈ Hα/2

ω∗ (I) with

‖ωφ‖
H
α/2
ω∗ (I)

. ‖φ‖
H
α/2
ω (I)

. (3.11)

From (3.10) and Lemma 2.1 we have that Dωφ ∈ H
α/2−1
(β , α−β)(I) with ‖Dωφ‖

H
α/2−1
(β , α−β)

. ‖φ‖
H
α/2
ω

.

Thus, with the assumption on b and using Lemma 2.3,

〈bDωφ , ψ〉ω∗ ≤ ‖Dωφ‖Hα/2−1
(β , α−β)

‖b ψ‖
H

1−α/2
(β , α−β)

. ‖φ‖
H
α/2
ω
‖ψ‖

H
1−α/2
ω∗

, (3.12)

. ‖φ‖
H
α/2
ω
‖ψ‖

H
α/2
ω∗

, (3.13)

where in the last step we have used that 1− α/2 ≤ α/2.

For ‖φ‖ ∈ Hα/2
ω (I) and ‖ψ‖ ∈ Hα/2

ω∗ (I), using (3.11) and the assumption on c,

〈c ωφ , ψ〉ω∗ =

∫
I
ω∗(x) c(x)ω(x)φ(x)ψ(x) dx

≤ ‖ω1/2 ω∗1/2 ‖L∞
∫
I
ω1/2(x)φ(x)ω∗1/2(x) c(x)ψ(x) dx

≤ ‖φ‖L2
ω
‖c ψ‖L2

ω∗

. ‖φ‖
H
α/2
ω
‖ψ‖

H
1−α/2
ω∗

. (3.14)

. ‖φ‖
H
α/2
ω
‖ψ‖

H
α/2
ω∗

. (3.15)
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For φ(x) =
∑∞

i=0 φi Ĝ
(α−β , β)
i (x) ∈ H

α/2
ω (I) and ψ(x) =

∑∞
j=0 ψj Ĝ

(β , α−β)
j (x) ∈ H

α/2
ω∗ (I), using

(2.16)

〈Lαr ωφ, ψ〉ω∗ =

 ∞∑
i=0

−c∗∗ λi φi Ĝ
(β , α−β)
i (x) ,

∞∑
j=0

ψj Ĝ
(β , α−β)
j (x)


ω∗

(3.16)

= −c∗∗
∞∑
k=0

λk φk ψk ∼
∞∑
k=0

kα φk ψk

.

( ∞∑
k=0

kα φk

)1/2 ( ∞∑
k=0

kα ψk

)1/2

.

( ∞∑
k=0

(1 + k2)α/2 φk

)1/2 ( ∞∑
k=0

(1 + k2)α/2 ψk

)1/2

. ‖φ‖
H
α/2
ω
‖ψ‖

H
α/2
ω∗

, using (2.12) . (3.17)

Combining (3.13), (3.15) and (3.17) we obtain (3.9).

3.2 Conditions (3.4) and (3.5)

For the case r = 1/2 we have α− β = β = α/2 and, consequently, ω = ω∗. In this case for ψ = φ

〈bD(ω φ) + c ω φ , ψ〉ω =

∫ 1

0
ω (bD(ω φ) + c ω φ)φ dx

=

∫ 1

0
b

1

2
D(ω φ)2 + c (ω φ)2 dx

=

∫ 1

0

(
c − 1

2
Db

)
(ω φ)2 dx . (3.18)

Proceeding as in (3.16), for ψ = φ and ω∗ = ω,

〈Lα1/2(ω φ), φ〉ω ∼
∞∑
k=0

kα φ2
k ∼

∞∑
k=0

(1 + k2)α/2 φ2
k

∼ ‖φ‖2
H
α/2
(α/2,α/2)

. (3.19)

Hence for (c − 1
2Db) ≥ 0, combining (3.18) and (3.19) we have that B(·, ·) is coercive on H

α/2
(α/2,α/2)×

H
α/2
(α/2,α/2). Then, from the Lax-Milgram, we have the following lemma.

Lemma 3.2 For 1 < α < 2 and r = 1/2, given f ∈ H−α/2(α/2,α/2)(I) and b(x) and c(x) satisfying (3.1),

there exists a unique solution u(x) = (1−x)α/2xα/2 φ(x) to (3.2), with φ ∈ Hα/2
(α/2,α/2)(I) satisfying

‖φ‖
H
α/2
(α/2,α/2)

(I)
. ‖f‖

H
−α/2
(α/2,α/2)

(I)
.

