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PAbstract

For the approximation of differential equations residual based error estimates provide upper bounds (usually gross

over estimates) to the true error. In this paper we present a procedure for determining values for the constants in the a

posteriori estimates which yield accurate estimates to the true error. Numerical experiments demonstrating the effective-

ness of the method are given.
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1. Introduction

A posteriori error estimation is concerned with determining the accuracy of a computed approximation
~u. The obvious difficulty is that the true solution u is unknown. In the approximation of a linear system,

Ax = b, an indication of how ‘‘close’’ an approximation ~x is to x can be found by computing the size of
the residual vector r, where r ¼ b� A~x. This approach when applied in the numerical approximation of dif-

ferential equations leads to residual based a posteriori error estimates (see [9]). These estimates are con-

structed as upper bounds and, when possible, lower bounds or local lower bounds. These bounds

contain multiplicative constants that depend on the true solution, the domain, and the interpolation prop-

erties of the approximating spaces. Computing the exact values for these constants is equivalent to comput-
U
N
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F

ing the true solution to the differential equation, which is virtually impossible in most, if not all, cases. Arbi-

trarily assigning values to these constants turns the a posteriori error estimates into error indicators. Such

indicators are useful in providing comparative information about the error but do not provide accurate

quantitative estimates for the true error. In this paper we present a method for improving the effectiveness

of these error indicators. Using statistical techniques the method applies a non-linear least squares ap-
proach to determine model parameters, using as data a sequence of approximate solutions. Using the values

of these parameters the true error in the approximate solution can then be estimated.

This paper is organized as follows. Section 2 begins by describing the general setting for the differential

equation and the a posteriori error estimate. In Section 2.1 the construction of the sequence of approximate

solutions is described. The procedure for determining the model parameters is presented in Section 2.2. Sec-

tion 3 contains examples which demonstrate the effectiveness of the method for both linear and non-linear

problems.
R
O2. Problem definition

Consider a general differential operator L that defines a system of differential equations of the form
Lu ¼ f in X; and u ¼ g on C; ð2:1Þ

D
Pwhere X � Rn; ðn ¼ 2; 3Þ is a polygonal domain with boundary C. Let uh 2 Xh be a finite element (FE)

approximation to the solution u 2 X of (2.1), where Xh is a finite dimensional subspace of X with spatial

mesh parameter h. Assume that (2.1) fits the general framework presented by Verfürth in [9] for construct-

ing residual based a posteriori error estimates. Using this framework a residual based a posteriori error esti-

mate for (2.1) can be constructed in the general form
 E

ku� uhkX 6 c1R1 þ c2R2 þ c3R3 þ c4R4; ð2:2Þ
C
O
R
R
E
C
T

where c1, c2, c3 and c4 are constants, and R1, R2, R3 and R4 represent the ‘‘strong form’’ residual, the con-
sistency error, the oscillation error, and the residual of the approximating algebraic system, respectively.

The ‘‘strong form’’ residual represents the residual of the governing equation (defined by ðLuh � f Þ) plus
the edge jump terms which result from rewriting the weak form as a strong form. The consistency error

correspond to the regularization procedure used in computing an approximate solution uh. The oscillation

error comes from approximating the forcing term on the right hand side of (2.1) in a finite dimensional

space (for example piecewise linears). The residual of the algebraic system measures the error in the solution

of the algebraic system of approximating equations.

The oscillation error, R3, is usually a higher order term when compared to the ‘‘strong form’’ residual
and the consistency error. If the approximating algebraic system is solved up to round off error then R4

is also negligible, relative to the ‘‘strong form’’ residual and the consistency error terms. So, under appro-

priate conditions R3 and R4 both have little influence on the a posteriori error estimate (2.2).

For low order methods, Carstensen and Verfürth [2] showed that edge jump terms dominate the a pos-

teriori error estimates for elliptic problems. Also, for a wide variety of stabilization techniques R1 bounds

R2 from above (see for example [4]). Thus, in those cases where R1 either dominates, or bounds R2, the a

posteriori error estimate reduces to
U
N

ku� uhkX 6 c1R1 ¼ c1
X
T

gT ðuhÞ
2

( )1=2

. ð2:3Þ
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In (2.3) gT represents the local ‘‘strong form’’ residual of (2.1) plus the jump term of uh along the boundaries

of the mesh element T with its neighbors.

In general, if the mathematically computable values for the constants c1, c2, c3, c4 were used in (2.2) and

(2.3), a gross over-estimate for the true error in the approximate solution would result. This is because (2.2)

must account for the worst case scenerio at each step of the derivation. Ideally, we want a value for c1 in
(2.3) that satisfies the equality part of the inequality, i.e. a value of c1, say c*, such that
ku� uhkX � c�R1 ¼ c�
X
T

gT ðuhÞ
2

( )1=2

. ð2:4Þ
F
P
R
O
OFor some problems, e.g. the Poisson problem, it can be shown that c1 depends on the minimum angle of the

mesh, the coercivity and continuity constants for the problem, and the interpolation properties of the

approximating spaces (see [2]). For non-linear problems, c1 also depends on the norm of the inverse of

the linearized operator about the true solution (see [9]).
In general, the one parameter model (2.4) was not sufficient to accurately estimate the true error in the

approximation (see Example 4, Fig. 6). We therefore consider a two parameter model described in the fol-

lowing assumption.

Assumption A. Given a general problem of the form (2.1) for which the error estimate (2.3) is valid, then
there exists positive constants c* and h such that
Dku� uhkX ¼ c�Rh
1 ¼ c�

X
T

gT ðuhÞ
2

( )h=2

. ð2:5Þ
N
C
O
R
R
E
C
T
EThe objective of this paper is to develop a method for estimating c* and h from data generated through a

sequence of approximate solutions.

