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Abstract—In this article, we study the numerical approximation of a Newtonian model for film
blowing. We prove that the approximations for the bubble radius, and the film thickness, converges to
the true solution and establish the convergence rates. Numerical results are given which demonstrate
the theoretical results obtained. c© 2005 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

This article examines the simplest mathematical model of the film-blowing process, the widely-
employed industrial process used in the manufacturing of thin polymer film of thickness of the
order of microns. In its physical reality, film-blowing involves complex physical and chemical
changes occurring during manufacture; and a complete analysis of the most realistic models of
this process would involve complex nonlinear problems, reflecting those changes. On the other
hand, the relatively simple model considered here, which ignores a great deal of the detail of
more realistic models, avoids many of the analytical difficulties associated with these. Moreover,
the solutions obtained from use of this model retain much of the basic structure seen in them.

Before considering the details of the model used here, it is convenient to outline the overall
features of the film manufacturing process itself. The elements of this are displayed schematically
in Figure 1. A tube of molten polymer film is extruded from an annular die of radius R0, at
velocity V0, with thickness W0. An applied internal pressure difference ∆P causes this tube
to eventually expand to an increased radius, as shown. In appropriate circumstances, an initial
narrowing, or necking may occur. As it develops, this tube or bubble of polymer is cooled by
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Figure 1. Blown film process.

external air jets from an air ring located above the die. This cooling causes the film to solidify,
eventually reaching a constant radius RZF with thickness WZF at the freezeline, (Z = ZF ), where
its velocity is VZF . After the freezeline is reached the overall bubble shape remains unaltered;
with the tube of film eventually being rolled flat as a double layered film and drawn off on to a
roller.

The literature relating to the film blowing process is vast, with most attention being directed
towards experimental investigations supporting empirical observations. Fundamental work in-
volving the simplest film models is given in the series of papers by Pearson and Petrie [1,2], and
Han and Park [3–5]; and a recent survey of research on this topic is given [6]. More general blown
film models are discussed in [7]. Where numerical simulations are applied, most effort is directed
towards computing a stable approximation to the non-linear system and the reconciliation of the
computational results with experimental observations.

Our interest in this article is on the numerical simulation of the steady-state film blowing
process. Specifically, we seek to address the question of how the results of the numerical simulation
relate to the solution of the modeling equations. Note that this presupposes the existence of such a
solution—to our knowledge, this question has not been addressed in any of the relevant literature;
and our analysis is the first of its kind.

Since the equations modelling film blowing are highly nonlinear, our study will investigate
the simplest film blowing problem—that of the steady isothermal blowing of an incompressible
Newtonian film. While this model is of great simplicity, it retains many of the features of
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more complicated models, and, as noted above, avoids much mathematical complexity, allowing
a much higher level of rigor to be applied. For this situation, the bubble structure shown in
Figure 1 may be assumed to be axially symmetric, and the resulting film structure may be
completely described by two unknown quantities—the (nondimensionalized) bubble radius, r,
and (nondimensionalized) bubble thickness, w.

In Section 2, the equations determining r and w, together with boundary conditions are given.
The determination of r will be seen to be the result of solving a nonlinear two-point boundary-
value problem, separated from the determination of w. In Section 3, we show that under small
data assumptions the Galerkin approximation, rh, converges to the true solution, r, and specify
the theoretical convergence rate. The theoretical convergence rate is then confirmed by numerical
computations. In Section 4, we analyze the convergence of wh to w, taking into account the error
in the approximation due to using rh instead of r. Numerical results are given which confirm the
theoretically predicted convergence rates. A consequence of the analysis is the observation that
the order of the approximating elements used for the film thickness w should be the same as that
used for approximating the bubble radius r.

2. MODELING EQUATIONS

Under the assumptions that (see [2,8]):

(i) the forces controlling the flow are viscous forces arising in the steady isothermal flow of a
homogeneous Newtonian liquid,

(ii) the film is thin enough for variations in the flow field across it to be ignored,
(iii) the film is thin enough for the velocity gradients to be approximated locally by those of a

plane film being extended bi-axially,
(iv) the effects of gravity, surface tensions, air drag and the inertia of the fluid are negligible,

the nondimensionalized equations describing the film blowing process are as follows.
The (dimensionless) bubble radius r(z) satisfies:

−2r2
(
Br2 + Fc

)
r′′ + 6r′ + r

(
Fc − 3Br2

) (
1 + r′2

)
= 0, 0 < z < L, (2.1)

subject to the boundary conditions

r(0) = 1, r′(L) = 0. (2.2)

The associated equation for the (dimensionless) film thickness w(z) is

w′ +
(

1
2r
r′ +

1
4
(
Br2 + Fc

) (
1 + r′2

))
w = 0, 0 < z < L, (2.3)

with the boundary condition
w(0) = 1. (2.4)

In the above, B and Fc are positive dimensionless parameters, with B being a measure of the
pressure difference ∆P , and Fc a measure of the pulling force exerted at the freezeline.