This special case of (3.2) corresponding to r = 1/2 has been thoroughly investigated by Hao and
Zhang in [20].
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For the general case, (r 6= 1
2), to show (3.4) and (3.5), and hence establish the well posedness of

the formulation, following an approach by Jin, Lazarov and Zhou in [24], we use the Petree-Tartar
Lemma.

Lemma 3.3 [11, Pg. 469] (Petree-Tartar). Let X, Y , Z be three Banach spaces. Let A ∈ L(X;Y )
be an injective operator and let T ∈ L(X;Z) be a compact operator. If there exists c1 > 0 such that
c1 ‖x‖X ≤ ‖Ax‖Y + ‖Tx‖Z , then Im(A) is closed; equivalently, there is c2 > 0 such that

∀x ∈ X, c2‖x‖X ≤ ‖Ax‖Y . (3.20)

To relate the Petree-Tartar Lemma to the formulation (3.2), with b and c satisfying (3.1), let

X = H
α/2
ω (I), Y = Z = H

−α/2
ω∗ (I),

A : X → Y be defined by Aφ := Lαr ωφ + bDωφ + c ωφ , and

T : X → Z be defined by Tφ := − ( bDωφ + c ωφ) .

That A ∈ L(X;Y ) follows from its definition and the continuity of B(·, ·). To establish the injectivity
of A, consider k ∈ Y and assume φ1 and φ2 satisfy Aφ1 = k and Aφ2 = k. Then, correspondingly,
u1 = ωφ1 and u2 = ωφ2 would satisfy

Lαr (u1 − u2)(x) + b(x)D(u1 − u2)(x) + c(x) (u1 − u2)(x) = 0 ∈ H−α/2(I) ∩H−α/2(β,α−β)(I) ,

with (u1 − u2)(0) = (u1 − u2)(1) = 0. Theorem 2.3 would then implies (u1 − u2)(x) = 0, i.e.,
u1 = u2 ⇐⇒ φ1 = φ2. Hence A is injective on Y .

The fact that T ∈ L(X;Z) follows from its definition and (3.13) and (3.15). Also, from (3.12) and

(3.14) we have that T : H
α/2
ω (I) → H

1−α/2
ω∗ (I) is bounded. As Hs

ω∗(I) is compactly embedded in
Ht
ω∗(I) for s > t, [12, pg. 10, Remark 2], since 1 − α/2 > −α/2, it follows that T ∈ L(X;Z) is a

compact operator.

Let φ(x) =
∑∞

i=1 φiĜ
(α−β,β)
i (x) ∈ Hα/2

ω (I) and ψ(x) =
∑∞

i=1 φiĜ
(β,α−β)
i (x) ∈ Hα/2

ω∗ (I). Note that
‖φ‖

H
α/2
ω (I)

= ‖ψ‖
H
α/2
ω∗ (I)

. Then,

‖φ‖2
H
α/2
ω (I)

=
∞∑
i=0

(
1 + i2

)α/2
φ2
i

.
∞∑
i=0

λi φ
2
i = 〈Lαr ωφ , ψ〉ω∗

= 〈Lαr ωφ + bDωφ + c ωφ , ψ〉ω∗ + 〈− ( bDωφ + c ωφ) , ψ〉ω∗ .
= 〈Aφ , ψ〉ω∗ + 〈Tφ , ψ〉ω∗
≤ ‖Aφ‖

H
−α/2
ω∗ (I)

‖ψ‖
H
α/2
ω∗ (I)

+ ‖Tφ‖
H
−α/2
ω∗ (I)

‖ψ‖
H
α/2
ω∗ (I)

.

Using ‖φ‖
H
α/2
ω (I)

= ‖ψ‖
H
α/2
ω∗ (I)

, we obtain that there exists c1 > 0 such that

c1 ‖φ‖X ≤ ‖Aφ‖Y + ‖Tφ‖Z .

Then, applying the Petree-Tartar Lemma, it follows that there exists C2 > 0 such that

C2‖φ‖X ≤ ‖Aφ‖Y , i.e., C2‖φ‖Hα/2
ω (I)

≤ ‖Aφ‖
H
−α/2
ω∗ (I)

. (3.21)
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Lemma 3.4 For B(·, ·) defined by (3.6), the condition (ii) given by (3.4) is satisfied.

Proof : Noting that

sup
06=v∈Hα/2

ω∗ (I)

|B(w, v)|
‖v‖

H
α/2
ω∗ (I)

≥ C2 ‖w‖Hα/2
ω (I)

is equivalent to ‖Aw‖
H
−α/2
ω∗ (I)

≥ C2 ‖w‖Hα/2
ω (I)

,

the condition (ii) follows from (3.21).

Lemma 3.5 For B(·, ·) defined by (3.6), the condition (iii) given by (3.5) is satisfied.

