No. of Pages 19, DTD = 5.0.1

Available online at www.sciencedirect.com

Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

Computer methods in applied mechanics and engineering

www.elsevier.com/locate/cma

Improving the effectivity of residual based a posteriori error estimates using a statistical approach

V.J. Ervin *, L.N. Ntasin

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, USA

Received 5 April 2004; received in revised form 16 November 2004; accepted 15 February 2005

8 Abstract

4 5

9 For the approximation of differential equations residual based error estimates provide upper bounds (usually gross

10 over estimates) to the true error. In this paper we present a procedure for determining values for the constants in the a

11 posteriori estimates which yield accurate estimates to the true error. Numerical experiments demonstrating the effective-12 ness of the method are given.

13 © 2005 Elsevier B.V. All rights reserved.

14 AMS classification: 65N30

15 Keywords: A posteriori; Error; Effectivity index; Non-linear least squares

16

17 1. Introduction

A posteriori error estimation is concerned with determining the accuracy of a computed approximation \tilde{u} . The obvious difficulty is that the true solution u is unknown. In the approximation of a linear system, $A\underline{x} = b$, an indication of how "close" an approximation $\underline{\tilde{x}}$ is to \underline{x} can be found by computing the size of the residual vector \underline{r} , where $\underline{r} = \underline{b} - A\underline{\tilde{x}}$. This approach when applied in the numerical approximation of differential equations leads to residual based a posteriori error estimates (see [9]). These estimates are constructed as upper bounds and, when possible, lower bounds or local lower bounds. These bounds contain multiplicative constants that depend on the true solution, the domain, and the interpolation properties of the approximating spaces. Computing the exact values for these constants is equivalent to comput-

Corresponding author. E-mail address: vjervin@clemson.edu (V.J. Ervin).

0045-7825/\$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.cma.2005.02.012

2

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

ing the true solution to the differential equation, which is virtually impossible in most, if not all, cases. Arbitrarily assigning values to these constants turns the a posteriori error estimates into error indicators. Such indicators are useful in providing comparative information about the error but do not provide accurate quantitative estimates for the true error. In this paper we present a method for improving the effectiveness of these error indicators. Using statistical techniques the method applies a non-linear least squares approach to determine *model parameters*, using as data a sequence of approximate solutions. Using the values of these parameters the true error in the approximate solution can then be estimated.

This paper is organized as follows. Section 2 begins by describing the general setting for the differential equation and the a posteriori error estimate. In Section 2.1 the construction of the sequence of approximate solutions is described. The procedure for determining the *model parameters* is presented in Section 2.2. Section 3 contains examples which demonstrate the effectiveness of the method for both linear and non-linear problems.

38 2. Problem definition

39 Consider a general differential operator \mathscr{L} that defines a system of differential equations of the form

$$\mathscr{L}u = f \quad \text{in } \Omega, \quad \text{and} \quad u = g \quad \text{on } \Gamma,$$
(2.1)

43 where $\Omega \subset \mathbb{R}^n$, (n = 2, 3) is a polygonal domain with boundary Γ . Let $u_h \in \mathscr{X}_h$ be a finite element (FE) 44 approximation to the solution $u \in \mathscr{X}$ of (2.1), where \mathscr{X}_h is a finite dimensional subspace of \mathscr{X} with spatial 45 mesh parameter *h*. Assume that (2.1) fits the general framework presented by Verfürth in [9] for construct-46 ing residual based a posteriori error estimates. Using this framework a residual based a posteriori error esti-47 mate for (2.1) can be constructed in the general form

$$\|\boldsymbol{u} - \boldsymbol{u}_h\|_{\mathscr{X}} \leqslant c_1 \mathbf{R}_1 + c_2 \mathbf{R}_2 + c_3 \mathbf{R}_3 + c_4 \mathbf{R}_4, \tag{2.2}$$

where c_1 , c_2 , c_3 and c_4 are constants, and \mathbf{R}_1 , \mathbf{R}_2 , \mathbf{R}_3 and \mathbf{R}_4 represent the "strong form" residual, the con-51 52 sistency error, the oscillation error, and the residual of the approximating algebraic system, respectively. The "strong form" residual represents the residual of the governing equation (defined by $(\mathcal{L}u_h - f)$) plus 53 54 the edge jump terms which result from rewriting the weak form as a strong form. The consistency error 55 correspond to the regularization procedure used in computing an approximate solution u_h . The oscillation error comes from approximating the forcing term on the right hand side of (2.1) in a finite dimensional 56 57 space (for example piecewise linears). The residual of the algebraic system measures the error in the solution 58 of the algebraic system of approximating equations.

The oscillation error, \mathbf{R}_3 , is usually a higher order term when compared to the "strong form" residual and the consistency error. If the approximating algebraic system is solved up to round off error then \mathbf{R}_4 is also negligible, relative to the "strong form" residual and the consistency error terms. So, under appropriate conditions \mathbf{R}_3 and \mathbf{R}_4 both have little influence on the a posteriori error estimate (2.2).

For low order methods, Carstensen and Verfürth [2] showed that edge jump terms dominate the a posteriori error estimates for elliptic problems. Also, for a wide variety of stabilization techniques \mathbf{R}_1 bounds \mathbf{R}_2 from above (see for example [4]). Thus, in those cases where \mathbf{R}_1 either dominates, or bounds \mathbf{R}_2 , the a posteriori error estimate reduces to

$$\|u - u_h\|_{\mathscr{X}} \leqslant c_1 \mathbf{R}_1 = c_1 \left\{ \sum_T \eta_T(u_h)^2 \right\}^{1/2}.$$
(2.3)

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

70 In (2.3) η_T represents the local "strong form" residual of (2.1) plus the jump term of u_h along the boundaries 71 of the mesh element *T* with its neighbors.

In general, if the mathematically computable values for the constants c_1 , c_2 , c_3 , c_4 were used in (2.2) and

73 (2.3), a gross over-estimate for the true error in the approximate solution would result. This is because (2.2)

74 must account for *the worst case scenerio* at each step of the derivation. Ideally, we want a value for c_1 in

75 (2.3) that satisfies the equality part of the inequality, i.e. a value of c_1 , say c^* , such that

$$\|u - u_h\|_{\mathscr{X}} \approx c^* \mathbf{R}_1 = c^* \left\{ \sum_T \eta_T (u_h)^2 \right\}^{1/2}.$$
 (2.4)

For some problems, e.g. the Poisson problem, it can be shown that c_1 depends on the minimum angle of the mesh, the coercivity and continuity constants for the problem, and the interpolation properties of the approximating spaces (see [2]). For non-linear problems, c_1 also depends on the norm of the inverse of the linearized operator about the true solution (see [9]).

In general, the one parameter model (2.4) was not sufficient to accurately estimate the true error in the approximation (see Example 4, Fig. 6). We therefore consider a two parameter model described in the following assumption.

86 Assumption A. Given a general problem of the form (2.1) for which the error estimate (2.3) is valid, then 87 there exists positive constants c^* and θ such that

$$\|u - u_h\|_{\mathscr{X}} = c^* \mathbf{R}_1^{\theta} = c^* \left\{ \sum_T \eta_T (u_h)^2 \right\}^{\theta/2}.$$
(2.5)

91 The objective of this paper is to develop a method for estimating c^* and θ from data generated through a 92 sequence of approximate solutions.