In relation to Figure 1, in (2.1)–(2.4) r(z) = R(Z)/R0, w(z) = W (Z)/W0, z = Z/R0, and
L = ZF /R0.

Note that the two-point boundary-value problem (2.1),(2.2) for r(z) is completely independent
of the variable w(z). In principle, (2.1),(2.2) can be solved for r(z), and the result incorporated
into (2.3),(2.4), an initial-value problem determining w(z).

An alternative to boundary condition (2.2)(b) is to impose

r(L) = BUR,
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where BUR represents the blowup ratio. The following analysis can be modified to handle this
boundary condition, resulting in the same convergence rate for the numerical approximations.

We make the following assumptions for r(z).

A1 There exists a constant rm > 0, such that r(z) ≥ rm, for 0 ≤ z ≤ L.
A2 The exists constants c1, c2 > 0, such that c1 ≤ (Br2 + Fc)(1 + r′2)/4 + r′/(2r) ≤ c2.

For notational convenience, we let c0 > 0 denote

c0 := 2r2
m

(
Br2

m + Fc
)
. (2.5)

Remark. Assumption A1 simply states that the film bubble does not collapse upon itself. Similar
to Assumption A1, the constant c2 < ∞ implies that the film bubble does not collapse on itself
(r = 0), and additionally, does not explode (r′ → ∞). Physically we expect the film thickness
to be strictly monotonically decreasing as a function of z, for 0 < z < L. From (2.3), at the
freezeline (z = L) we have w′(L) = −1/4(Br(L)2 + Fc)w(L) < 0. Hence the existence of c1 > 0
is a physically realistic assumption.

3. NUMERICAL APPROXIMATION OF R(Z)

In this section, we study the numerical approximation of (2.1),(2.2). We begin by reformulating
the problem (2.1),(2.2) as a variational equation, suitable for establishing the existence of a
numerical approximation scheme and its convergence properties. To this end, we introduce some
mathematical notation.

3.1. The Variational Equation

The following notation will be used. Let I denote the interval (0, L). The L2(I) norm and
inner product will be denoted by ‖·‖ and (·, ·). Likewise, the Lp(I) norms and the Sobolev W k

p (I)
norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk

p
, respectively. For the seminorm in W k

p (I), we use | · |Wk
p

.
Hk is used to represent the Sobolev space W k

2 , and ‖ · ‖k, | · |k denotes the norm and semi-norm
in Hk. The following function space is used in the analysis

X := H̃1
0 (I) :=

{
v ∈ H1(I) : v(0) = 0

}
.

To enable us to approximate the solution of (2.1),(2.2) in a subspace, we introduce the change
of variable r̃ = r − 1 which transforms (2.1),(2.2) into the following equations for r̃.

−2
(
r̃ + 1)2 (B(r̃ + 1)2 + Fc

)
r̃′′ + 6r̃′ + (r̃ + 1)

(
Fc − 3B (r̃ + 1)2

) (
1 + r̃′2

)
= 0,

0 < z < L,
(3.1)

subject to the boundary conditions

r̃(0) = 0, r̃′(L) = 0. (3.2)

The boundary value problem (3.1),(3.2) for r̃ may be reformulated in a generalized form,
suitable for the subsequent analysis. If we let v ∈ H̃1

0 (I), we obtain, on multiplying (3.1) by v,
integrating by parts, and applying the condition (3.2), the equation∫ L

0

2 (r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
r̃′v′ dz +

∫ L

0

(
2 (r̃ + 1)2

(
B (r̃ + 1)2 + Fc

))′
r̃′v dz

+
∫ L

0

6r̃′v dz +
∫ L

0

(r̃ + 1)
(
Fc − 3B (r̃ + 1)2

) (
1 + r̃′2

)
v dz = 0, ∀v ∈ X.

(3.3)
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When (3.3) holds for some r̃, for every v ∈ X , we will term r̃ a variational solution of the
problem (3.1),(3.2). Clearly, any solution of (3.3) that is sufficiently smooth will also be a solution
of (3.1),(3.2). However, there may be nonsmooth functions r̃ that satisfy (3.3).

Let Th denote a partition of I into subintervals. For K ∈ Th let hK denote the length of the
subinterval K. We assume there exists cT > 0, such that

cT ≤
minK∈Th hK
maxK∈Th hK

≤ 1.

For cT > 0, Th is called a quasi-uniform a partition of I. This assumption is necessary for
Lemmas 1 and 2 below.