Proof : The adjoint problem to (3.2) is: Given g ∈ H
−α/2
ω (I), determine ψ ∈ H

α/2
ω∗ (I) such that

v(x) = ω∗(x)ψ(x) satisfies

〈Lα(1−r)v − bDv + (c − Db)v , φ〉ω = 〈g , φ〉ω , ∀φ ∈ Hα/2
ω (I) . (3.22)

Observe that the advection coefficient (−b), and the reaction coefficient (c − Db), satisfy the as-
sumptions of (3.2).

In relation to Theorem 2.3, the weak form corresponds to the fractional diffusion, advection, reaction

equation: Given g̃ ∈ H−α/2(I) ∩H−α/2ω (I) determine v(x) satisfying

Lα(1−r)v(x) − b(x)Dv(x) +
(
c(x)−Db(x)

)
v(x) = g̃(x) , x ∈ I, subject to v(0) = v(1) = 0 . (3.23)

Note that for the weak formulation (3.22), g may be chosen in H
−α/2
ω (I), whereas Theorem 2.3

requires the RHS, g̃, to be in H−α/2(I) ∩ H−α/2ω (I). Also, note that properties (ii) and (iii) of
Theorem 3.1 are similar (property (ii) a stronger condition), where the supremum is taken over one
function space with the element in the other function space fixed.

For B∗(ψ, φ) := 〈Lα1−rω∗ψ + bDω∗ψ + c ω∗ψ , φ〉ω
= 〈Lαr ωφ + bDωφ + c ωφ , ψ〉ω∗ = B(φ, ψ) .

An analogous argument as used to establish condition (ii) can be applied to B∗(·, ·) to obtain

sup
06=w∈Hα/2

ω (I)

|B∗(v, w)|
‖w‖

H
α/2
ω (I)

≥ C̃2 ‖v‖Hα/2
ω∗ (I)

⇐⇒ sup
0 6=w∈Hα/2

ω (I)

|B(w, v)|
‖w‖

H
α/2
ω (I)

≥ C̃2 ‖v‖Hα/2
ω∗ (I)

for all v ∈ Hα/2
ω∗ (I) ,

=⇒ sup
w∈Hα/2

ω (I)

|B(w, v)| > 0 for all v ∈ Hα/2
ω∗ (I) , v 6= 0 .

(Recall that in establishing condition (ii) Theorem 2.3 is only used with RHS function equal to 0 in
establishing the injectivity of the operator A.)

Combining Lemmas 3.1, 3.4 and 3.5 with Theorem 3.1 we obtain the following.
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Theorem 3.3 There exists a unique solution φ to (3.2), satisfying ‖φ‖
H
α/2
ω (I)

≤ 1
C2
‖f‖

H
−α/2
ω∗ (I)

.

Proof : First, note that F defined by (3.7) satisfies

‖F‖ = sup
0 6=ψ∈Hα/2

ω∗ (I)

|F (ψ)|
‖ψ‖

H
α/2
ω∗ (I)

= sup
06=ψ∈Hα/2

ω∗ (I)

|〈f, ψ〉ω∗ |
‖ψ‖

H
α/2
ω∗ (I)

≤ sup
0 6=ψ∈Hα/2

ω∗ (I)

‖f‖
H
α/2
ω∗ (I)

‖ψ‖
H
α/2
ω∗ (I)

‖ψ‖
H
α/2
ω∗ (I)

= ‖f‖
H
α/2
ω∗ (I)

.

Hence, F defines a bounded linear functional. The existence and uniqueness of φ then follows from
combining Lemmas 3.1, 3.4 and 3.5 with Theorem 3.1. To obtain the bound for ‖φ‖

H
α/2
ω (I)

, from

Lemma 3.4

‖φ‖
H
α/2
ω (I)

≤ 1

C2
sup

06=ψ∈Hα/2
ω∗

|B(φ, ψ)|
‖ψ‖

H
α/2
ω∗ (I)

=
1

C2
sup

06=ψ∈Hα/2
ω∗

|〈f , ψ〉ω∗ |
‖ψ‖

H
α/2
ω∗ (I)

≤ 1

C2
sup

06=ψ∈Hα/2
ω∗

‖f‖
H
−α/2
ω∗ (I)

‖ψ‖
H
α/2
ω∗ (I)

‖ψ‖
H
α/2
ω∗ (I)

=
1

C2
‖f‖

H
−α/2
ω∗ (I)

. (3.24)

Corollary 3.1 For f ∈ Hs
ω∗(I), s ≥ −α/2, and b and c satisfying (3.1), there exists C > 0 such

that with φ given by (3.2) satisfies

‖φ‖
H s̃+α
ω (I)

≤ C ‖f‖H s̃
ω∗ (I) . (3.25)

Proof : The proofs of Theorems 2.2 and 2.3 use a boot strapping argument. The first part of
the proof establishes that, for f ∈ H−α/2(I), the existence and uniqueness of a solution u(x) =
ω(x)φ(x), where φ ∈ L2(I), which then implies that u ∈ H0

ω∗(I). The subsequent (finite) steps in
the proofs iteratively improve the regularity of φ (boot strapping argument), until the optimum
regularity of φ is obtained.