93 Remarks.

- 94 1. We have investigated including \mathbf{R}_2 and/or \mathbf{R}_3 in (2.5). Data exploration and preliminary statistical anal-95 ysis showed strong collinearity between all three variables (\mathbf{R}_1 , \mathbf{R}_2 , \mathbf{R}_3). With high levels of collinearity, a 96 multiple regression model loses its ability to show the relative importance of the effects of different pre-97 dictor variables on the response variable. Thus, small changes in the data may cause large fluctuations in 98 the predicted variable; an undesirable effect. A possible remedy for this effect is to drop variables asso-99 ciated with less significant regression coefficients from the model. In our investigation \mathbf{R}_1 was consis-100 tently associated with the most significant regression coefficient.
- 101 2. The asymptotic value for θ in (2.5) is 1, which comes from the upper bound estimate (2.3). However, our 102 interest in this paper is on accurately estimating the error, not giving an upper bound for the error, in a 103 practical computation. For such computations the asymptotic values for the constants in the upper 104 bound are generally not the best choice to accurately estimate the error. (Clearly, for computations 105 on a sufficiently fine mesh the value for θ must be approximately 1.)
- 106 3. A completely rigorous mathematical analysis for an equality estimate for the error is not possible. (For a rigorous mathematical analysis of an upper bound for the error see, for example [2,4,9].) Following in Sections 2.1 and 2.2 we present the mathematical motivation for the proposed procedure for construct 109 ing a posteriori error estimates.
- 110

4

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

111 2.1. Construction of a sequence of approximate solutions

For a given problem, for which the a posteriori error estimate (2.3) holds, let $\mathscr{X}_{h,i} \subset \mathscr{X}$ and $\Pi_{h,i} = \Pi_{h,i}(\Omega)$, 112 113 i = 1, ..., n + 1, represent a sequence of successively generated finite dimensional spaces and meshes (uni-114 form or adaptive refinements), respectively. Let $u_1, u_2, \ldots, u_{n+1}$ represent the corresponding sequence of 115 approximate solutions to (2.1) computed using the meshes $\Pi_{h,i}$, $i = 1, \ldots, n+1$. Also, for ease of notation, 116 let

$$\eta(u_i,\Pi_{h,i}):=\left\{\sum_{T\in\Pi_{h,i}}\eta_T(u_h)^2\right\}^{1/2}$$

119 and let

 $\operatorname{osc}(f, \Pi_{hi}) := c_3 \mathbf{R}_3 + c_4 \mathbf{R}_4,$

- 122 where \mathbf{R}_3 and \mathbf{R}_4 represent the oscillation error and the error in solving the algebraic system corresponding
- 123 to the mesh $\Pi_{h,i}$, respectively.
- 124 We make the following two assumptions [7].

125 Assumption I (Marking strategy). For a given mesh $\Pi_{h,i}$, i = 1, ..., n + 1, there exists a submesh, 126 $\widehat{\Pi}_{h,i} \subset \Pi_{h,i}$ such that

- 127 1. $\eta(u_i, \widehat{\Pi}_{h,i}) \ge \mu \eta(u_i, \Pi_{h,i}),$ 128 2. $\operatorname{osc}(f, \widehat{\Pi}_{h,i}) \ge v \operatorname{osc}(f, \Pi_{h,i}),$

129 where $0 < \mu, \nu < 1$.

130 Assumption II (*Refinement strategy*). The refinement strategy used to generate successive approximations 131 satisfies:

- 132 1. $\mathscr{X}_{h,i} \subset \mathscr{X}_{h,i+1}$ for $i = 1, \ldots, n$,
- 2. If T is an element of $\Pi_{h,i}$ marked for refinement by the marking strategy, then when T is refined, the 133 134 refinement process
- (a) generates at least one interior node in T, 138
 - (b) generates at least one interior node on each of the faces of T.

137

139 In [7] it was demonstrated that Assumptions I and II are necessary (may not be sufficient) to guarantee 140 an asymptotically convergent sequence of discrete approximations.

Assume that the sequence of approximate solutions $u_1, u_2, \ldots, u_{n+1}$ is asymptotically convergent (with re-141 142 spect to the norm $\|\cdot\|_{\mathcal{X}}$ to *u*. Next, define the sequence, $\{Y_i\}, i = 1, ..., n$, by

 $Y_n := \|u_{n+1} - u_n\|_{\mathscr{X}}.$

146 In addition, let $\{Z_i\}$, i = 1, ..., n, be given by

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

$$Z_{1} := \left| \|u - u_{1}\|_{\mathscr{X}}^{2} - \|u - u_{2}\|_{\mathscr{X}}^{2} \right|^{1/2},$$

$$Z_{2} := \left| \|u - u_{2}\|_{\mathscr{X}}^{2} - \|u - u_{3}\|_{\mathscr{X}}^{2} \right|^{1/2},$$

$$\dots$$

$$Z_{n} := \left\| \|u - u_{n}\|_{\mathscr{X}}^{2} - \|u - u_{n+1}\|_{\mathscr{X}}^{2} \right|^{1/2}.$$

$$(2.7)$$

- 149 Assumptions I and II guarantee that progress is being made at each step, i.e. u_{i+1} is a better approximation
- 150 to u than u_i . Additionally these assumptions guarantee that stagnation does not occur in the approximation
- 151 process. That is, for i = 1, ..., n there is no *i* such that
- 152

1.
$$||u_{i+1} - u_i||_{\mathscr{X}} = 0,$$

2. $|||u - u_i||_{\mathscr{X}}^2 - ||u - u_{i+1}||_{\mathscr{X}}^2|^{1/2} = 0.$

155 156

In this setting the sequences $\{Z_i\}$ and $\{Y_i\}$ are guaranteed to converge to zero.

157 Next, let $\mathscr{X}_{h,i}$ and $\mathscr{X}_{h,i+1}$ represent two finite element spaces such that $\mathscr{X}_{h,i} \subset \mathscr{X}_{h,i+1} \subset \mathscr{X}$ and assume that 158 $\|\cdot\|_{\mathscr{X}}$ is an inner product norm. Define \bar{u}_i and \bar{u}_{i+1} as the orthogonal projections of u with respect to the 159 norm $\|\cdot\|_{\mathscr{X}}$ in the spaces $\mathscr{X}_{h,i}$ and $\mathscr{X}_{h,i+1}$, respectively. Also, let $a = u - \bar{u}_i$ and $b = u - \bar{u}_{i+1}$ then

$$(a-b,a-b)_{\mathscr{X}} = (a,a)_{\mathscr{X}} + (b,b)_{\mathscr{X}} - 2(a,b)_{\mathscr{X}},$$

$$\|a-b\|_{\mathscr{X}}^2 = \|a\|_{\mathscr{X}}^2 + \|b\|_{\mathscr{X}}^2 - 2(a,b)_{\mathscr{X}}.$$

(2.8)

162 Note that (a - b) is orthogonal to b. Consequently,

$$\|a-b\|_{\mathscr{X}}^{2} = \|a\|_{\mathscr{X}}^{2} + \|b\|_{\mathscr{X}}^{2} - 2(a-b,b)_{\mathscr{X}} - 2(b,b)_{\mathscr{X}} = \|a\|_{\mathscr{X}}^{2} - \|b\|_{\mathscr{X}}^{2}.$$
(2.9)