Let Pk(K) denote the space of polynomials on K of degree no greater that k. Introduce the
approximation space for r̃, Xr

h as

Xr
h :=

{
v ∈ X ∩ C

(
Ī
)

: v|K ∈ Pk(K), ∀K ∈ Th
}
. (3.4)

Let R ∈ Xr
h be a Pk, continuous, interpolant of r̃. For r̃ ∈ Hk+1(I), we have [9]

‖r̃‖ −R+ h ‖r̃′ −R′‖ ≤ Cphk+1 |r̃|k+1 . (3.5)

For v ∈ X, from the fundamental theorem of calculus, we have

‖v‖∞ ≤ |I|1/2|v|1 = L1/2|v|1, (3.6)

as |I| = L.
The following two lemmas are used in establishing the error estimates for the numerical ap-

proximations [10].

Lemma1. For v ∈ Xr
h with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and 0 ≤ m ≤ l, we have that there exists

C = C(l, p, q), such that[ ∑
K∈Th

‖v‖p
W l,p(K)

]1/p

≤ Chm−l+min(0,d́/p−d́/q)
[ ∑
K∈Th

‖v‖qWm,q(K)

]1/q

. (3.7)

Lemma 2. Let Ih denote the interpolant of v. Then for all v ∈ Wm,p(Ω) ∩ Cr(Ω) and 0 ≤ s ≤
min{m, r + 1},

‖v − Ih‖W s,∞(Ω) ≤ Chm−s−d́/p|v|Wm,p(Ω). (3.8)

3.2. Numerical Approximation

It is not the purpose of this investigation to establish the existence and uniqueness properties of
the equation (3.3) (or of (3.1),(3.2)). Rather, we will proceed to show that, under the assumption
of the existence of a suitably smooth solution r̃ of (3.3), a well-defined numerical approximation
r̃h can be specified that converges to r̃ in an appropriate sense.

Thus, we define the task of determining the numerical approximation r̃h to r̃ by: determine
r̃h ∈ Xr

h satisfying∫ L

0

2 (r̃h + 1)2
(
B (r̃h + 1)2 + Fc

)
r̃′hv
′ dz +

∫ L

0

(
2 (r̃h + 1)2

(
B (r̃h + 1)2 + Fc

))′
r̃′hv dz

+
∫ L

0

6r̃′hv dz +
∫ L

0

(r̃h + 1)
(
Fc − 3B (r̃h + 1)2

) (
1 + r̃′2h

)
v dz = 0, ∀v ∈ Xr

h.

(3.9)

We now show that, under suitable conditions, a unique solution to the discretized system (3.9)
exists. Fixed-point theory is used to establish the desired result. The proof is established using
the following four steps.

1. Define an iterative map in such a way that a fixed point of the map is a solution to (3.9).
2. Show the map is well-defined, and bounded on bounded sets.
3. Show there exists an invariant ball on which the map is a contraction.
4. Apply Banach’s fixed-point theorem to establish the existence and uniqueness of the dis-

crete approximation.
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Theorem 3.1. For k ∈ N, assume that (3.1),(3.2) has a solution r̃ ∈ X ∩ Hk+1(I). Then, for

‖r̃‖k+1, B, Fc, L, and h sufficiently small, there exists a unique solution to (3.9) satisfying

‖r̃′ − r̃′h‖+ ‖r̃ − r̃h‖ ≤ Chk. (3.10)

Proof.

Step 1. The Iterative Map. A mapping Φ : Xr
h → Xr

h is defined via: r̃2 = Φ(r̃1), where r̃2

satisfies
Ar̃1 (r̃2, v) = Fr̃1(v), ∀v ∈ Xh, (3.11)

for

Ar̃1 (r̃2, v) :=
∫ L

0

2 (r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

)
r̃′2v
′ dz

+
∫ L

0

6r̃′2v dz +
∫ L

0

Fc
(
1 + r̃′21

)
r̃2v dz,

(3.12)

and

Fr̃1(v) := −
∫ L

0

(
2(r̃1 + 1)2(B(r̃1 + 1)2 + Fc)

)′
r̃′1v dz +

∫ L

0

3B(r̃1 + 1)2(1 + r̃′21 )r̃1v dz

−
∫ L

0

(Fc − 3B(r̃1 + 1)2)(1 + r̃′21 )v dz.

(3.13)

Step 2. Show Φ is Well-Defined and Bounded on Bounded Sets. To see that Φ is well
defined, observe that on choosing v = r̃2 we have