In view of Theorem 3.3, for f ∈ Hs
ω∗(I), s ≥ −α/2, there exists φ ∈ Hα/2

ω (I) satisfying (3.2). Con-

sequently, for u(x) = ω(x)φ(x), using Theorem 3.2, u ∈ Hα/2
ω∗ (I). Repeating the boot strapping

argument used in the proofs of Theorems 2.2 and 2.3 results in u(x) = ω(x)φ(x) satisfying (2.26),
with φ ∈ H s̃+α

ω (I), where s̃ is defined in (2.27). The norm estimate (3.25) follows from that at each
of the (finite number of) steps in the boot strapping argument the terms on the right hand side are
bounded by a constant times ‖f‖H s̃

ω∗ (I).

Remark: Comparing Corollary 3.1 with Theorems 2.2 and 2.3, for Corollary 3.1: (i) the regularity
condition for b is stronger, (ii) the condition on f is weaker, and (iii) a bound for φ is not given in
Theorems 2.2 and 2.3.

Remark: A corresponding weak formulation to (3.2) can be given for u, and subsequent analysis
performed. As the unknown in our computational algorithm is φN we have chosen to present the
analysis in terms of φ.
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4 Approximation Scheme

As {Ĝ(a,b)
j }∞j=0 is a basis for H

α/2
(a,b)(I), let XN := span{Ĝ(α−β , β)

j }Nj=0 ⊂ H
α/2
(α−β , β)(I), and YN :=

span{Ĝ(β , α−β)
j }Nj=0 ⊂ H

α/2
(β , α−β)(I). Corresponding to (3.2) we have the following approximation

scheme.

Given f ∈ H
−α/2
ω∗ (I), and b and c satisfying (3.1), determine φN ∈ XN such that uN (x) =

ω(x)φN (x) satisfies

〈Lαr ω(x)φN (x) + b(x)Dω(x)φN (x) + c(x)ω(x)φN (x) , ψN 〉ω∗ = 〈f , ψN 〉ω∗ , ∀ψN ∈ YN . (4.1)

The following lemma is used to establish the well posedness of (4.1).

Lemma 4.1 There exists C3 > 0, such that for N sufficiently large,

sup
0 6=ψN∈YN

|B(φN , ψN )|
‖ψN‖Hα/2

ω∗ (I)

≥ C3 ‖φN‖Hα/2
ω (I)

, ∀φN ∈ XN . (4.2)

Proof : Let φN ∈ XN . For ψ ∈ Hα/2
ω∗ (I), let ψN =

∑N
i=0 ψiG

(β,α−β)
i (x). Using Lemma 3.4,

C2 ‖φN‖Hα/2
ω (I)

≤ sup
06=ψ∈Hα/2

ω∗ (I)

B(φN , ψ)

‖ψ‖
H
α/2
ω∗ (I)

≤ sup
06=ψ∈Hα/2

ω∗ (I)

B(φN , ψN ) + B(φN , ψ − ψN )

‖ψ‖
H
α/2
ω∗ (I)

≤ sup
06=ψ∈Hα/2

ω∗ (I)

B(φN , ψN )

‖ψ‖
H
α/2
ω∗ (I)

+ sup
06=ψ∈Hα/2

ω∗ (I)

〈−
(
b(x)Dω(x)φN (x) + c(x)ω(x)φN (x)

)
, ψ − ψN 〉ω∗

‖ψ‖
H
α/2
ω∗ (I)

,

(4.3)

where in the last step we have used 〈Lαr φN , ψ − ψN 〉ω∗ = 0.

From (3.12) and (3.14), and using (2.18),∣∣〈(b(x)Dω(x)φN (x) + c(x)ω(x)φN (x)
)
, ψ − ψN 〉ω∗

∣∣ ≤ C ‖φN‖Hα/2
ω
‖ψ − ψN‖H1−α/2

ω∗

≤ C ‖φN‖Hα/2
ω

N1−α ‖ψ‖
H
α/2
ω∗

. (4.4)

Combining (4.3) and (4.4), for N sufficiently large we obtain (4.2).