Remarks.

1. We have investigated including R2 and/or R3 in (2.5). Data exploration and preliminary statistical anal-

ysis showed strong collinearity between all three variables (R1, R2, R3). With high levels of collinearity, a

multiple regression model loses its ability to show the relative importance of the effects of different pre-

dictor variables on the response variable. Thus, small changes in the data may cause large fluctuations in

the predicted variable; an undesirable effect. A possible remedy for this effect is to drop variables asso-

ciated with less significant regression coefficients from the model. In our investigation R1 was consis-

tently associated with the most significant regression coefficient.
2. The asymptotic value for h in (2.5) is 1, which comes from the upper bound estimate (2.3). However, our

interest in this paper is on accurately estimating the error, not giving an upper bound for the error, in a

practical computation. For such computations the asymptotic values for the constants in the upper

bound are generally not the best choice to accurately estimate the error. (Clearly, for computations

on a sufficiently fine mesh the value for h must be approximately 1.)

3. A completely rigorous mathematical analysis for an equality estimate for the error is not possible. (For a

rigorous mathematical analysis of an upper bound for the error see, for example [2,4,9].) Following in

Sections 2.1 and 2.2 we present the mathematical motivation for the proposed procedure for construct-
ing a posteriori error estimates.
U
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2.1. Construction of a sequence of approximate solutions

For a given problem, for which the a posteriori error estimate (2.3) holds, letXh;i � X andPh,i = Ph,i(X),
i = 1, . . .,n + 1, represent a sequence of successively generated finite dimensional spaces and meshes (uni-

form or adaptive refinements), respectively. Let u1,u2, . . .,un+1 represent the corresponding sequence of
approximate solutions to (2.1) computed using the meshes Ph,i, i = 1, . . .,n + 1. Also, for ease of notation,

let
Fgðui;Ph;iÞ :¼
X
T2Ph;i

gT ðuhÞ
2

( )1=2
and let
 O

oscðf ;Ph;iÞ :¼ c3R3 þ c4R4;
R
E
C
T
E
D
P
R
Owhere R3 and R4 represent the oscillation error and the error in solving the algebraic system corresponding

to the mesh Ph,i, respectively.
We make the following two assumptions [7].

Assumption I (Marking strategy). For a given mesh Ph,i, i = 1, . . .,n + 1, there exists a submesh,bPh;i � Ph;i such that

1. gðui; bPh;iÞ P lgðui;Ph;iÞ,
2. oscðf ; bPh;iÞ P moscðf ;Ph;iÞ,

where 0 < l,m < 1.

Assumption II (Refinement strategy). The refinement strategy used to generate successive approximations

satisfies:

1. Xh;i � Xh;iþ1 for i = 1, . . .,n,
2. If T is an element of Ph,i marked for refinement by the marking strategy, then when T is refined, the

refinement process

(a) generates at least one interior node in T,

(b) generates at least one interior node on each of the faces of T.
RIn [7] it was demonstrated that Assumptions I and II are necessary (may not be sufficient) to guarantee

an asymptotically convergent sequence of discrete approximations.
Assume that the sequence of approximate solutions u1,u2, . . .,un+1 is asymptotically convergent (with re-

spect to the norm k � kX) to u. Next, define the sequence, {Yi}, i = 1, . . .,n, by
C
OY 1 :¼ ku2 � u1kX;

Y 2 :¼ ku3 � u2kX;
� � � � � �

Y n :¼ kunþ1 � unkX.

ð2:6Þ
N

In addition, let {Zi}, i = 1, . . .,n, be given by
U
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Z1 :¼ ku� u1k2X � ku� u2k2X
��� ���1=2;

Z2 :¼ ku� u2k2X � ku� u3k2X
��� ���1=2;
� � � � � �

Zn :¼ ku� unk2X � ku� unþ1k2X
��� ���1=2.

ð2:7Þ
R
O
O
FAssumptions I and II guarantee that progress is being made at each step, i.e. ui+1 is a better approximation

to u than ui. Additionally these assumptions guarantee that stagnation does not occur in the approximation

process. That is, for i = 1, . . .,n there is no i such that

1. kuiþ1 � uikX ¼ 0,

2. jku� uik2X � ku� uiþ1k2Xj
1=2 ¼ 0.

In this setting the sequences {Zi} and {Yi} are guaranteed to converge to zero.

Next, let Xh;i and Xh;iþ1 represent two finite element spaces such that Xh;i � Xh;iþ1 � X and assume that

k � kX is an inner product norm. Define �ui and �uiþ1 as the orthogonal projections of u with respect to the

norm k � kX in the spaces Xh;i and Xh;iþ1, respectively. Also, let a ¼ u� �ui and b ¼ u� �uiþ1 then
Pða� b; a� bÞX ¼ ða; aÞX þ ðb; bÞX � 2ða; bÞX;
ka� bk2X ¼ kak2X þ kbk2X � 2ða; bÞX.

ð2:8Þ
DNote that (a � b) is orthogonal to b. Consequently,
ka� bk2X ¼ kak2X þ kbk2X � 2ða� b; bÞX � 2ðb; bÞX ¼ kak2X � kbk2X. ð2:9Þ
T
E

If we let ui and ui+1 be finite element approximations of u in Xh;i and Xh;iþ1, respectively and assume that

ui � �ui and uiþ1 � �uiþ1 then, for a � u � ui and b � u � ui+1
ka� bk2X � kak2X � kbk2X. ð2:10Þ
CUsing (2.5) and (2.10), we have for 1 6 i 6 n
R
Ekui � uiþ1k2X � ku� uik2X � ku� uiþ1k2X

¼ c�2 gðui;Ph;iÞ2h � gðuiþ1;Ph;iþ1Þ2h
n o

;

kui � uiþ1kX � c� gðui;Ph;iÞ2h � gðuiþ1;Ph;iþ1Þ2h
��� ���1=2.