165 If we let u_i and u_{i+1} be finite element approximations of u in $\mathscr{X}_{h,i}$ and $\mathscr{X}_{h,i+1}$, respectively and assume that 166 $u_i \approx \bar{u}_i$ and $u_{i+1} \approx \bar{u}_{i+1}$ then, for $a \approx u - u_i$ and $b \approx u - u_{i+1}$

$$\|a-b\|_{\mathscr{X}}^2 \approx \|a\|_{\mathscr{X}}^2 - \|b\|_{\mathscr{X}}^2.$$
(2.10)

170 Using (2.5) and (2.10), we have for $1 \le i \le n$

$$\begin{aligned} \|u_{i} - u_{i+1}\|_{\mathscr{X}}^{2} &\approx \|u - u_{i}\|_{\mathscr{X}}^{2} - \|u - u_{i+1}\|_{\mathscr{X}}^{2} \\ &= c^{*2} \Big\{ \eta(u_{i}, \Pi_{h,i})^{2\theta} - \eta(u_{i+1}, \Pi_{h,i+1})^{2\theta} \Big\}, \\ \|u_{i} - u_{i+1}\|_{\mathscr{X}} &\approx c^{*} \Big| \eta(u_{i}, \Pi_{h,i})^{2\theta} - \eta(u_{i+1}, \Pi_{h,i+1})^{2\theta} \Big|^{1/2}. \end{aligned}$$

$$(2.11)$$

174 In compact form we can then write the resulting system of equations as

$$\{Y_i\} \approx c^*\{X_i(\theta)\},\tag{2.12}$$

178 where

$$X_{i}(\theta) := \left| \eta(u_{i}, \Pi_{h,i})^{2\theta} - \eta(u_{i+1}, \Pi_{h,i+1})^{2\theta} \right|^{1/2} = |\mathbf{R}_{1_{i}}^{2\theta} - \mathbf{R}_{1_{i+1}}^{2\theta}|^{1/2}.$$
(2.13)

Note that for any given problem, $\{Y_i\}$ is computable from the sequence of approximate solutions while $\{X_i\}$ is computable up to θ from the sequence of approximate solutions and the given problem data. The parameters c^* and θ in (2.12) are the same as the constants in (2.5). Thus, approximating values for c^* and θ that yield an equality or almost an equality in (2.12) will give us approximate values for c^* and θ that are usable in (2.5). Our main objective is therefore to develop a technique for determining values

5

6

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

187 for c^* and θ such that an approximate equality holds in (2.12) for a given problem and a sequence of 188 approximate solutions.

189 In the case where (2.1) describes a linear second order elliptic operator which has an underlying inner 190 product, we have the following lemma.

191 **Lemma 2.1** [7]. Suppose that the norm $\|\cdot\|_{\mathscr{X}}$ is defined by $\|v\|_{\mathscr{X}}^2 := a(v, v)$, where $a(\cdot, \cdot)$ represents the 192 bilinear form corresponding to the left hand side of (2.1). If Π_h is a refinement of Π_H such that $\mathscr{X}_H \subset \mathscr{X}_h \subset \mathscr{X}$, 193 where \mathscr{X}_H and \mathscr{X}_h are the finite element spaces corresponding to Π_H and Π_h respectively, then the following 194 relation holds:

$$||u_H - u_h||_{\mathscr{X}}^2 = ||u - u_H||_{\mathscr{X}}^2 - ||u - u_h||_{\mathscr{X}}^2.$$

(2.14)

This lemma clearly demonstrates that there is a class of problems for which the approximate equality in (2.12) can be replaced with an equality. The proof of the lemma is a consequence of the Galerkin orthogonality and Pythagoras' theorem.

200 2.2. A statistical approach for estimating c^* and θ

In this section we use ideas from statistics to develop a procedure for estimating values for c^* and θ for a given problem whose a posteriori error estimate is of the form (2.3). We firstly show that a simple linear model for the relationship between $\{Y_i\}$ and $\{X_i\}$ is not appropriate. A two model approach is then pre-

204 sented and analysed.

A least squares data fit for $\{Y_i\}$ and $\{X_i\}$ can be constructed using the following two step procedure.

- Step 1: Generate the data $Y = \{Y_i\}$ and $X = \{X_i\}$ defined by (2.6) and (2.13), respectively, satisfying Assumptions I and II.
- Step 2: With Y as the predicted variable and X as the predictor, estimate the parameters c^* and θ that yield the line of best fit for the model

211

$$Y_i = c^* X_i(\theta) + \varepsilon_i, \tag{2.15}$$

215 where ε_i represents the *i*th error term.

216 Values for c^* and θ may be determined using a Maximum Likelihood Function (MLF) $\mathscr{L}(\cdot, \cdot, \cdot)$, defined 217 by the functional

$$\mathscr{L}(c^*, \theta, \sigma^2) := \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n [Y_i - c^* X_i(\theta)]^2\right],$$
(2.16)

220 where σ^2 is the variance of ε_i 's. To obtain the least squares line of best-fit of the form (2.15) for a given data 221 set, it is straight forward to observe that the least squares line is the solution to the problem

$$\max_{c^*>0,\theta>0} \{\mathscr{L}(c^*,\theta,\sigma^2)\} = \max_{c^*>0,\theta>0} \left\{ \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n [Y_i - c^*X_i(\theta)]^2\right] \right\}.$$
(2.17)

225 The procedure for finding c^* and θ that maximizes $\mathscr{L}(c^*, \theta, \sigma^2)$ is known as the method of maximum like-226 lihood. A priori knowledge of our data source suggest that $c^* > 0$ and $\theta > 0$. Thus, for any given data set, 227 appropriate parameter estimates \hat{c}^* and $\hat{\theta}$ should be positive.

An underlying assumption of the model is that the ε_i 's are independent and normally distributed with mean zero and constant variance σ^2 . Having determined the parameter estimates $\widehat{c^*}$ and $\widehat{\theta}$, this assumption can be investigated by plotting the model residuals, $r_i = Y_i - \widehat{c^*} X_i(\widehat{\theta})$ against the Y-values (See Fig. 1).

Fig. 1. Sample residue plots: (a) Sample residual plot for (2.15) and (b) sample residual plot for (2.20).

These plots, in general, have a "megaphone" shape indicating that the error variance σ^2 is not constant but grows with increasing Y-values. This violates the underlying assumption of constant variance.

Before applying a transformation to the likelihood estimator, with the objective of satisfying the normality requirement, let us examine the underlying objectives.

235 Consider the two models below:

Model A:
$$e = c^* \mathbf{R}_1^{\theta} + \varepsilon_E$$
, (2.18)
Model B: $Y = c^* X(\theta) + \varepsilon_Y$, (2.19)

238 where $e = ||u - u_h||_{\mathcal{X}}$ is the true error, ε_E and ε_Y represent the Models **A** and **B** residuals, respectively. Given 239 appropriate values for c^* and θ we use Model **A** to estimate the true error in a given approximate solution 240 u_h . Since the e_i 's are not known we cannot estimate c^* and θ through Model **A**. So, we use Model **B** to esti-241 mate appropriate values for c^* and θ that can be used in Model **A**. Satisfying the normality assumption in 242 Model **B** may not be sufficient for obtaining values of c^* and θ that are optimal for Model **A**.