Ar̃1 (r̃2, r̃2) :=
∫ L

0

2 (r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

)
r̃′2r̃
′
2 dz +

∫ L

0

6r̃′2r̃2 dz

+
∫ L

0

Fc
(
1 + r̃′21

)
r̃2r̃2 dz

≥ 2 (r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

)
‖r̃′2‖

2 + 3r̃2(1)2 + Fc ‖r̃2‖2

≥ c0 ‖r̃′2‖
2 + 3r̃2(1)2 + Fc ‖r̃2‖2 ,

(3.14)

where c0 = minI 2(r̃1 + 1)2(B(r̃1 + 1)2 + Fc) > 0.
Positivity of Ar̃1(·, ·) guarantees invertibility of the linear system (3.11).
Note that Fr̃1(r̃2) satisfies the bound

|Fr̃1 (r̃2)| ≤
∣∣∣∣∣
∫ L

0

(
2 (r̃1 + 1)2

(
B (r̃1 + 1)2 + Fc

))′
r̃′1r̃2 dz

∣∣∣∣∣+

∣∣∣∣∣
∫ L

0

3B (r̃1 + 1)2 (1 + r̃′21
)
r̃1r̃2 dz

∣∣∣∣∣
+

∣∣∣∣∣
∫ L

0

(
Fc − 3B (r̃1 + 1)2

) (
1 + r̃′21

)
r̃2 dz

∣∣∣∣∣
≤ ‖r̃2‖∞ ‖r̃′1‖

∥∥∥∥(2 (r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

))′∥∥∥∥ (3.15)

+ ‖r̃2‖∞ ‖r̃1‖∞
∥∥∥3B (r̃1 + 1)2 (1 + r̃′21

)∥∥∥
L1

+ ‖r̃2‖∞
∥∥∥(Fc − 3B (r̃1 + 1)2

) (
1 + r̃′21

)∥∥∥
L1

.

Using (3.6), Young’s inequality, and (A.3)–(A.5), we have for arbitrary ε1, ε2, ε3 > 0,

|Fr̃1 (r̃2)| ≤ ε1 ‖r̃′2‖
2 +

1
4ε1

D2
4 ‖r̃′1‖

4 + ε2 ‖r̃′2‖+
1

4ε2
D2

2

(
D5 +D6 ‖r̃′1‖

2
)2

+ε3 ‖r̃′2‖
2 +

1
4ε3

(
D7 +D8 ‖r̃′1‖

2
)2

.

(3.16)
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Combining (3.14) and (3.16), we conclude that Φ is bounded on bounded sets.

Step 3. Existence of An Invariant Ball for Φ. We begin by defining an invariant ball.
Let R = CBh

k, and define the ball Brh as

Brh := {v ∈ Xr
h : ‖r̃′ − v′‖+ ‖r̃ − v‖ ≤ R} . (3.17)

The solution r̃ of (2.3),(2.4) satisfies

Ar̃ (r̃, v) = Fr̃(v), ∀v ∈ Xh. (3.18)

Subtracting (3.11) from (3.18) implies that

Ar̃ (r̃, v)−Ar̃1 (r̃2, v)

=
∫ L

0

2 (r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
(r̃′ − r̃′2) v′ dz

+
∫ L

0

2
(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
− (r̃1 + 1)2

(
B (r̃1 + 1)2 + Fc

))
r̃′2v
′ dz

+
∫ L

0

6 (r̃′ − r̃′2) v dz +
∫ L

0

Fc
(
1 + r̃′2

)
(r̃ − r̃2) v dz

+
∫ L

0

Fc
(
r̃′2 − r̃′21

)
r̃2v dz

= −
∫ L

0

(
2 (r̃ + 1)2

(
B (r̃ + 1)2 + Fc

))′
(r̃′ − r̃′1) v dz

−
∫ L

0

2
[(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

))′
−
(

(r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

))′]
r̃′1v dz

+
∫ L

0

3B (r̃ + 1)2 (1 + r̃′2
)

(r̃ − r̃1) v dz

+
∫ L

0

3B
(

(r̃ + 1)2 (1 + r̃′2
)
− (r̃1 + 1)2 (1 + r̃′21

))
r̃1v dz

−
∫ L

0

((
Fc − 3B (r̃ + 1)2

) (
1 + r̃′2

)
−
(
Fc − 3B (r̃1 + 1)2

) (
1 + r̃′21

))
v dz

= Fr̃(v)− Fr̃1(v), for v ∈ Xr
h.

(3.19)

Let R denote the interpolant of r̃ in Xr
h, and introduce

Λ = r̃ −R, E = R− r̃2. (3.20)

Then, e := r̃ − r̃2 = Λ + E.
With these definitions, together with the choice v = E, the left-hand side of (3.19) becomes

Ar̃ (r̃, E)−Ar̃1 (r̃2, E)

=
∫ L

0

2 (r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
E′E′ dz

+
∫ L

0

2 (r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
Λ′E′ dz (3.21)

−
∫ L

0

2
(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
− (r̃1 + 1)2

(
B (r̃1 + 1)2 + Fc

))
E′E′ dz

+
∫ L

0

2
(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
− (r̃1 + 1)2

(
B (r̃1 + 1)2 + Fc

))
R′E′ dz
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+
∫ L

0

6E′E dz +
∫ L

0

6Λ′E dz

+
∫ L

0

Fc
(
1 + r̃′2

)
EE dz +

∫ L

0

Fc
(
1 + r̃′2

)
ΛE dz (3.21)(cont.)