ð2:11Þ
RIn compact form we can then write the resulting system of equations as
fY ig � c�fX iðhÞg; ð2:12Þ
O

where
 CX iðhÞ :¼ gðui;Ph;iÞ2h � gðuiþ1;Ph;iþ1Þ2h
��� ���1=2 ¼ jR2h

1i
� R2h

1iþ1
j1=2. ð2:13Þ
U
NNote that for any given problem, {Yi} is computable from the sequence of approximate solutions while

{Xi} is computable up to h from the sequence of approximate solutions and the given problem data.

The parameters c* and h in (2.12) are the same as the constants in (2.5). Thus, approximating values for

c* and h that yield an equality or almost an equality in (2.12) will give us approximate values for c* and

h that are usable in (2.5). Our main objective is therefore to develop a technique for determining values
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for c* and h such that an approximate equality holds in (2.12) for a given problem and a sequence of

approximate solutions.

In the case where (2.1) describes a linear second order elliptic operator which has an underlying inner

product, we have the following lemma.

Lemma 2.1 [7]. Suppose that the norm k � kX is defined by kvk2X :¼ aðv; vÞ, where a( Æ , Æ ) represents the

bilinear form corresponding to the left hand side of (2.1). If Ph is a refinement of PH such that XH � Xh � X,

where XH and Xh are the finite element spaces corresponding to PH and Ph respectively, then the following

relation holds:
 FkuH � uhk2X ¼ ku� uHk2X � ku� uhk2X. ð2:14Þ
OThis lemma clearly demonstrates that there is a class of problems for which the approximate equality in

(2.12) can be replaced with an equality. The proof of the lemma is a consequence of the Galerkin orthog-

onality and Pythagoras� theorem.
 O
T
E
D
P
R2.2. A statistical approach for estimating c* and h

In this section we use ideas from statistics to develop a procedure for estimating values for c* and h for a
given problem whose a posteriori error estimate is of the form (2.3). We firstly show that a simple linear

model for the relationship between {Yi} and {Xi} is not appropriate. A two model approach is then pre-

sented and analysed.

A least squares data fit for {Yi} and {Xi} can be constructed using the following two step procedure.

Step 1: Generate the data Y = {Yi} and X = {Xi} defined by (2.6) and (2.13), respectively, satisfying
Assumptions I and II.

Step 2: With Y as the predicted variable and X as the predictor, estimate the parameters c* and h that yield

the line of best fit for the model
Y i ¼ c�X iðhÞ þ ei; ð2:15Þ
E
C

where ei represents the ith error term.
Values for c* and h may be determined using a Maximum Likelihood Function (MLF) Lð�; �; �Þ, defined

by the functional
 R

Lðc�; h; r2Þ :¼ 1

ð2pr2Þn=2
exp � 1

2r2

Xn
i¼1

½Y i � c�X iðhÞ�2
" #

; ð2:16Þ
R

where r2 is the variance of ei�s. To obtain the least squares line of best-fit of the form (2.15) for a given data

set, it is straight forward to observe that the least squares line is the solution to the problem
O

max
c�>0;h>0

fLðc�; h; r2Þg ¼ max
c�>0;h>0

1

ð2pr2Þn=2
exp � 1

2r2

Xn
i¼1

½Y i � c�X iðhÞ�2
" #( )

. ð2:17Þ
U
N
C

The procedure for finding c* and h that maximizes Lðc�; h; r2Þ is known as the method of maximum like-

lihood. A priori knowledge of our data source suggest that c* > 0 and h > 0. Thus, for any given data set,

appropriate parameter estimates bc� and bh should be positive.

An underlying assumption of the model is that the ei�s are independent and normally distributed with

mean zero and constant variance r2. Having determined the parameter estimates bc� and bh, this assumption

can be investigated by plotting the model residuals, ri ¼ Y i � bc�X iðbhÞ against the Y-values (See Fig. 1).
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Fig. 1. Sample residue plots: (a) Sample residual plot for (2.15) and (b) sample residual plot for (2.20).
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P
RThese plots, in general, have a ‘‘megaphone’’ shape indicating that the error variance r2 is not constant but

grows with increasing Y-values. This violates the underlying assumption of constant variance.

Before applying a transformation to the likelihood estimator, with the objective of satisfying the normal-

ity requirement, let us examine the underlying objectives.

Consider the two models below:
DModel A : e ¼ c�Rh
1 þ eE; ð2:18Þ

Model B : Y ¼ c�X ðhÞ þ eY ; ð2:19Þ
E
C
T
Ewhere e ¼ ku� uhkX is the true error, eE and eY represent the Models A and B residuals, respectively. Given

appropriate values for c* and h we use Model A to estimate the true error in a given approximate solution

uh. Since the ei�s are not known we cannot estimate c* and h through Model A. So, we use Model B to esti-

mate appropriate values for c* and h that can be used in Model A. Satisfying the normality assumption in

Model B may not be sufficient for obtaining values of c* and h that are optimal for Model A.