First, let us address the "megaphone" shaped residual plots of Model **B**. Due to the fact that the data ({ X_i } and { Y_i }) usually spans several orders of magnitude, absolute errors from Model **B** will most likely show the "megaphone" shaped residual plots. Through numerical experiments, the relationship between $|\varepsilon_Y|$ and the predicted Y-values, \hat{Y} , is in general linear. This has led to the transformation of Model **B** as

$$\bar{Y} = c^* \bar{X}(\theta) + \bar{\varepsilon}_Y, \tag{2.20}$$

250 where $\bar{Y}_i = 1$, and $\bar{X}_i(\theta) = X_i(\theta)/Y_i$.

The corresponding residuals for (2.20) are plotted in Fig. 1(b). With the exception of the two largest (in magnitude) values, the residues lie in a band centered about zero, indicating the assumption of $\bar{\epsilon}_Y$ having constant variance is reasonable. Displayed in Fig. 2 is a normal probability plot for the residues of (2.20). Fig. 2(a) is a normal probability plot using all the residual values; Fig. 2(b) a normal probability plot with the two largest (in magnitude) residues omitted. In a normal probability plot the nearer the points are to lying on a straight line the more likely the underlying distribution is close to a normal probability distribution. Based on Fig. 2(b), the assumption that $\bar{\epsilon}_Y$ is normally distributed also seems reasonable.

258 Secondly, the raw data, $\{X_i\}$ and $\{Y_i\}$ are not equally reliable as functions of *i*. The X_i 's and Y_i 's become 259 more reliable as *i* increases since the adaptive process computes a better solution each time a new mesh is 260 constructed. Therefore, the estimates for c^* and θ should improve by placing more weight on the data as *i* V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

Fig. 2. Normal probability plot of residues. (a) Normal probability plot of residues and (b) normal probability plot of residues (two largest values omitted).

261 increases, provided the weights are properly chosen. So, the goal is to determine appropriate weights needed

- 262 to compensate for unequal data reliability so as to better estimate suitable values of c^* and θ for Model A.
- 263 Model A is a transformation of a model of the form

$$e \approx c\mathbf{R}_1. \tag{2.21}$$

The variability of the residuals from the model (2.21) may be used as an indicator for the reliability of the raw data. That is, the larger the variance associated with a data point the less reliable the data point, while the smaller the variance the more reliable the data point. Based on this criteria we therefore construct appropriate weights needed to account for unequal data reliability.

Following the approach in [8], let $x = c\mathbf{R}_1$, and define e(x) as

$$e(x) := x^{\theta} = c^* \mathbf{R}_1^{\theta}, \tag{2.22}$$

275 where $c^* = c^{\theta}$. A linear approximation of e(x) about the point x_0 is given by

$$e(x) \approx x_0^{\theta} + \theta x_0^{\theta-1} (x - x_0).$$
 (2.23)

278 In the analysis of (2.22), assuming the residuals r_i are normally distributed with mean zero and constant 279 variance σ^2 , $N(0, \sigma^2)$, for the least squares parameter fit we minimize $\frac{1}{\sigma^2} \sum_{i=1}^n r_i^2$ (see (2.17)). However, in 280 (2.21) the r_i 's are $N(0, \sigma_i^2)$, i = 1, ..., n (i.e. not constant variance) hence for the least squares parameter 281 fit we minimize instead $\sum_{i=1}^n \frac{1}{\sigma_i^2} r_i^2$. Now, the least squares model corresponding to (2.22) may be written 282 as a weighted least squares model for (2.21) as

$$\frac{1}{\sigma^2} \sum_{i=1}^n r_i^2 = \sum_{i=1}^n \frac{1}{\sigma^2} \left(e_i(x) - x_{0_i}^{\theta} \right)^2$$
(2.24)

$$\approx \sum_{i=1}^{n} \frac{1}{\sigma^2} \left(\theta x_{0_i}^{\theta - 1} (x_i - x_{0_i}) \right)^2 \tag{2.25}$$

$$=\sum_{i=1}^{n} \frac{1}{\sigma^2} \theta^2 x_{0_i}^{2(\theta-1)} (x_i - x_{0_i})^2$$
(2.26)

$$=\sum_{i=1}^{n} \frac{1}{\sigma^2} w_i (x_i - x_{0_i})^2$$
(2.27)

$$=\sum_{i=1}^{n} \frac{1}{\sigma_i^2} (x_i - x_{0_i})^2, \qquad (2.28)$$

ARTICLE IN PRESS

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

285 where

$$w_i = \frac{\theta^2}{x_{0_i}^{2(1-\theta)}}$$
(2.29)

289 and

$$\sigma_i^2 = \frac{\sigma^2}{w_i}.\tag{2.30}$$

From (2.29) we have weights associated with the raw data reliability. Note that for equally reliable data corresponding to $\theta = 1$, $w_i = 1$ for all *i*. On the other hand if $0 < \theta < 1$ or $\theta > 1$, then clearly the w_i 's are not constant.

Thus, appropriate values for c^* and θ for Model A with data reliability accounted for may be obtained by minimizing

$$\frac{1}{\sigma^2} \sum_{i=1}^n w_i (e_i - c^* \mathbf{R}_{1_i}^{\theta})^2.$$
(2.31)

300 Since x_0 is an estimator for e,

$$w_i = \frac{\theta^2}{e_i^{2(1-\theta)}} \tag{2.32}$$

304 defines appropriate weights for minimizing (2.31).

- As mentioned above, as the e_i 's are unknown c^* and θ must be obtained through Model **B**.
- 306 Analogous to Model A, Model B is a transformation of a model of the form

$$Y_i \approx cX_i := |\mathbf{R}_{1_i}^2 - \mathbf{R}_{1_{i+1}}^2|^{1/2}.$$
(2.33)

309 From (2.11) and (2.12) we have

$$Y_{i} \approx c^{*} \mathbf{R}_{1_{i}}^{\theta} \left(1 - \frac{\eta(u_{i+1}, \Pi_{h,i+1})^{2\theta}}{\eta(u_{i}, \Pi_{h,i})^{2\theta}} \right)^{1/2}.$$
(2.34)

Assuming that $\eta(u_{i+1}, \Pi_{h,i+1}) \approx \tilde{\mu}\eta(u_i, \Pi_{h,i})$, for $0 < \tilde{\mu} < 1$ we have $Y_i \approx c^*(1 - \tilde{\mu}^{2\theta})^{1/2} \mathbf{R}_{1_i}^{\theta}$, which is equiv-313 alent to (2.22). Following the same approach used in arriving at (2.31) with Model **B** we minimize 314 equivalently

$$\frac{1}{\sigma_*^2} \sum_{i=1}^n w_{*i} (Y_i - c^* X_i(\theta))^2,$$
(2.35)

318 where σ_*^2 is the variance associated with the Model **B** residuals, and w_* the equivalent weights accounting 319 for unequal data reliability.