Theorem 4.1 There exists a unique φN ∈ Hα/2
ω (I) satisfying (4.1). In addition, for C3 given in

(4.2), ‖φN‖Hα/2
ω (I)

≤ 1
C3
‖f‖

H
−α/2
ω∗ (I)

.

Proof : For φN =
∑
j = 0Ncj Ĝ

(α−β,β)
j (x), from (4.1), the constants cj are determined from

Ac = b , where Ai+1 j+1 = B(Ĝ
(α−β,β)
j , Ĝ

(β,α−β)
i ) , and bi = 〈f(x), Ĝ

(β,α−β)
i (x)〉ω∗ ,
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for 0 ≤ i, j ≤ N . Condition (4.2) implies the invertible of the square matrix A, and hence the
uniqueness of φN satisfying (4.1). The bound for φN is obtained in an analogous manner to the
bound for φ in (3.24).

For φN given by (4.1) we have the following error bound.

Lemma 4.2 There exists C > 0 such that for φ satisfying (3.2) and φN satisfying (4.1)

‖φ − φN‖Hα/2
ω (I)

≤ C inf
ζN∈XN

‖φ − ζN‖Hα/2
ω (I)

. (4.5)

Proof : Note that for ζN ∈ XN , using (4.2),

C3 ‖φN − ζN‖Hα/2
ω (I)

≤ sup
ψN∈YN
ψN 6=0

|B(φN − ζN , ψN )|
‖ψN‖Hα/2

ω∗ (I)

= sup
ψN∈YN
ψN 6=0

|〈f , ψN 〉ω∗ − B(ζN , ψN )|
‖ψN‖Hα/2

ω∗ (I)

= sup
ψN∈YN
ψN 6=0

|B(φ − ζN , ψN )|
‖ψN‖Hα/2

ω∗ (I)

(using (3.2))

≤ sup
ψN∈YN
ψN 6=0

C1 ‖φ − ζN‖Hα/2
ω (I)

‖ψN‖Hα/2
ω∗ (I)

‖ψN‖Hα/2
ω∗ (I)

= C1 ‖φ − ζN‖Hα/2
ω (I)

. (4.6)

With the triangle inequality and (4.6), we obtain

‖φ − φN‖Hα/2
ω (I)

≤ ‖φ − ζN‖Hα/2
ω (I)

+ ‖ζN − φN‖Hα/2
ω (I)

≤ (1 + C1) ‖φ − ζN‖Hα/2
ω (I)

.

As ζN ∈ XN is arbitrary, then (4.5) follows.

Combining Lemma 4.2 with Lemma 2.2 and Theorems 2.2 and 2.3 we obtain the following error
estimate.

Corollary 4.1 For f ∈ Hs
ω∗(I), s ≥ −α/2, and b and c satisfying (3.1), there exists C > 0 such

that for φ satisfying (3.2) and φN satisfying (4.1)

‖φ − φN‖Hα/2
ω (I)

≤ C N−(s̃+α/2) ‖φ‖
H s̃+α
ω (I)

≤ C N−(s̃+α/2) ‖f‖H s̃
ω∗ (I) . (4.7)

Proof : From Corollary 3.1 we have that φ satisfies φ ∈ H s̃+α
ω (I). Then, applying Lemma 2.2, with

µ = α/2 and t = s̃ + α, and using Corollary 3.1, we obtain (4.7).

An estimate for ‖φ − φN‖L2
ω(I) can be obtained using a Aubin-Nitsche type argument.

Corollary 4.2 For f ∈ Hs
ω∗(I), s ≥ −α/2, and b and c satisfying (3.1), there exists C > 0 such

that for φ satisfying (3.2) and φN satisfying (4.1)

‖φ − φN‖L2
ω(I) ≤ C N−(s̃+α) ‖φ‖

H s̃+α
ω (I)

≤ C N−(s̃+α) ‖f‖H s̃
ω∗ (I) . (4.8)
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Proof : Introduce ψ ∈ Hα/2
ω∗ (I) satisfying

Lα(1−r)ω
∗ ψ − bDω∗ ψ +

(
c − Db)ω∗ ψ = φ − φN .