First, let us address the ‘‘megaphone’’ shaped residual plots of Model B. Due to the fact that the data

({Xi} and {Yi}) usually spans several orders of magnitude, absolute errors from Model B will most likely

show the ‘‘megaphone’’ shaped residual plots. Through numerical experiments, the relationship between
jeYj and the predicted Y-values, bY , is in general linear. This has led to the transformation of Model B as
R�Y ¼ c� �X ðhÞ þ �eY ; ð2:20Þ
U
N
C
O
Rwhere �Y i ¼ 1; and �X iðhÞ ¼ X iðhÞ=Y i.

The corresponding residuals for (2.20) are plotted in Fig. 1(b). With the exception of the two largest (in

magnitude) values, the residues lie in a band centered about zero, indicating the assumption of �eY having

constant variance is reasonable. Displayed in Fig. 2 is a normal probability plot for the residues of (2.20).

Fig. 2(a) is a normal probability plot using all the residual values; Fig. 2(b) a normal probability plot with
the two largest (in magnitude) residues omitted. In a normal probability plot the nearer the points are to

lying on a straight line the more likely the underlying distribution is close to a normal probability distribu-

tion. Based on Fig. 2(b), the assumption that �eY is normally distributed also seems reasonable.

Secondly, the raw data, {Xi} and {Yi} are not equally reliable as functions of i. The Xi�s and Yi�s become

more reliable as i increases since the adaptive process computes a better solution each time a new mesh is

constructed. Therefore, the estimates for c* and h should improve by placing more weight on the data as i
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Rincreases, provided the weights are properly chosen. So, the goal is to determine appropriate weights needed
to compensate for unequal data reliability so as to better estimate suitable values of c* and h for Model A.

Model A is a transformation of a model of the form
 P
e � cR1. ð2:21Þ
E
DThe variability of the residuals from the model (2.21) may be used as an indicator for the reliability of the

raw data. That is, the larger the variance associated with a data point the less reliable the data point, while

the smaller the variance the more reliable the data point. Based on this criteria we therefore construct
appropriate weights needed to account for unequal data reliability.

Following the approach in [8], let x = cR1, and define e(x) as
TeðxÞ :¼ xh ¼ c�Rh
1; ð2:22Þ
where c* = ch. A linear approximation of e(x) about the point x0 is given by
CeðxÞ � xh0 þ hxh�1
0 ðx� x0Þ. ð2:23Þ
R
EIn the analysis of (2.22), assuming the residuals ri are normally distributed with mean zero and constant

variance r2, N(0,r2), for the least squares parameter fit we minimize 1
r2

Pn
i¼1r

2
i (see (2.17)). However, in

(2.21) the ri�s are Nð0; r2
i Þ; i ¼ 1; . . . ; n (i.e. not constant variance) hence for the least squares parameter

fit we minimize instead
Pn

i¼1
1
r2i
r2i . Now, the least squares model corresponding to (2.22) may be written

as a weighted least squares model for (2.21) as
U
N
C
O
R1

r2

Xn
i¼1

r2i ¼
Xn
i¼1

1

r2
eiðxÞ � xh0i
� �2 ð2:24Þ

�
Xn
i¼1

1

r2
hxh�1

0i
ðxi � x0iÞ

� �2 ð2:25Þ

¼
Xn
i¼1

1

r2
h2x2ðh�1Þ

0i
xi � x0ið Þ2 ð2:26Þ

¼
Xn
i¼1

1

r2
wi xi � x0ið Þ2 ð2:27Þ

¼
Xn
i¼1

1

r2
i
xi � x0ið Þ2; ð2:28Þ
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where
wi ¼
h2

x2ð1�hÞ
0i

ð2:29Þ
and
r2
i ¼

r2

wi
. ð2:30Þ
O
F

From (2.29) we have weights associated with the raw data reliability. Note that for equally reliable data

corresponding to h = 1, wi = 1 for all i. On the other hand if 0 < h < 1 or h > 1, then clearly the wi�s are

not constant.

Thus, appropriate values for c* and h for Model A with data reliability accounted for may be obtained
by minimizing
R
O

1

r2

Xn
i¼1

wiðei � c�Rh
1i
Þ2. ð2:31Þ
Since x0 is an estimator for e,
 P
wi ¼

h2

e2ð1�hÞ
i

ð2:32Þ
E
D

defines appropriate weights for minimizing (2.31).

As mentioned above, as the ei�s are unknown c* and h must be obtained through Model B.

Analogous to Model A, Model B is a transformation of a model of the form
TY i � cX i :¼ jR2
1i
� R2

1iþ1
j1=2. ð2:33Þ
From (2.11) and (2.12) we have
E
C

Y i � c�Rh
1i

1� gðuiþ1;Ph;iþ1Þ2h

gðui;Ph;iÞ2h

 !1=2

. ð2:34Þ
RAssuming that gðuiþ1;Ph;iþ1Þ � ~lgðui;Ph;iÞ, for 0 < ~l < 1 we have Y i � c�ð1� ~l2hÞ1=2Rh
1i
, which is equiv-

alent to (2.22). Following the same approach used in arriving at (2.31) with Model B we minimize

equivalently
 R1

r2
�

Xn
i¼1

w�iðY i � c�X iðhÞÞ2; ð2:35Þ
C
O

where r2
� is the variance associated with the Model B residuals, and w* the equivalent weights accounting

for unequal data reliability.

By analogy to (2.32),
Nw�i ¼
K

Y 2ð1�hÞ
i

ð2:36Þ
Udefines appropriate weights for minimizing (2.35) while accounting for unequal data reliability. The con-
stant K in (2.36) is chosen such that

P
iw�i ¼ 1.
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Note that for the case h > 1 the choice of weights (2.36) have the undesired property of assigning more

weight to less reliable data. However if h > 1, let # = 1/h and in place of (2.22) consider instead
eðyÞ :¼ y# ¼ cR1. ð2:37Þ
A linear approximation of the model transformation (2.37) then yields a similar choice for the weights,
w�i ¼
K

Y 2ð1�#Þ
i

ð2:38Þ
F

O
Osatisfying the requirement of more weight to the more reliable data points.