320 By analogy to (2.32),

$$w_{*_i} = \frac{K}{Y_i^{2(1-\theta)}}$$
(2.36)

defines appropriate weights for minimizing (2.35) while accounting for unequal data reliability. The constant K in (2.36) is chosen such that $\sum_i w_{*i} = 1$.

10

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

Note that for the case $\theta > 1$ the choice of weights (2.36) have the undesired property of assigning more weight to less reliable data. However if $\theta > 1$, let $\vartheta = 1/\theta$ and in place of (2.22) consider instead

$$e(y) := y^{\vartheta} = c\mathbf{R}_1. \tag{2.37}$$

331 A linear approximation of the model transformation (2.37) then yields a similar choice for the weights,

$$w_{*i} = \frac{K}{Y_i^{2(1-\vartheta)}}$$
(2.38)

335 satisfying the requirement of more weight to the more reliable data points.

In numerical simulations, the cases where $\theta \gg 1$ are rare. In most of the cases we have investigated, the value for θ fell within $0 < \theta \le 1$.

In summary, the corresponding weighted, relative least squares maximization problem for estimating optimal values for c^* and θ is given by

$$\max_{c^* > 0, \theta > 0} \{ \mathscr{L}(c^*, \theta, w_*) \} = \max_{c^* > 0, \theta > 0} \left\{ \left[\prod_{i=1}^n \left(\frac{w_{*_i}}{2\pi} \right)^{1/2} \right] \exp\left[-\frac{1}{2} \sum_{i=1}^n w_{*_i} [\bar{Y}_i - c^* \bar{X}_i(\theta)]^2 \right] \right\}.$$
(2.39)

343 Note that the weights w_* are aimed at accounting for unequal data reliability and not as normalizing factors 344 for unequal error variances.

The estimated values for c^* and θ are then used in Model A to estimate the true error in each approximate solution.

347 Below is a summary of the algorithm used:

348 Algorithm A

- 349 Given $u_1, u_2, \ldots, u_{n+1},$ 350
 - 1. Using (2.6) and (2.13) generate $\{Y_i\}$ and $\{X_i(\theta)\}$ respectively.
 - 2. Set $w_i = 1$ and obtain parameter estimates for c^* and θ from (2.39).
 - 3. Using the current parameter estimate for θ , construct a new set of weights based on (2.36) or (2.38).
 - 4. Compute new parameter estimates from (2.39) using the new set of weights.
 - 5. If the parameter estimates for c^* and θ have converged, stop. Else, go to step 3.

In our investigations c^* and θ in Algorithm A are usually found in less than 6 iterations through steps 3– 5.

359 3. Numerical experiments

In this section we present numerical results from applying Algorithm A to a posteriori error estimation. For the first three examples we consider the Poisson equation where the solutions are chosen to test the robustness of the method. For the second set of examples we consider a non-linear system of equations which arise in the modeling of viscoelastic fluid flow.

For comparison, for Examples 2 and 4 we include in Figs. 4 and 6(a) predicted errors (Predicted L.S. 365 Error) obtained from using the least squares fit for $Y_i = c^* X_i$, i.e. c^* satisfying (2.17) for $\theta = 1$.

ARTICLE IN PRESS

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

366 3.1. The Poisson problem

367 Consider the Poisson equation with homogeneous Dirichlet boundary conditions in a polygonal domain 368 $\Omega \subset \mathbb{R}^2$ with boundary Γ ,

$$-\Delta u = f \quad \text{in } \Omega, \quad \text{and} \quad u = 0 \quad \text{on } \Gamma.$$
(3.40)

Using the standard Galerkin approach, the continuous and discrete weak formulations of (3.40) are given respectively as: find $u \in \mathscr{X} = H_0^1(\Omega) := \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma\}$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}A = \int_{\Omega} f v \, \mathrm{d}A, \quad \forall v \in \mathscr{X}$$
(3.41)

377 and find $u_h \in \mathscr{X}_h \subset \mathscr{X} = H^1_0(\Omega)$ such that

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h \, \mathrm{d}A = \int_{\Omega} f v_h \, \mathrm{d}A, \quad \forall v_h \in \mathscr{X}_h.$$
(3.42)

In [2], Carstensen and Verfürth developed H^1 -norm and L^2 -norm a posteriori error estimates for problem (3.40) for u_h the linear finite element approximation, given by (3.42). They showed that the a posteriori error estimates are dominated by edge jump terms. By omitting the element residual in the standard residual error estimator they proved the following theorem.

Theorem 3.1 [2]. Let u and u_h be the unique solutions to problems (3.41) and (3.42) respectively. There are constants c_1 and c_2 that depend on the shape regularity constant and on triangulation properties (see [2], Section 2) such that

$$\|u - u_h\|_{1,2} \leq c_1 \left\{ \sum_E \eta_E^2 \right\}^{1/2} + c_2 \inf_{f_h \in \mathscr{X}_h} \left\{ \sum_{T \in \Pi_{h,i}} |T| \|f - f_h\|_{0,T}^2 \right\}^{1/2},$$
(3.43)

391 where $\eta_E = h_E^{1/2} \| [\nabla u_h \cdot \mathbf{n}]_E \|_{0:E}$, and |T| is the area of the triangle T.

The second term in (3.43) is the oscillation error term and in general is a higher order term and can be ignored in an adaptive procedure. Thus the error estimator above, with $c_2 = 0$, is of the form (2.3). Therefore, the true error can be estimated through a relationship of the form (2.5). We apply Algorithm A to estimate parameter values for c^* and θ , and then use these values to estimate the true error in a sequence of approximate solutions.

397 3.1.1. Numerical examples

398 Here we present three numerical examples based on the a posteriori error estimate in Theorem 3.1.

399 Example 1. In this example we let $u(x, y) = (1 - e^{\lambda x} \cos(2\pi y))^2 + (\frac{\lambda}{2\pi} e^{\lambda x} \sin(2\pi y))^2$, with Ω defined as 400 $\Omega := (0, 1) \times (-0.5, 0.5)$. The right hand side, f, and the boundary condition are then determined from u. 401 The parameter λ is defined as $\lambda = \frac{Re^2}{2} - (\frac{Re^2}{4} + 4\pi^2)^{1/2}$ with Re = 40. Note that $u(x, y) \in C^{\infty}(\Omega)$.

402 **Example 2.** In this example we let $u(x, y) = (x^2 + y^2)^{1/4} \sin \left[\frac{1}{2} \tan^{-1} \left(\frac{x-y}{-x-y}\right)\right]$, f = 0, with an L-shaped domain 403 defined as $\Omega = (-1, 1) \times (-1, 1) - (0, 1) \times (0, 1)$. The boundary data is then determined by restricting *u* to the 404 boundary $\partial \Omega$. Note that $\nabla u(x, y)$ has a square root singularity at the origin.

405 **Example 3.** In this example we let $u(x, y) = \tan^{-1}[60(x^2 + y^2 - 1.0)]$, with the domain Ω defined as 406 $\Omega := (-1.25, 1.25) \times (-1.25, 1.25)$. The right hand side, *f*, and the boundary data are then determined from 407 *u*. The solution u(x, y) has a rapid transition across the curve $x^2 + y^2 = 1$.