−
∫ L

0

Fc
(
r̃′2 − r̃′21

)
EE dz +

∫ L

0

Fc
(
r̃′2 − r̃′21

)
RE dz

:= J1 + J2 + · · ·+ J10.

We need to proceed to bound E in terms of the true solution r̃, the radius of the ball R, and
the given data B, Fc, and L.

J1 =
∫ L

0

2 (r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
E′E′ dz

≥ 2r2
m

(
Br2

m + Fc
)
‖E′‖2 .

(3.22)

J2 =
∫ L

0

2 (r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
Λ′E′ dz

≥ −ε1 ‖E′‖2 −
1

4ε1
D2

21 ‖Λ′‖
2
,

(3.23)

where D21 := ‖2(r̃ + 1)2(B(r̃ + 1)2 + Fc)‖∞ <∞, as ‖r̃‖∞ is bounded.

J3 = −
∫ L

0

2
(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
− (r̃1 + 1)2

(
B (r̃1 + 1)2 + Fc

))
E′E′ dz

≥ −‖(r̃ − r̃1)‖∞
∥∥∥2 (r̃ + r̃1 + 2)

(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)∥∥∥
∞
‖E′‖2

≥ −D22 ‖r̃′ − r̃′1‖ ‖E′‖
2
, using (3.6),

(3.24)

where D22 := L1/2‖2(r̃ + r̃1 + 2)(B[(r̃1 + 1)2 + (r̃ + 1)2] + Fc)‖∞ <∞ (as ‖r̃1‖∞ is bounded in
terms of ‖r̃‖∞ and R).

J4 =
∫ L

0

2
(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

)
− (r̃1 + 1)2

(
B (r̃1 + 1)2 + Fc

))
R′E′ dz

≥ −‖r̃ − r̃1‖∞
∥∥∥2 (r̃ + r̃1 + 2)

(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)∥∥∥
∞
‖R′‖ ‖E′‖ (3.25)

≥ −ε2 ‖E′‖2 −
1

4ε2
D2

22 ‖r̃′ − r̃′1‖
2 ‖R′‖2 .

J5 =
∫ L

0

6E′E dz = 3E(1)2. (3.26)

J6 =
∫ L

0

6Λ′E dz ≥ −ε3‖E‖2 −
9
ε3
‖Λ′‖2 . (3.27)

J7 =
∫ L

0

Fc
(
1 + r̃′2

)
EE dz ≥ Fc‖E‖2. (3.28)

J8 =
∫ L

0

Fc
(
1 + r̃′2

)
ΛE dz

≥ −
∥∥Fc (1 + r̃′2

)∥∥
L1
‖Λ‖∞ ‖E‖∞ (3.29)

≥ −ε4 ‖E′‖2 −
1

4ε4
D2

23 ‖Λ′‖
2
.
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where D23 := ‖Fc(1 + r̃′2)‖L1 <∞, as r̃′ ∈ L2(I).

J9 = −
∫ L

0

Fc
(
r̃′2 − r̃′21

)
EE dz

≤
∥∥Fc (r̃′2 − r̃′21 )∥∥L1

‖E‖∞‖E‖∞
≤ D24 ‖r̃′ − r̃′1‖ ‖E′‖

2
,

(3.30)

where D24 := Fc‖r̃′ + r̃′1‖ <∞ (as ‖r̃′1‖ is bounded in terms of ‖r̃′‖ and R).

J10 =
∫ L

0

Fc
(
r̃′2 − r̃′21

)
RE dz

≤
∥∥Fc (r̃′2 − r̃′21 )∥∥L1

‖R‖∞ ‖E‖∞

≤ ε5 ‖E′‖2 +
1

4ε5
D2

24 ‖R′‖
2 ‖r̃′ − r̃′1‖

2
.

(3.31)

Next the terms on the right-hand side of (3.19) must be similarly bounded for the choice v = E.

J11 = −
∫ L

0

(
2 (r̃ + 1)2

(
B (r̃ + 1)2 + Fc

))′
(r̃′ − r̃′1)E dz

≤
∥∥∥∥(2 (r̃ + 1)2

(
B (r̃ + 1)2 + Fc

))′∥∥∥∥ ‖r̃′ − r̃′1‖ ‖E‖∞
≤ ε6 ‖E′‖2 +

1
4ε6

D2
25 ‖r̃′‖

2 ‖r̃′ − r̃′1‖
2
,

(3.32)

where ‖
(
2(r̃ + 1)2(B(r̃ + 1)2 + Fc)

)′ ‖ ≤ D25‖r̃′‖. (See (A.6) for existence of D25 <∞.)