In numerical simulations, the cases where h � 1 are rare. In most of the cases we have investigated, the

value for h fell within 0 < h 6 1.

In summary, the corresponding weighted, relative least squares maximization problem for estimating

optimal values for c* and h is given by
Rmax
c�>0;h>0

fLðc�; h;w�Þg ¼ max
c�>0;h>0

Yn
i¼1

w�i
2p

� �1=2" #
exp � 1

2

Xn
i¼1

w�i ½�Y i � c� �X iðhÞ�2
" #( )

. ð2:39Þ
R
E
C
T
E
D
P

Note that the weights w* are aimed at accounting for unequal data reliability and not as normalizing factors
for unequal error variances.

The estimated values for c* and h are then used in Model A to estimate the true error in each approx-

imate solution.

Below is a summary of the algorithm used:

Algorithm A

Given u1,u2, . . .,un+1,

1. Using (2.6) and (2.13) generate {Yi} and {Xi(h)} respectively.

2. Set wi = 1 and obtain parameter estimates for c* and h from (2.39).

3. Using the current parameter estimate for h, construct a new set of weights based

on (2.36) or (2.38).

4. Compute new parameter estimates from (2.39) using the new set of weights.

5. If the parameter estimates for c* and h have converged, stop.Else, go to step 3.

In our investigations c* and h in Algorithm A are usually found in less than 6 iterations through steps 3–

5.
 R
N
C
O3. Numerical experiments

In this section we present numerical results from applying Algorithm A to a posteriori error estimation.

For the first three examples we consider the Poisson equation where the solutions are chosen to test the

robustness of the method. For the second set of examples we consider a non-linear system of equations

which arise in the modeling of viscoelastic fluid flow.

For comparison, for Examples 2 and 4 we include in Figs. 4 and 6(a) predicted errors (Predicted L.S.

Error) obtained from using the least squares fit for Yi = c*Xi, i.e. c* satisfying (2.17) for h = 1.
U
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3.1. The Poisson problem

Consider the Poisson equation with homogeneous Dirichlet boundary conditions in a polygonal domain

X � R2 with boundary C,
�Du ¼ f in X; and u ¼ 0 on C. ð3:40Þ

Using the standard Galerkin approach, the continuous and discrete weak formulations of (3.40) are given

respectively as: find u 2 X ¼ H 1
0ðXÞ :¼ fv 2 H 1ðXÞ : v ¼ 0 on Cg such that
FZ
X
ru � rvdA ¼

Z
X
fvdA; 8v 2 X ð3:41Þ
and find uh 2 Xh � X ¼ H 1
0ðXÞ such that
 OZ

X
ruh � rvh dA ¼

Z
X
fvh dA; 8vh 2 Xh. ð3:42Þ
P
R
O

In [2], Carstensen and Verfürth developed H1-norm and L2-norm a posteriori error estimates for problem
(3.40) for uh the linear finite element approximation, given by (3.42). They showed that the a posteriori er-

ror estimates are dominated by edge jump terms. By omitting the element residual in the standard residual

error estimator they proved the following theorem.

Theorem 3.1 [2]. Let u and uh be the unique solutions to problems (3.41) and (3.42) respectively. There are
constants c1 and c2 that depend on the shape regularity constant and on triangulation properties (see [2], Section

2) such that
E
D

ku� uhk1;2 6 c1
X
E

g2E

( )1=2

þ c2 inf
fh2Xh

X
T2Ph;i

jT jkf � fhk20;T

( )1=2

; ð3:43Þ
U
N
C
O
R
R
E
C
Twhere gE ¼ h1=2E k½ruh � n�Ek0;E, and jTj is the area of the triangle T.

The second term in (3.43) is the oscillation error term and in general is a higher order term and can be

ignored in an adaptive procedure. Thus the error estimator above, with c2 = 0, is of the form (2.3). There-
fore, the true error can be estimated through a relationship of the form (2.5). We apply Algorithm A to

estimate parameter values for c* and h, and then use these values to estimate the true error in a sequence

of approximate solutions.

3.1.1. Numerical examples

Here we present three numerical examples based on the a posteriori error estimate in Theorem 3.1.

Example 1. In this example we let uðx; yÞ ¼ ð1� ekx cosð2pyÞÞ2 þ k
2p e

kx sinð2pyÞ
� �2

, with X defined as

X :¼ (0,1) · (�0.5,0.5). The right hand side, f, and the boundary condition are then determined from u.

The parameter k is defined as k ¼ Re2
2
� Re2

4
þ 4p2

� �1=2
with Re = 40. Note that u(x,y) 2 C1(X).

Example 2. In this example we let uðx; yÞ ¼ ðx2 þ y2Þ1=4 sin 1
2
tan�1 x�y

�x�y

� �h i
, f = 0, with an L-shaped domain

defined as X = (�1,1) · (�1,1) � (0,1) · (0,1). The boundary data is then determined by restricting u to the

boundary oX. Note that $u(x,y) has a square root singularity at the origin.

Example 3. In this example we let uðx; yÞ ¼ tan�1½60ðx2 þ y2 � 1.0Þ�, with the domain X defined as
X :¼ (�1.25,1.25) · (�1.25,1.25). The right hand side, f, and the boundary data are then determined from

u. The solution u(x,y) has a rapid transition across the curve x2 + y2 = 1.
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Let Itr represent the ith iterate in the sequence of approximate solutions, while N represents the number

of degrees of freedom associated with the approximating linear system. For ui an approximation of u, we

denote the error in the H1 norm as EH1 , and the corresponding predicted error as eEH1 . We also compute the

effectivity index, Ieff, as
Table

Examp

N

67

130

260

510

10,20

20,20

40,40

80,40

160,80

320,80
I eff :¼
eEH1

EH1

.