12

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

408 Let *Itr* represent the *i*th iterate in the sequence of approximate solutions, while *N* represents the number 409 of degrees of freedom associated with the approximating linear system. For u_i an approximation of u, we 410 denote the error in the H^1 norm as E_{H^1} , and the corresponding predicted error as \tilde{E}_{H^1} . We also compute the 411 effectivity index, I_{eff} , as

$$I_{\rm eff} := \frac{\widetilde{E}_{H^1}}{E_{H^1}}.$$

414 Example 1 illustrates the method for the case of a smooth solution. The results presented in Table 1 and 415 Fig. 3 show that the true error is determined to within 2%. For this example the approximations were gen-416 erated using uniform refinements of the preceeding mesh. Similar results were obtained for approximations 417 from adaptively refined meshes.

The results for Example 2 are presented in Table 2 and Fig. 4. To illustrate the robustness of the method the sequence of approximate solutions was generated using adaptively refined meshes. From the upper half of Table 2 observe that the effectivity index oscillates between 75% and 98%. The solution for this example has a point singularity in the derivative of the true solution and demonstrates the need for Assumption II. The mesh refinement algorithm (described in [6]) used in this study does not satisfy completely the conditions of Assumption II. The refinement algorithm actually requires three levels of refinement to fully satisfy the conditions of Assumption II. The point singularity in the derivative makes the solution highly sensitive

Table 1 Example 1: True error, predicted error, and effectivity index using uniform refinements ($c^* = 0.2104$, $\theta = 1.0216$)

N	E_{H^1}	\widetilde{E}_{H^1}	$I_{ m eff}$
676	0.51161	0.49696	0.97
1301	0.38917	0.36819	0.95
2601	0.25596	0.25419	0.99
5101	0.19523	0.19108	0.98
10,201	0.12785	0.12763	1.00
20,201	0.09769	0.09660	0.99
40,401	0.06387	0.06349	0.99
80,401	0.04886	0.04820	0.99
160,801	0.03192	0.03143	0.98
320,801	0.02443	0.02390	0.98

Fig. 3. Example 1: True error and predicted error vs. degrees of freedom using uniform refinements.

CMA 5930

Table 2

ARTICLE IN PRESS

10 May 2005 Disk Used

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

13

Example 2: True error, predicted error, and effectivity index using adaptive refinements ($c^* = 0.2177$, $\theta = 0.9315$)					
Itr	Ν	E_{H^1}	\widetilde{E}_{H^1}	$I_{ m eff}$	
1	645	0.16138	0.15794	0.98	
2	771	0.13514	0.10171	0.75	
3	932	0.11600	0.11310	0.97	
4	1149	0.09715	0.07420	0.76	
13	7567	0.02398	0.02372	0.99	
14	9301	0.02051	0.01781	0.87	
15	11,428	0.01791	0.01786	1.00	
16	13,989	0.01543	0.01384	0.90	
26	98,163	0.00440	0.00443	1.01	
27	118,651	0.00395	0.00412	1.04	
28	143,395	0.00353	0.00360	1.02	
29	173,195	0.00318	0.00332	1.04	
30	209,173	0.00287	0.00294	1.03	

Fig. 4. Example 2: True error, predicted error and predicted 1.s. error ($c^* = 0.2218$) vs. degrees of freedom using adaptive refinements.

to the orientation of mesh elements. A single level of refinement may therefore add very little to the approx-425 426 imating finite element space, while at the same time resulting in an increase in the value of \mathbf{R}_1 . As shown in 427 Fig. 4, this phenomenon may lead to oscillations in the predicted errors. As in the convection-dominated 428 problems a flow-oriented mesh can remedy this effect (see [5]). Alternatively, we can just proceed with the solution process until these mesh effects are suitably diminished as $h \rightarrow 0$. With the mesh effects diminished, 429 430 we may improve the predicted errors by truncating the data eliminating the highly oscillatory part of the 431 data. For this example, c^* and θ are predicted using the last 15 data values. These parameter values are 432 then used in predicting the errors in Table 2 and Fig. 4.

Example 3 investigates another important phenomenon; non-physical oscillations in the approximate solutions. Starting with a coarse mesh, and a strongly varying forcing term, non-physical oscillations occur in the approximate solutions. These oscillations make the error estimators highly unreliable at the beginning of the adaptive process, since \mathbf{R}_3 and \mathbf{R}_4 are of the same order as \mathbf{R}_1 (and \mathbf{R}_2). As in Example 2, accurate error predictions require that the adaptive procedure sufficiently refine the mesh to make the current error estimator (\mathbf{R}_1) much larger than data oscillation ($\mathbf{R}_3 + \mathbf{R}_4$), thus satisfying the initial assumption that \mathbf{R}_3 and \mathbf{R}_4 are higher order terms relative to \mathbf{R}_1 (and \mathbf{R}_2). So, for Example 3 the data used in estimating the

14

Table 3

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

440 parameters c^* and θ , corresponds to the data from iterations 12–20 of the adaptive process. These param-441 eter values are then used in predicting the errors in Table 3 and Fig. 5(b). Fig. 5(a) shows the predicted 442 errors when all the data is used in estimating the parameter values c^* and θ .

443 3.2. The Oldroyd-B model for viscoelastic fluid flow

In this section we apply Algorithm A to a viscoelastic fluid flow problem. Consider an incompressible, time independent, creeping, isothermal viscoelastic fluid flowing in a bounded, connected, open domain $\Omega \subset \mathbb{R}^n$ (n = 2, 3), with Lipschitz boundary $\Gamma = \partial \Omega$ and $\Gamma_{in} \subset \Gamma$ denoting the inflow boundary. The system of governing equations for such a fluid flow satisfying an Oldroyd-B constitutive law is given by

Itr	Ν	E_{H^1}	${\widetilde E}_{H^1}$	$I_{ m eff}$	
1	441	63.1496	22.5052	0.36	
2	597	52.3591	16.2876	0.31	
5	1609	20.1439	10.9946	0.55	
6	2259	15.5921	10.3009	0.66	
9	6457	6.93781	6.50190	0.94	
10	9525	5.47825	5.28891	0.97	
13	35,032	2.71624	2.71389	1.00	
14	55,764	2.16260	2.16196	1.00	
17	203,958	1.16419	1.16166	1.00	
18	302,110	0.95926	0.95238	0.99	
19	459,369	0.77522	0.77675	1.00	
20	682,542	0.64805	0.64386	0.99	

Example 3: Using the bottom 9 data points we estimate a value for c^* ($c^* = 0.2244$) and θ ($\theta = 0.9864$)

These values are then used in predicting the true error.

Fig. 5. Example 3: True error and predicted error vs. degrees of freedom. (a) Using all the data to estimate c^* and θ and (b) truncated data used in estimating c^* and θ .