J12 = −
∫ L

0

2
[(

(r̃ + 1)2
(
B (r̃ + 1)2 + Fc

))′
−
(

(r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

))′]
r̃′1E dz

≤
∥∥∥∥[2 (r̃ − r̃1) (r̃ + r̃1 + 2)

(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)]′∥∥∥∥ ‖r̃′1‖ ‖E‖∞
≤ ε7 ‖E′‖2 +

1
4ε7

D2
26 ‖r̃′ − r̃′1‖

2
.

(3.33)

The existence of D26 is given in (A.7).

J13 =
∫ L

0

3B (r̃ + 1)2 (1 + r̃′2
)

(r̃ − r̃1)E dz

≤
∥∥∥3B (r̃ + 1)2 (1 + r̃′2

)∥∥∥
L1

‖r̃ − r̃1‖∞ ‖E‖∞

≤ ε8 ‖E′‖2 +
1

4ε8
D2

27 ‖r̃′ − r̃′1‖
2
.

(3.34)

where D27 := ‖3B(r̃ + 1)2(1 + r̃′2)‖L1 <∞, as ‖r̃‖∞ is bounded and r̃′ ∈ L2(I).

J14 =
∫ L

0

3B
(

(r̃ + 1)2
) (

1 + r̃′2
)
− (r̃1 + 1)2 (1 + r̃′21

)
r̃1E dz

≤ ‖r̃ − r̃1‖∞
∥∥3B

[
(r̃1 + 1) (r̃′ + r̃′1) + (r̃ + r̃1 + 2)

(
1 + r̃′2

)]∥∥
L1
‖r̃1‖∞ ‖E‖∞

≤ ε9 ‖E′‖2 +
1

4ε9
D2

28 ‖r̃′ − r̃′1‖
2
.

(3.35)

The existence of D28 is given in (A.8).
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Finally,

J15 = −
∫ L

0

((
Fc − 3B (r̃ + 1)2

) (
1 + r̃′2

)
−
(
Fc − 3B (r̃1 + 1)2

) (
1 + r̃′21

))
E dz

= −
∫ L

0

Fc
(
r̃′2 − r̃2

1

)
E dz

+
∫ L

0

3B
(

(r̃ + 1)2 (1 + r̃′2
)
− (r̃1 + 1)2 (1 + r̃′21

))
E dz

≤ ‖Fc (r̃′ + r̃′1) (r̃′ − r̃′1)‖L1
‖E‖∞

+ ‖r̃ − r̃1‖∞
∥∥3B

[
(r̃1 + 1) (r̃′ + r̃′1) + (r̃ + r̃1 + 2)

(
1 + r̃′2

)]∥∥
L1
‖E‖∞

≤ Fc ‖r̃′ + r̃′1‖ ‖r̃′ − r̃′1‖ ‖E‖∞
+ ‖r̃ − r̃1‖∞

∥∥3B
[
(r̃1 + 1) (r̃′ + r̃′1) + (r̃ + r̃1 + 2)

(
1 + r̃′2

)]∥∥
L1
‖E‖∞

≤ ε10 ‖E′‖2 +
1

4ε10
D2

29 ‖r̃′ − r̃′1‖
2 + ε11 ‖E′‖2 +

1
4ε11

D2
28 ‖r̃′ − r̃′1‖

2
,

(3.36)

where D29 := Fc(‖r̃′‖+ ‖r̃′1‖).
Combining (3.19) with the estimates (3.22)–(3.36), we have that(

2r2
m

(
Br2

m + Fc
)
− (ε1 + ε2 + ε4 + ε5 + ε6 + ε7 + ε8 + ε9 + ε10 + ε11)

− (D22 +D24) ‖r̃′ − r̃′1‖
)
‖E′‖+ 3E(1)2 + (Fc − ε3) ‖E‖

≤
(

1
4ε1

D2
21 +

9
ε3

+
1

4ε4
D2

23

)
‖Λ′‖2

+
(

1
4ε2

D2
22 ‖R′‖

2 +
1

4ε5
D2

24 ‖R′‖
2 +

1
4ε6

D2
25 ‖r̃′‖

2 +
1

4ε7
D2

26

+
1

4ε8
D2

27 +
1

4ε9
D2

28 +
1

4ε10
D2

29 +
1

4ε11
D2

28

)
‖r̃′ − r̃′1‖

2

(3.37)

Note that the constants D·· only depend upon ‖r̃‖1, and the data B, Fc, and L. Addition-
ally, from (3.5), ‖R′‖ ≤ ‖r̃′‖ + Cph

k‖r̃‖k+1. For h sufficiently small, and the εi, i = 1, . . . 11,
appropriately chosen, we have that the coefficients of ‖E′‖ and ‖E‖ in (3.37) are greater that
r2
m(Br2

m + Fc), and Fc/2, respectively. Hence, we have that for positive constants D̃1 and D̃2,
determined by ‖r̃‖1 and the data,