R
O
O
FExample 1 illustrates the method for the case of a smooth solution. The results presented in Table 1 and

Fig. 3 show that the true error is determined to within 2%. For this example the approximations were gen-

erated using uniform refinements of the preceeding mesh. Similar results were obtained for approximations

from adaptively refined meshes.

The results for Example 2 are presented in Table 2 and Fig. 4. To illustrate the robustness of the method
the sequence of approximate solutions was generated using adaptively refined meshes. From the upper half

of Table 2 observe that the effectivity index oscillates between 75% and 98%. The solution for this example

has a point singularity in the derivative of the true solution and demonstrates the need for Assumption II.

The mesh refinement algorithm (described in [6]) used in this study does not satisfy completely the condi-

tions of Assumption II. The refinement algorithm actually requires three levels of refinement to fully satisfy

the conditions of Assumption II. The point singularity in the derivative makes the solution highly sensitive
U
N
C
O
R
R
E
C
T
E
D
P

1

le 1: True error, predicted error, and effectivity index using uniform refinements (c* = 0.2104, h = 1.0216)

EH1 eEH1 Ieff

6 0.51161 0.49696 0.97

1 0.38917 0.36819 0.95

1 0.25596 0.25419 0.99

1 0.19523 0.19108 0.98

1 0.12785 0.12763 1.00

1 0.09769 0.09660 0.99

1 0.06387 0.06349 0.99

1 0.04886 0.04820 0.99

1 0.03192 0.03143 0.98

1 0.02443 0.02390 0.98

103 104 105

10-1

Degrees of Freedom

H
1 –E

rr
or

Predicted Error
True Error

Fig. 3. Example 1: True error and predicted error vs. degrees of freedom using uniform refinements.



E
C
T
E
D
P
R
O
O
F

425

426

427

428
429

430

431

432

433

434

435

436
437

438

439

10
3

10
4

10
5

10-2

10-1

Degrees of Freedom

H
1 –E

rr
or

Predicted Error
True Error
Predicted L.S. Error

Fig. 4. Example 2: True error, predicted error and predicted l.s. error (c* = 0.2218) vs. degrees of freedom using adaptive refinements.

Table 2

Example 2: True error, predicted error, and effectivity index using adaptive refinements (c* = 0.2177, h = 0.9315)

Itr N EH1 eEH1 Ieff

1 645 0.16138 0.15794 0.98

2 771 0.13514 0.10171 0.75

3 932 0.11600 0.11310 0.97

4 1149 0.09715 0.07420 0.76

13 7567 0.02398 0.02372 0.99

14 9301 0.02051 0.01781 0.87

15 11,428 0.01791 0.01786 1.00

16 13,989 0.01543 0.01384 0.90

26 98,163 0.00440 0.00443 1.01

27 118,651 0.00395 0.00412 1.04

28 143,395 0.00353 0.00360 1.02

29 173,195 0.00318 0.00332 1.04

30 209,173 0.00287 0.00294 1.03
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U
N
C
O
R
Rto the orientation of mesh elements. A single level of refinement may therefore add very little to the approx-

imating finite element space, while at the same time resulting in an increase in the value of R1. As shown in

Fig. 4, this phenomenon may lead to oscillations in the predicted errors. As in the convection-dominated

problems a flow-oriented mesh can remedy this effect (see [5]). Alternatively, we can just proceed with the
solution process until these mesh effects are suitably diminished as h ! 0. With the mesh effects diminished,

we may improve the predicted errors by truncating the data eliminating the highly oscillatory part of the

data. For this example, c* and h are predicted using the last 15 data values. These parameter values are

then used in predicting the errors in Table 2 and Fig. 4.

Example 3 investigates another important phenomenon; non-physical oscillations in the approximate

solutions. Starting with a coarse mesh, and a strongly varying forcing term, non-physical oscillations occur

in the approximate solutions. These oscillations make the error estimators highly unreliable at the begin-

ning of the adaptive process, since R3 and R4 are of the same order as R1 (and R2). As in Example 2, accu-
rate error predictions require that the adaptive procedure sufficiently refine the mesh to make the current

error estimator (R1) much larger than data oscillation (R3 + R4), thus satisfying the initial assumption that

R3 and R4 are higher order terms relative to R1 (and R2). So, for Example 3 the data used in estimating the
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F

parameters c* and h, corresponds to the data from iterations 12–20 of the adaptive process. These param-

eter values are then used in predicting the errors in Table 3 and Fig. 5(b). Fig. 5(a) shows the predicted

errors when all the data is used in estimating the parameter values c* and h.