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

Fig. 6. Example 4: Plots of the true error, predicted error and predicted 1.s. error vs. degrees of freedom. (a) $\lambda = 0.1$: True error, predicted error ($c^* = 7.6719$, $\theta = 0.5512$), and predicted l.s. error ($c^* = 3.8039$) and (b) $\lambda = 1.0$: True error and predicted error ($c^* = 7.4809$, $\theta = 0.5436$).

$$\tau + \lambda [(u \cdot \nabla)\tau - (\nabla u)^{\mathrm{T}}\tau - \tau \nabla u] - 2\alpha \mathbf{D}(u) = 0 \quad \text{in } \Omega,$$

$$-2(1 - \alpha)\nabla \cdot \mathbf{D}(u) - \nabla \cdot \tau + \nabla n = f \quad \text{in } \Omega$$
(3.44)
(3.45)

$$\nabla \cdot u = 0 \quad \text{in } \Omega, \tag{3.46}$$

$$\begin{aligned} \tau &= \tau_0 \quad \text{on } \Gamma, \\ \tau &= \tau_0 \quad \text{on } \Gamma_{\text{in}}, \end{aligned}$$
(3.48)

451 where τ is the viscometric stress tensor, *u* is the fluid velocity, *p* is the pressure, λ is the Weissenberg¹ num-452 ber, $\mathbf{D}(u) = \frac{1}{2}(\nabla u + (\nabla u)^{\mathrm{T}})$ is the deformation tensor, and α is a model parameter.

453 **Remark.** In the case $u_0 = 0$, $\Gamma_{in} = \emptyset$, hence no boundary condition for the stress is necessary.

454 Let $[u_h, \tau_h, p_h] \in \mathscr{X}_h \subset \mathscr{X} := [(H_0^1(\Omega))^n \times (H^1(\Omega))_{sym}^{n \times n} \times L_0^2(\Omega)]$, where $(H^1(\Omega))_{sym}^{n \times n}$ is a symmetric tensor 455 space of square integrable functions whose gradients are also square integrable, $L_0^2(\Omega)$ is the scalar space 456 of square integrable functions with mean zero. For our computations we use $\mathscr{X}_h := [(\mathbb{P}_2)^n \times$ 457 $(\mathbb{P}_1)_{sym}^{n \times n} \times \mathbb{P}_1]$ where \mathbb{P}_k is the space of continuous piecewise polynomials of order k.

Using Streamline Upwind Petrov/Galerkin (SUPG) stabilization for the transport term in the constitutive equation (3.44), we have a variational form for the system (3.44)–(3.47) (with $u_0 = 0$) given by

$$\langle F_{h}([u_{h},\tau_{h},p_{h}]),[v_{h},\sigma_{h},q_{h}]\rangle := \int_{\Omega} (\tau_{h}+\lambda[(u_{h}\cdot\nabla)\tau_{h}-(\nabla u_{h})^{\mathrm{T}}\tau_{h}-\tau_{h}\nabla u_{h}] - 2\alpha \mathbf{D}(u_{h})): (\sigma_{h}+\delta(h_{T},u_{h})u_{h}\cdot\nabla\sigma_{h})\mathrm{d}A$$

$$+ \int_{\Omega} ((2(1-\alpha)\mathbf{D}(u_{h})+\tau_{h}-p_{h}\mathbb{I}):\nabla v_{h}-f\cdot v_{h})\mathrm{d}A$$

$$+ \int_{\Omega} q_{h}\nabla\cdot u_{h}\mathrm{d}A, \quad \forall [v_{h},\sigma_{h},q_{h}] \in X_{h},$$

$$(3.49)$$

462 where

$$\delta(h_T, u_h) = \begin{cases} \frac{ch_T |T|^{1/2}}{\lambda ||u_h||_{0;T}}, & \text{if } u_h \neq 0 \text{ on } T, \\ 0, & \text{if } u_h = 0 \text{ on } T, \end{cases}$$

15

¹ The Weissenberg number represents a measure of the ratio of the magnitude of the elastic forces to that of the viscous forces [1].

ARTICLE IN PRESS

16

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

465 where |T| represents the area/volume of T.

466 Using the general framework in [9], a residual based a posteriori error estimate has been constructed in 467 [4] for the system (3.44)–(3.47) (with $u_0 = 0$) as summarized in the following theorem.

468 **Theorem 3.2** [4]. Assume that there exists subspaces $X_D \subset X$, $Y_D^* \subset Y^*$ such that the variational solution, 469 $[u, \tau, p]$, of (3.44)–(3.47) (with $u_0 = 0$) satisfies $[u, \tau, p] \in X_D$ and $DF([u, \tau, p]) \in \text{Isom}(X_D, Y_D^*)$. Then, for 470 $[u_h, \tau_h, p_h] \in X_h \subset X_D$, sufficiently close to $[u, \tau, p]$, we have the following a posteriori error estimate.

$$\{ \|u - u_{h}\|_{1,2}^{2} + \|\tau - \tau_{h}\|_{1,2}^{2} + \|p - p_{h}\|_{0,2}^{2} \}^{1/2} \leq c_{1} \left\{ \sum_{T} \eta_{T}^{2} \right\}^{1/2} + c_{2} \left\{ \sum_{T} (\|u_{h}\|_{\infty,T} \delta(h_{T}, u_{h}))^{2} \|R_{s}\|_{0,2;T}^{2} \right\}^{1/2} + c_{3} \left\{ \sum_{T} h_{T}^{2} \|f - \pi_{k,T}f\|_{0,2;T}^{2} \right\}^{1/2},$$

$$(3.50)$$

474 where

$$R_{s} := \tau_{h} + \lambda((u \cdot \nabla)\tau - (\nabla u)^{\mathrm{T}}\tau - \tau\nabla u) - 2\alpha \mathbf{D}(u_{h}), \qquad (3.51)$$

$$\eta_{T} := \left\{h_{T}^{2} \|\tau_{h} + \lambda((u \cdot \nabla)\tau - (\nabla u)^{\mathrm{T}}\tau - \tau\nabla u) - 2\alpha \mathbf{D}(u_{h})\|_{0,2;T}^{2} + h_{T}^{2} \|-\nabla \cdot \tau_{h} - 2(1-\alpha)\nabla \cdot \mathbf{D}(u_{h}) + \nabla p_{h} - \pi_{k,T}f\|_{0,2;T}^{2} + \|\nabla \cdot u_{h}\|_{0,2;T}^{2} + h_{E} \|[\tau_{h} \cdot \mathbf{n}_{E} - p_{h}\mathbf{n}_{E} + 2(1-\alpha)\mathbf{D}(u_{h}) \cdot \mathbf{n}_{E}]_{E}\|_{2;E}^{2}\right\}^{1/2} \qquad (3.52)$$

480 and $\pi_{k,T}f$ is a projection of f onto a polynomial space with degree k on the mesh element T.

481 Note that for $\lambda = 0$, the system (3.44)–(3.47) reduces to a Stokes problem commonly referred to as the 482 Stokes–Oldroyd problem. Here we only consider the case $\lambda > 0$.

483 Observe that the second term on the right hand side of (3.50) can be bounded by the first term. Also, as 484 commented in Section 2, the third term is a higher order term. Thus we use for our a posteriori error esti-485 mate (3.50) with $c_1 = c^*$, $c_2 = c_3 = 0$, which fits the framework discussed in Section 2.

486 3.2.1. Numerical examples

487 In this section we present numerical results based on the a posteriori error estimate (3.50) with $c_1 = c^*$ 488 and $c_2 = c_3 = 0$. Let *E* represent the *total error* associated with the approximations to velocity, pressure and 489 stress defined as

$$E := \{ \|u - u_h\|_{H^1}^2 + \|p - p_h\|_{L^2}^2 + \|\tau - \tau_h\|_{H^1}^2 \}^{1/2}$$

492 while the corresponding predicted error is denoted by \tilde{E} . The effectivity index is then computed as 493 $I_{\text{eff}} = \tilde{E}/E$.