‖E′‖2 + ‖E‖2 ≤ D̃1 ‖Λ′‖2 + D̃2 ‖r̃′ − r̃′1‖
2

≤ D̃2
1C

2
p ‖r̃‖

2
k+1 h

2k + D̃2
2C

2
Bh

2k.
(3.38)

Finally, using (3.5) and (3.38), we have

‖r̃′ − r̃′2‖+ ‖r̃ − r̃2‖ ≤ ‖Λ′‖+ ‖E′‖+ ‖Λ‖+ ‖E‖
≤ Cp ‖r̃‖k+1 h

k + 2D̃1Cp ‖r̃‖k+1 h
k + 2D̃2CBh

k + Cp ‖r̃‖k+1 h
k+1.

(3.39)

Hence, for h, ‖r̃‖k+1, and the data sufficiently small, and CB appropriately chosen, from (3.39)
we have that ‖r̃′− r̃′2‖+‖r̃− r̃2‖ < CBh

k. Thus, Φ is a strict contraction on the ball , Brh, defined
in (3.17).

Step 4. A direct application of Banach’s fixed-point theorem now establishes the uniqueness of
the approximation and the stated error estimates.

Helpful in establishing the error estimate for the width of the film w, presented in the next
section, is the following estimate.
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Corollary 3.1. For r̃ ∈ X ∩H2(I), there a constant C <∞, such that for h sufficiently small,

r̃′h < C, i.e., r̃′h remains bounded as h→∞.

Proof. We have that for Λ = r̃ −R, and E = R− r̃h

‖r̃′h‖∞ ≤ ‖r̃′ − r̃′h‖∞ + ‖r̃′‖∞
≤ ‖r̃′ − r̃′h‖∞ + ‖r̃′‖∞
≤ ‖E′‖∞ + ‖Λ′‖∞ + ‖r̃′‖∞
≤ C1h

−1/2 ‖E′‖+ C2h
1/2 ‖r̃‖2 + ‖r̃′‖∞ , using (3.7) and (3.8).

As r̃ ∈ H2(I), ‖r̃‖2, and ‖r̃′‖∞ are bounded. From (3.38) it follows that h−1/2‖E′‖ is also
bounded.

3.3. Numerical results for rh(z)

In this section, we present numerical results for the approximation of the (dimensionless) radius
of the bubble, r(z) = 1+ r̃(z). The numerical results are compared with the predicted theoretical
results given in Theorem 3.1.

Table 1. Experimental rates of convergence for ‖r′h − r′‖.

P/W Linear Approx. (k = 1) P/W Quad. Approx. (k = 2) P/W Cubic Approx. (k = 3)

‖r̃′h − r̃′2h‖ Cvge. Rate ‖r̃′h − r̃′2h‖ Cvge. Rate ‖r̃′h − r̃′2h‖ Cvge. Rate

h = L/40 1.81E− 01 1.98E− 02 2.14E− 03

h = L/80 7.62E− 02 1.25 4.71E− 03 2.07 3.08E− 04 2.80

h = L/160 3.68E− 02 1.05 1.17E− 03 2.01 3.86E− 05 3.00

h = L/320 1.83E− 02 1.01 2.93E− 04 2.00 4.83E− 06 3.00

h = L/640 9.11E− 03 1.00 7.32E− 05 2.00 6.04E− 07 3.00

Predicted 1.0 2.0 3.0

Figure 2. Plot of the dimensionless bubble radius.
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For the numerical experiments, we used the following parameter values (taken from [11]):
B = 0.15, Fc = 0.2207, L = 6.0. Computations were performed on a sequence of uniform
partitions of [0, L], using 40, 80, 160, 320, and 640 subintervals. On successive partitions the
difference between the derivatives of the approximations, ‖r̃′h − r̃′2h‖, was calculated. From
(3.10), we have that

‖r̃′h − r̃′2h‖ ≤ ‖r̃′h − r̃′‖+ ‖r̃′ − r̃′2h‖
≤ Chk + C(2h)k = C̃hk,

(3.40)

where k denotes the degree of the approximating, piecewise polynomial.
Presented in Table 1 are the results for ‖r̃′h−r̃′2h‖ for linear (k = 1), quadratic (k = 2), and cubic

(k = 3) piecewise polynomial approximations. A plot of the approximation of the (dimensionless)
radius of the bubble is shown in Figure 2, generated using a piecewise quadratic approximation
with 320 subintervals. The bubble profile is consistent with that physically observed. The
numerical rates of convergence α̃, defined by

α̃ :=
log (‖r̃′2h − r̃′4h‖ / ‖r̃′h − r̃′2h‖)

log(2)
, (3.41)

agree with those predicted theoretically by Theorem 3.1, namely, k.