3.2. The Oldroyd-B model for viscoelastic fluid flow

In this section we apply Algorithm A to a viscoelastic fluid flow problem. Consider an incompressible,

time independent, creeping, isothermal viscoelastic fluid flowing in a bounded, connected, open domain

X � Rn ðn ¼ 2; 3Þ, with Lipschitz boundary C = oX and Cin � C denoting the inflow boundary. The system

of governing equations for such a fluid flow satisfying an Oldroyd-B constitutive law is given by
Table

Examp

Itr

1

2

5

6

9

10

13

14

17

18

19

20

These

Fig. 5.

data u
U
N
C
O
R
R
E
C
T
E
D
P
R
O
O

3

le 3: Using the bottom 9 data points we estimate a value for c* (c* = 0.2244) and h (h = 0.9864)

N EH1 eEH1 Ieff

441 63.1496 22.5052 0.36

597 52.3591 16.2876 0.31

1609 20.1439 10.9946 0.55

2259 15.5921 10.3009 0.66

6457 6.93781 6.50190 0.94

9525 5.47825 5.28891 0.97

35,032 2.71624 2.71389 1.00

55,764 2.16260 2.16196 1.00

203,958 1.16419 1.16166 1.00

302,110 0.95926 0.95238 0.99

459,369 0.77522 0.77675 1.00

682,542 0.64805 0.64386 0.99

values are then used in predicting the true error.

10
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100

101

Degrees of Freedom

H
1 –E

rr
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True Error

(b)

H
1 –E

rr
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Example 3: True error and predicted error vs. degrees of freedom. (a) Using all the data to estimate c* and h and (b) truncated

sed in estimating c* and h.
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Fig. 6. Example 4: Plots of the true error, predicted error and predicted 1.s. error vs. degrees of freedom. (a) k = 0.1: True error,

predicted error (c* = 7.6719, h = 0.5512), and predicted l.s. error (c* = 3.8039) and (b) k = 1.0: True error and predicted error

(c* = 7.4809, h = 0.5436).
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D
P
R

sþ k½ðu � rÞs� ðruÞTs� sru� � 2aDðuÞ ¼ 0 in X; ð3:44Þ
�2ð1� aÞr �DðuÞ � r � sþrp ¼ f in X; ð3:45Þ
r � u ¼ 0 in X; ð3:46Þ
u ¼ u0 on C; ð3:47Þ
s ¼ s0 on Cin; ð3:48Þ
E
C
T
Ewhere s is the viscometric stress tensor, u is the fluid velocity, p is the pressure, k is the Weissenberg1 num-

ber, DðuÞ ¼ 1
2
ðruþ ðruÞTÞ is the deformation tensor, and a is a model parameter.

Remark. In the case u0 = 0, Cin = ;, hence no boundary condition for the stress is necessary.

Let ½uh; sh; ph� 2 Xh � X :¼ ½ðH 1
0ðXÞÞ

n � ðH 1ðXÞÞn�n
sym � L2

0ðXÞ�, where ðH 1ðXÞÞn�n
sym is a symmetric tensor

space of square integrable functions whose gradients are also square integrable, L2
0ðXÞ is the scalar space

of square integrable functions with mean zero. For our computations we use Xh :¼ ½ðP2Þn�
ðP1Þn�n

sym � P1� where Pk is the space of continuous piecewise polynomials of order k.

Using Streamline Upwind Petrov/Galerkin (SUPG) stabilization for the transport term in the constitu-

tive equation (3.44), we have a variational form for the system (3.44)–(3.47) (with u0 = 0) given by
O
R
R

hF hð½uh;sh;ph�Þ; ½vh;rh;qh�i :¼
Z
X
ðshþk½ðuh �rÞsh�ðruhÞTsh� shruh��2aDðuhÞÞ : ðrhþdðhT ;uhÞuh �rrhÞdA

þ
Z
X
ðð2ð1�aÞDðuhÞþ sh�phIÞ : rvh� f � vhÞdA

þ
Z
X
qhr�uhdA; 8½vh;rh;qh� 2Xh; ð3:49Þ
where
N
C

dðhT ; uhÞ ¼
chT jT j1=2

kkuhk0;T
; if uh 6¼ 0 on T ;

0; if uh ¼ 0 on T ;

8><>:
U

e Weissenberg number represents a measure of the ratio of the magnitude of the elastic forces to that of the viscous forces [1].
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where jTj represents the area/volume of T.

Using the general framework in [9], a residual based a posteriori error estimate has been constructed in

[4] for the system (3.44)–(3.47) (with u0 = 0) as summarized in the following theorem.

Theorem 3.2 [4]. Assume that there exists subspaces XD � X, Y �
D � Y � such that the variational solution,

[u,s, p], of (3.44)–(3.47) (with u0 = 0) satisfies [u,s, p] 2 XD and DF ð½u; s; p�Þ 2 IsomðXD; Y �
DÞ. Then, for

[uh,sh,ph] 2 Xh � XD, sufficiently close to [u,s, p], we have the following a posteriori error estimate.
O
Ffku� uhk21;2 þ ks� shk21;2 þ kp � phk

2

0;2g
1=2

6 c1
X
T

g2T

( )1=2

þ c2
X
T

ðkuhk1;TdðhT ; uhÞÞ
2kRsk20;2;T

( )1=2

þ c3
X
T

h2Tkf � pk;T f k20;2;T

( )1=2

; ð3:50Þ
where
P
R
O

Rs :¼ sh þ kððu � rÞs� ðruÞTs� sruÞ � 2aDðuhÞ; ð3:51Þ

gT :¼ h2Tksh þ kððu � rÞs� ðruÞTs� sruÞ � 2aDðuhÞk20;2;T
n
þ h2Tk � r � sh � 2ð1� aÞr �DðuhÞ þ rph � pk;T f k20;2;T þ kr � uhk20;2;T

þ hEk½sh � nE � phnE þ 2ð1� aÞDðuhÞ � nE�Ek
2

2;E

o1=2

ð3:52Þ
E
C
T
E
Dand pk,Tf is a projection of f onto a polynomial space with degree k on the mesh element T.

Note that for k = 0, the system (3.44)–(3.47) reduces to a Stokes problem commonly referred to as the

Stokes–Oldroyd problem. Here we only consider the case k > 0.