As (φ − φN ) ∈ L2
ω(I), analogous to (3.25), we have that

‖ψ‖Hα
ω∗ (I) ≤ C ‖φ − φN‖L2

ω(I) . (4.9)

Then,

‖φ − φN‖L2
ω

=
(
(φ − φN ) , (φ − φN )

)
ω

=
(
(φ − φN ) , Lα(1−r)ω

∗ ψ − bDω∗ ψ +
(
c − Db)ω∗ ψ

)
ω

=
(
Lαr ω (φ − φN ) + bDω (φ − φN ) + c ω (φ − φN ) , ψ

)
ω∗

= B((φ − φN ) , ψ)

= B((φ − φN ) , ψ − ηN ) , for ηN ∈ YN , (using Galerkin orthogonality)

≤ C1 ‖φ − φN‖Hα/2
ω
‖ψ − ηN‖Hα/2

ω∗
, using (3.9) ,

≤ C N−(s̃+α/2) ‖φ‖
H s̃+α
ω

N−α/2 ‖ψ‖Hα
ω∗
, using (2.18) ,

≤ C N−(s̃+α) ‖φ‖
H s̃+α
ω
‖φ − φN‖L2

ω
, using (4.9) .

Finally, dividing through by ‖φ − φN‖L2
ω

and using (3.25) we obtain (4.8).

Error estimate for u− uN .
The weighted L2

ω−1 error estimate for u−uN , where uN := ω φN , follows easily from the definitions
of uN and the L2

ω−1 norm, and the estimate (4.8). The proof of the estimate for u − uN in the

H
α/2
ω−1 norm is not so straight forward. The following lemma is helpful in establishing the H

α/2
ω−1 error

estimate.

Lemma 4.3 Let 0 ≤ µ ≤ 1. For ζ ∈ Hµ
ω(I), then z := ω ζ ∈ Hµ

ω−1(I), with, for some C > 0,

‖z‖Hµ

ω−1 (I) ≤ C ‖ζ‖Hµ
ω(I) . (4.10)

Proof : For this proof it is convenient to use the definition of the Hs
(a,b)(I) spaces given by (2.9).

Let µ = 0, and ζ ∈ H0
ω(I) = L2

ω(I). Then, for z = ω ζ

‖z‖2H0
ω−1 (I) = ‖z‖2L2

ω−1 (I) =

∫
I
(1− x)−(α−β)x−β

(
ω ζ
)2
dx = ‖ζ‖L2

ω(I) = ‖ζ‖H0
ω(I) . (4.11)

Next, for µ = 1, let ζ ∈ C∞(I) ⊂ H1
ω(I), and let z = ω ζ. Note that Dz ∼ (1− x)α−βxβ−1ζ(x) +

(1− x)α−β−1xβζ(x) + (1− x)α−βxβDζ(x), and∫
I
(1− x)−(α−β)+1x−β+1

(
Dz
)2
dx ∼

∫
I
(1− x)(α−β)+1xβ−1ζ(x)2 dx +

∫
I
(1− x)(α−β)−1xβ+1ζ(x)2 dx

+

∫
I
(1− x)(α−β)+1xβ+1Dζ(x)2 dx

:= I1 + I2 + ‖Dζ‖2L2

(1−x)(α−β)+1xβ+1
(I) . (4.12)
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To bound I1 and I2 in terms of ‖ζ‖L2
ω(I) and ‖Dζ‖L2

(1−x)(α−β)+1xβ+1
(I) we use Hardy’s inequality [5,

Lemma 3.2].

I1 =

∫ 1/2

0
(1− x)(α−β)+1xβ−1ζ(x)2 dx +

∫ 1

1/2
(1− x)(α−β)+1xβ−1ζ(x)2 dx

.
∫ 1/2

0
xβ−1ζ(x)2 dx +

∫ 1

1/2
(1− x)(α−β)+1xβ+1ζ(x)2 dx

.
∫ 1/2

0
xβ+1(Dζ(x))2 dx +

∫ 1/2

0
xβ+1ζ(x)2 dx +

∫ 1

1/2
(1− x)(α−β)+1xβ+1ζ(x)2 dx (4.13)

(using Hardy’s inequality)

.
∫ 1/2

0
(1− x)(α−β)+1xβ+1(Dζ(x))2 dx +

∫ 1/2

0
ω ζ(x)2 dx +

∫ 1

1/2
ω ζ(x)2 dx

. ‖ζ‖2L2
ω(I) + ‖Dζ‖2L2

(1−x)(α−β)+1xβ+1
(I) . (4.14)

An analogous argument yields

I2 . ‖ζ‖2L2
ω(I) + ‖Dζ‖2L2

(1−x)(α−β)+1xβ+1
(I) . (4.15)

Combining (4.11), (4.12), (4.14), and (4.15), we obtain

‖z‖H1
ω−1 (I) ≤ C ‖ζ‖H1

ω(I) . (4.16)

Estimate (4.16) extends to ζ ∈ H1
ω(I), using the density of C∞(I) in H1

ω(I).

Finally, estimate (4.10) then follows from (4.11) and (4.16) using interpolation.