494 **Example 4.** For this example Ω is an L-shaped domain given by $\Omega = (-1,1) \times (-1,1) - (0,1) \times (0,1)$. The 495 velocity, polymeric stress, and pressure used are

$$u(x,y) := \begin{bmatrix} \frac{(y-0.1)}{[(x-0.1)^2 + (y-0.1)^2]^{1/2}} \\ \frac{(0.1-x)}{[(x-0.1)^2 + (y-0.1)^2]^{1/2}} \end{bmatrix}, \quad \tau := 2\alpha \mathbf{D}(u), \quad p(x,y) := (2-x-y)^{1/2}.$$

498 Note that the solution has a point singularity at (0.1, 0.1) which lies just outside the domain (near an incom-499 ing corner).

ARTICLE IN PRESS

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

17

Itr	$\lambda = 0.1$ $c^* = 7.6719, \ \theta = 0.5512$			$\lambda = 1.0$ $c^* = 7.4809, \ \theta = 0.5436$		
	E	\widetilde{E}	$I_{\rm eff}$	E	\widetilde{E}	$I_{\rm eff}$
1	12.7522	16.5730	1.30	13.1271	17.1165	1.30
2	11.4822	10.9016	0.95	11.8647	11.4589	0.97
3	8.73590	9.20858	1.05	8.89702	9.58332	1.08
4	7.13155	6.17872	0.87	7.34208	6.53529	0.89
5	5.15579	4.92267	0.95	5.24249	5.17914	0.99
6	4.12506	3.77315	0.91	4.24808	4.00993	0.94
7	3.19656	3.24980	1.02	3.26976	3.46253	1.06
8	2.78102	2.80875	1.01	2.89121	2.99519	1.04
9	2.54572	2.45363	0.96	2.61384	2.62395	1.00
10	2.21868	2.15377	0.97	2.27687	2.30663	1.01
11	1.97436	1.90444	0.96	2.02980	2.04091	1.01
12	1.74899	1.66938	0.95	1.79076	1.80031	1.01
13	1.57410	1.46191	0.93	1.61318	1.58253	0.98

Table 4 Example 4: True error, predicted error, and effectivity index

Using η_T , given by (3.52), as an error indicator for the error on each element *T* of the mesh $\Pi_{h,i}$, a sequence of adaptively generated approximations was generated for $\lambda = 0.1$ and $\lambda = 1.0$. Using Algorithm A corresponding values for c^* and θ were then computed. Estimates for the error in the approximations were then found. The results are summarized in Table 4 and Fig. 6. Note that in (3.44)–(3.48) as λ increases the system becomes more non-linear. For both values of λ accurate estimates for the error were obtained.

505 **Example 5.** For this example we consider a benchmark problem in viscoelastic fluid flow simulation; chan-506 nel flow with a cylindrical obstacle [3]. The ratio of the channel height to the cylinder diameter, H, is taken 507 to be 4, while the maximum inflow velocity is set at 1.5. The boundary conditions imposed are as follows. 508 For velocity: a fully developed flow field (parabolic profile) at the inflow and outflow boundaries, and a 509 non-slip (u = 0) condition along the other boundaries. For the polymetric stress: along the inflow boundary 510 the polymetric stress for a fully developed channel flow is assumed. For pressure: the pressure is fixed at one 511 of the inflow mesh points to zero. There does not exist a closed form solution to this problem.

512 As described for Example 4, a sequence of approximate solutions was adaptively generated for $\lambda = 0.1$ 513 and $\lambda = 0.5$, and corresponding values for c^* and θ computed Table 5.

Presented in Fig. 7 are graphs of the estimated error and the a posteriori error estimator ($c_1 = 1$, 515 $c_2 = c_3 = 0$) versus the degrees of freedom. The graphs are similar to those for Example 4 for which we 516 know the true solution.

517 3.3. Comment on the numerical experiments

As previously commented, the asymptotic value for θ in the model (2.5) is 1. For Examples 1–3, which are linear, the non-linear, weighted least-squares algorithm computed values of 1.02, 0.93, and 0.99, respectively, for $\hat{\theta}$. For the non-linear Examples 4 and 5, the values computed for $\hat{\theta}$ were 0.59 and 0.60, respectively, indicating that the approximations are still quite far away from following their asymptotic behavior. Nonetheless, as demonstrated by Example 4 for which the true solution is known, the described procedure was able to accurately predict the error.

CMA 5930

10 May 2005 Disk Used

ARTICLE IN PRESS

18

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

Table 5 Channel flow problem. Examp	le 5: Predicted errors for $\lambda = 0.1$ and $\lambda = 0.5$	
Itr	$\lambda = 0.1$ $\widetilde{E}_{\mu\nu}$	$\lambda = 0.5$ \widetilde{E}_{μ^1}
1	6 30229	18 7954
2	4.87879	14.3301
3	4.35150	12.0718
4	3.08777	9.13656
5	2.59562	7.68084
6	2.21672	6.38090
7	1.90468	5.63922
8	1.67350	4.90932
9	1.46767	4.32252
10	1.26813	3.73712
11	1.09925	3.24057
12	0.98498	2.85818
13	0.89483	2.55865

Fig. 7. Example 5: Predicted error and a posteriori error estimator ($c_1 = 1$, $c_2 = c_3 = 0$) vs. degrees of freedom. (a) $\lambda = 0.1$: Predicted error ($c^* = 2.6716$, $\theta = 0.5902$), and the a posteriori error estimator and (b) $\lambda = 0.5$: Predicted error ($c^* = 7.4177$, $\theta = 0.6036$), and the a posteriori error estimator.

524 Acknowledgment

525 This work was partially supported by the ERC Program of the National Science Foundation under 526 Award Number ERC-9731680.

527 References

- 528 [1] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, John Wiley and Sons, Inc., 1987.
- 529 [2] C. Carstensen, R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J.
 530 Numer. Anal. 36 (1999) 1571–1587.
- [3] B. Caswell, Report on the IX international workshop on numerical methods in non-Newtonian flows, J. Non-Newton. Fluid Mech.
 62 (1996) 99–110.

ARTICLE IN PRESS

19

V.J. Ervin, L.N. Ntasin / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx-xxx

- 533 [4] V.J. Ervin, L.N. Ntasin, A posteriori error estimation and adaptive computation of viscoelastic fluid flow. Numer. Methods Partial
 534 Differen. Equat. Available from http://www.math.clemson.edu/~vjervin/papers/erv023.pdf, 2002.
- 535 [5] T. Iliescu, A flow-aligning algorithm for convection-dominated problems, Int. J. Numer. Meth. Engng. 46 (1999) 993–1000.
- 536 [6] J. Maubach, Local bisection refinement for simplical grids generated by reflection, SIAM J. Sci. Comput. 16 (1995) 210–227.
- 537 [7] P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (4) (2002) 631-658.
- 538 [8] G.A.F. Seber, C.J. Wild, Nonlinear Regression, Wiley, 1989.
- 539 [9] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley, Teubner, 1996.

540