Observe that the second term on the right hand side of (3.50) can be bounded by the first term. Also, as

commented in Section 2, the third term is a higher order term. Thus we use for our a posteriori error esti-

mate (3.50) with c1 = c*, c2 = c3 = 0, which fits the framework discussed in Section 2.

3.2.1. Numerical examples

In this section we present numerical results based on the a posteriori error estimate (3.50) with c1 = c*

and c2 = c3 = 0. Let E represent the total error associated with the approximations to velocity, pressure and

stress defined as
 R

E :¼ fku� uhk2H1 þ kp � phk
2
L2 þ ks� shk2H1g1=2;
O
Rwhile the corresponding predicted error is denoted by eE. The effectivity index is then computed as

Ieff ¼ eE=E.
Example 4. For this example X is an L-shaped domain given by X = (�1,1) · (�1,1) � (0,1) · (0,1). The

velocity, polymeric stress, and pressure used are
N
C

uðx; yÞ :¼

ðy � 0.1Þ
½ðx� 0.1Þ2 þ ðy � 0.1Þ2�1=2

ð0.1� xÞ
½ðx� 0.1Þ2 þ ðy � 0.1Þ2�1=2

26664
37775; s :¼ 2aDðuÞ; pðx; yÞ :¼ ð2� x� yÞ1=2.
UNote that the solution has a point singularity at (0.1,0.1) which lies just outside the domain (near an incom-

ing corner).
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Table 4

Example 4: True error, predicted error, and effectivity index

Itr k = 0.1 k = 1.0

c* = 7.6719, h = 0.5512 c* = 7.4809, h = 0.5436

E eE Ieff E eE Ieff

1 12.7522 16.5730 1.30 13.1271 17.1165 1.30

2 11.4822 10.9016 0.95 11.8647 11.4589 0.97

3 8.73590 9.20858 1.05 8.89702 9.58332 1.08

4 7.13155 6.17872 0.87 7.34208 6.53529 0.89

5 5.15579 4.92267 0.95 5.24249 5.17914 0.99

6 4.12506 3.77315 0.91 4.24808 4.00993 0.94

7 3.19656 3.24980 1.02 3.26976 3.46253 1.06

8 2.78102 2.80875 1.01 2.89121 2.99519 1.04

9 2.54572 2.45363 0.96 2.61384 2.62395 1.00

10 2.21868 2.15377 0.97 2.27687 2.30663 1.01

11 1.97436 1.90444 0.96 2.02980 2.04091 1.01

12 1.74899 1.66938 0.95 1.79076 1.80031 1.01

13 1.57410 1.46191 0.93 1.61318 1.58253 0.98
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PUsing gT, given by (3.52), as an error indicator for the error on each element T of the mesh Ph,i, a

sequence of adaptively generated approximations was generated for k = 0.1 and k = 1.0. Using Algorithm A

corresponding values for c* and h were then computed. Estimates for the error in the approximations were

then found. The results are summarized in Table 4 and Fig. 6. Note that in (3.44)–(3.48) as k increases the

system becomes more non-linear. For both values of k accurate estimates for the error were obtained.

Example 5. For this example we consider a benchmark problem in viscoelastic fluid flow simulation; chan-

nel flow with a cylindrical obstacle [3]. The ratio of the channel height to the cylinder diameter, H, is taken

to be 4, while the maximum inflow velocity is set at 1.5. The boundary conditions imposed are as follows.
For velocity: a fully developed flow field (parabolic profile) at the inflow and outflow boundaries, and a

non-slip (u = 0) condition along the other boundaries. For the polymetric stress: along the inflow boundary

the polymetric stress for a fully developed channel flow is assumed. For pressure: the pressure is fixed at one

of the inflow mesh points to zero. There does not exist a closed form solution to this problem.

As described for Example 4, a sequence of approximate solutions was adaptively generated for k = 0.1

and k = 0.5, and corresponding values for c* and h computed Table 5.

Presented in Fig. 7 are graphs of the estimated error and the a posteriori error estimator (c1 = 1,

c2 = c3 = 0) versus the degrees of freedom. The graphs are similar to those for Example 4 for which we
know the true solution.
 R
N
C
O3.3. Comment on the numerical experiments

As previously commented, the asymptotic value for h in the model (2.5) is 1. For Examples 1–3, which

are linear, the non-linear, weighted least-squares algorithm computed values of 1.02, 0.93, and 0.99, respec-

tively, for ĥ. For the non-linear Examples 4 and 5, the values computed for ĥ were 0.59 and 0.60, respec-

tively, indicating that the approximations are still quite far away from following their asymptotic behavior.

Nonetheless, as demonstrated by Example 4 for which the true solution is known, the described procedure

was able to accurately predict the error.
U
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Fig. 7. Example 5: Predicted error and a posteriori error estimator (c1 = 1, c2 = c3 = 0) vs. degrees of freedom. (a) k = 0.1: Predicted

error (c* = 2.6716, h = 0.5902), and the a posteriori error estimator and (b) k = 0.5: Predicted error (c* = 7.4177, h = 0.6036), and the a

posteriori error estimator.

Table 5

Channel flow problem. Example 5: Predicted errors for k = 0.1 and k = 0.5

Itr k = 0.1 k = 0.5eEH1 eEH1

1 6.30229 18.7954

2 4.87879 14.3301

3 4.35150 12.0718

4 3.08777 9.13656

5 2.59562 7.68084

6 2.21672 6.38090

7 1.90468 5.63922

8 1.67350 4.90932

9 1.46767 4.32252

10 1.26813 3.73712

11 1.09925 3.24057

12 0.98498 2.85818

13 0.89483 2.55865
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