Corollary 4.3 For Hs
ω∗(I), s ≥ −α/2, and b and c satisfying (3.1), there exists C > 0 such that

for u determined from (3.2) and uN determined from (4.1)

‖u − uN‖L2
ω−1 (I) ≤ C N−(s̃+α) ‖f‖H s̃

ω∗ (I) , (4.17)

‖u − uN‖Hα/2

ω−1 (I)
≤ C N−(s̃+α/2) ‖f‖H s̃

ω∗ (I) . (4.18)

Proof : As commented above, (4.17) follows from the definition of uN and (4.2). The estimate
(4.18) follows from (4.10) (with z = u− uN , ζ = φ− φN ) and (4.7).

5 Numerical Experiments

In this section we present three numerical experiments to investigate the approximation of (1.1),(1.2)
using (4.1). We compare the approximation errors with those predicted by Corollary 4.2.
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For the numerical experiments we use f(x) = 1 and f(x) =

{
0, 0 < x ≤ 1/2 ,
1, 1/2 < x < 1

. For these choices

of f the true solution is unknown. In order to be able to compute a convergence rate for the
approximation a very accurate approximation (using N = 40) is used as the reference solution. For
the computational experiments the entries of the coefficient matrices, which require the evaluation
of integrals of weighted products of Jacobi polynomials on I, are evaluated using the Legendre-Gauss
quadrature rule with 200 nodes. This ensures sufficient accuracy in order to accurately measure the
error associated with the approximation scheme (4.1). We evaluate the norms of the error using the
norms associated with Definition 2.2.

The numerical convergence rate, κ, corresponding to ‖u40 − uN‖norm . N−κ, is presented in the
tables together with the errors. Also included are plots of the reference solution u40, and the error
u40 − uN .

In Experiment 1 the data is symmetric about x = 1/2. However the operator is not symmetric
(r = 0.2), corresponding to a preferred diffusion toward x = 1 over diffusion toward x = 0. This
is reflected in the solution being slightly skewed toward x = 1 (see Figure 5.1). In Experiment
2 the larger value of r (r = 0.3), together with a left-to-right drift (advection) term results in a
solution highly skewed to the right (see Figure 5.2). For Experiment 3, with the diffusion and drift
parameters as used in Experiment 2, the source term is taken to be zero for x ∈ (0, 1/2) and one
for x ∈ (1/2, 1). This data results again in a solution highly skewed to the right (see Figure 5.3).

Typically when approximating a function which is itself, or its derivative, singular at a point xs, the
error in the approximation will be significantly larger in a neighborhood of xs. In the approximation
scheme studied herein the correct endpoint behavior of the solution is built into the approximation.
Figures 5.1-5.3 contain plots of the error for the approximations. In Experiments 1 and 2 the largest
errors occur at the right hand endpoint, x = 1. Notable is that the errors in a neighborhood of
x = 1 are the same order of magnitude as the errors across the interval. For Experiment 3 the
largest errors occur in a neighborhood of the discontinuity in the source term, around x = 1/2.

Experiment 1. Fractional diffusion, reaction equation with C∞(I) data.
For this experiment we use α = 1.60, r = 0.20, b(x) = 0, c(x) = 5, and f(x) = 1. Theorem 2.2 states
that even with C∞(I) data the regularity of the solution is bounded. For this data β = 0.93, and
s̃ = min{∞, α+(α−β)+1, α+β+1} = 3.27. Corollary 4.3 predicts that ‖u− uN‖L2

ω−1 (I) ∼ N−4.87

and ‖u − uN‖Hα/2

ω−1 (I)
∼ N−4.07. The numerical convergence rates for the errors are presented in

Table 5.1, and are in good agreement with the predicted rates. A plot of the reference solution and
plots of the errors are given in Figure 5.1.

Table 5.1: Experiment 1: α = 1.60, r = 0.20, b(x) = 0, c(x) = 5, and f(x) = 1.

N ‖u− uN‖L2
ω−1

κ ‖u− uN‖Hα/2

ω−1

6 1.05E-04 5.36E-04
8 2.52E-05 4.97 1.56E-04 4.30
10 8.62E-06 4.81 6.22E-05 4.11
12 3.61E-06 4.77 2.97E-05 4.06
14 1.74E-06 4.76 1.59E-05 4.05

Pred. 4.87 4.07
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Figure 5.1: The plot of the reference solution u40(x) (left), and the plot of the errors for Experiment
1.

Experiment 2. Fractional diffusion, advection, reaction equation with C∞(I) data.
For this experiment we use α = 1.40, r = 0.40, b(x) = ex, c(x) = 5 + sin(x), and f(x) = 1. As
previously commented, even with C∞(I) data the regularity of the solution is bounded. In addition,
comparing Theorems 2.2 and 2.3, the presence of an advection term results in reduced regularity of
the solution of the fractional diffusion, advection, reaction equation to that of the fractional diffusion,
reaction equation. For this data β = 0.93, and s̃ = min{∞, α + (α − β) − 1, α + β − 1} = 1.01.
Corollary 4.3 predicts that ‖u − uN‖L2

ω−1 (I) ∼ N−2.41 and ‖u − uN‖Hα/2

ω−1 (I)
∼ N−1.71. The

numerical convergence rates for the errors are presented in Table 5.2, and are in good agreement
with the predicted rates. A plot of the reference solution and plots of the errors are given in Figure
5.2

Table 5.2: Experiment 2: α = 1.40, r = 0.40, b(x) = ex, c(x) = 5 + sin(x), and f(x) = 1

N ‖u− uN‖L2
ω−1

κ ‖u− uN‖Hα/2

ω−1

κ

12 5.67E-03 3.57E-02
14 4.11E-03 2.08 2.82E-02 1.53
16 3.09E-03 2.15 2.27E-02 1.62
18 2.38E-03 2.21 1.86E-02 1.71
20 1.87E-03 2.26 1.54E-02 1.80

Pred. 2.41 1.71

Experiment 3. Fractional diffusion, advection, reaction equation with f ∈ H1/2−ε
ω∗ (I).

For this experiment we use α = 1.70, r = 0.30, b(x) = 2, c(x) = 5, and f(x) =

{
0, 0 < x ≤ 1/2 ,
1, 1/2 < x < 1

.

In this case the regularity of the solution is limited by the the regularity of f . For this data
β = 0.91, and s̃ = min{1/2− ε, α+ (α− β)− 1, α+ β − 1} = 1/2− ε. Corollary 4.3 predicts that
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Figure 5.2: The plot of the reference solution u40(x) (left), and the plot of the errors for Experiment
2.

‖u − uN‖L2
ω−1 (I) ∼ N−2.2 and ‖u − uN‖Hα/2

ω−1 (I)
∼ N−1.35. The numerical convergence rates for

the errors are presented in Table 5.3, and are in good agreement with the predicted rates. A plot
of the reference solution and plots of the errors are given in Figure 5.3.

Table 5.3: Experiment 3: α = 1.70, r = 0.30, b(x) = 2, c(x) = 5

N ‖u− uN‖L2
ω−1

κ ‖u− uN‖Hα/2

ω−1

κ

12 3.71E-04 4.27E-03
14 2.69E-04 2.10 3.45E-03 1.38
16 2.08E-04 1.91 2.92E-03 1.26
18 1.61E-04 2.18 2.44E-03 1.50
20 1.30E-04 2.02 2.11E-03 1.40

Pred. 2.20 1.35
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[36] G. Szegő. Orthogonal polynomials. American Mathematical Society, Providence, R.I., fourth
edition, 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII.

[37] C. Tadjeran and M.M. Meerschaert. A second-order accurate numerical method for the two-
dimensional fractional diffusion equation. J. Comput. Phys., 220(2):813–823, 2007.

[38] H. Wang and T.S. Basu. A fast finite difference method for two-dimensional space-fractional
diffusion equations. SIAM J. Sci. Comput., 34(5):A2444–A2458, 2012.

[39] H. Wang and D. Yang. Wellposedness of variable-coefficient conservative fractional elliptic
differential equations. SIAM J. Numer. Anal., 51(2):1088–1107, 2013.

[40] Q. Xu and J.S. Hesthaven. Discontinuous Galerkin method for fractional convection-diffusion
equations. SIAM J. Numer. Anal., 52(1):405–423, 2014.

24



[41] G. M. Zaslavsky, D. Stevens, and H. Weitzner. Self-similar transport in incomplete chaos. Phys.
Rev. E (3), 48(3):1683–1694, 1993.

[42] M. Zayernouri and G.E. Karniadakis. Fractional Sturm-Liouville eigen-problems: theory and
numerical approximation. J. Comput. Phys., 252:495–517, 2013.

[43] X. Zheng, V.J. Ervin, and H. Wang. Spectral approximation of a variable coefficient fractional
diffusion equation in one space dimension. Appl. Math. Comput., 361:98–111, 2019.

[44] X. Zheng, V.J. Ervin, and H. Wang. An Indirect Finite Element Method for Variable-Coefficient
Space-Fractional Diffusion Equations and Its Optimal-Order Error Estimates. Commun. Appl.
Math. Comput., 2(1):147–162, 2020.

25