4. NUMERICAL APPROXIMATION OF w(z)

In this section, we study the numerical approximation of (2.3),(2.4).
Helpful in establishing the error in the approximation of w is the following lemma.

Lemma 3. Let ‖δ(z)‖ ≤ 1 and g(z) satisfy

g′ + δ(z)g = −δ(z), 0 < z < L, (4.1)

g(0) = 0. (4.2)

There exists a constant C, such that

‖g′(z)‖ ≤ C‖δ(z)‖. (4.3)

Proof. Observe that (4.1),(4.2) is a linear system of equations whose unique solution is given
by

g(z) = 1− e−
∫ z
0 δ(t) dt. (4.4)

Hence,

g′(z) = δ(z)e−
∫ z
0 δ(t) dt, and

‖g′(z)‖ ≤ ‖δ(z)‖
∥∥∥e− ∫ z0 δ(t) dt∥∥∥

∞

≤ ‖δ(z)‖e
∫L
0 |δ(t)| dt ≤ ‖δ(z)‖eL1/2‖δ(z)‖

≤ C‖δ(z)‖.

In order to approximate w over a subspace, we introduce the change of variable

w̃ := w − 1 ⇔ w = w̃ + 1.
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Rearranging (2.3), we obtain the following differential equation and homogeneous boundary
condition for w̃.

w̃′ +
(

r̃′

2 (r̃ + 1)
+

1
4

(B (r̃ + 1)2 + Fc)
(
1 + r̃′2

))
w̃

= −
(

r̃′

2 (r̃ + 1)
+

1
4

(
B (r̃ + 1)2 + Fc

) (
1 + r̃′2

))
,

(4.5)

w̃(0) = 0. (4.6)

We introduce the approximation space for w̃, Xw
h as

Xw
h :=

{
v ∈ C

(
Ī
)

: v|K ∈ Pm(K), ∀K ∈ Th
}
.

For r̃h defined by (3.9), we define the numerical approximation of (4.5),(4.6) as: determine
w̃h ∈ Xw

h satisfying∫ L

0

w̃′hv̂ dz +
∫ L

0

(
r̃′h

2 (r̃h + 1)
+

1
4

(
B (r̃h + 1)2 + Fc

) (
1 + r̃′2h

))
w̃hv̂ dz

= −
∫ L

0

(
r̃′h

2 (r̃h + 1)
+

1
4

(
B (r̃h + 1)2 + Fc

) (
1 + r̃′2h

))
v̂ dz,

(4.7)

where v̂ := v + νhv′, v ∈ Xw
h , and ν is a small positive constant.

We now proceed to establish the existence of w̃h, and its convergence properties.
For notational convenience, we make the following definitions.

H(r) :=
(
B (r + 1)2 + Fc

) (
1 + r′2

)
/4 + r′/ (2(r + 1)) , (4.8)

A(r;w, v) :=
∫ L

0

w′v̂ dz +
∫ L

0

H(r)wv̂ dz (4.9)

F (r; v) := −
∫ L

0

H(r)v̂ dz. (4.10)

Note that (4.7) is equivalent to: A(r̃h; w̃h, v) = F (r̃h; v), for all v ∈ Xw
h .

Before discussing the error in the approximation, we prove the following estimate for H(r̃) −
H(r̃h), which is used in the subsequent analysis.

Lemma 4. For h sufficiently small, and r̃ ∈ X ∩Hk+1(I) there exists a constant C0, such that

‖H (r̃)− H (r̃h)‖ ≤ C0h
k. (4.11)

Proof. We establish (4.11) by considering two separate pieces. First, we have that(
B (r̃ + 1)2 + Fc

) (
1 + r̃′2

)
=
[
B (r̃h + 1 + r̃ − r̃h)2 + Fc

] (
1 +

(
r̃′2h + r̃2 − r̃′2h

))
=
(
B (r̃h+1)2+Fc

) (
1+r̃′2h

)
+
(
B (r̃h+1)2+Fc

)
(r̃′−r̃′h) (r̃′+r̃′h)

+B (r̃ − r̃h) (r̃ + r̃h + 2)
(
1 + r̃′2

)
.

Thus,∥∥∥(B (r̃ + 1)2 + Fc

) (
1 + r̃′2

)
−
(
B (r̃h + 1)2 + Fc

) (
1 + r̃′2h

)∥∥∥
≤
∥∥∥B (r̃h+1)2+Fc

∥∥∥
∞
‖r̃′−r̃′h‖ (‖r̃′‖∞+‖r̃′h‖∞)+B ‖r̃+r̃h+2‖∞

∥∥1+r̃′2
∥∥
∞ ‖r̃−r̃h‖

≤ D1Crh
k (‖r̃′‖∞ + ‖r̃′h‖∞) +D2Crh

k

≤ D3h
k,

(4.12)

as, ‖r̃′‖∞ and ‖r̃′h‖∞ are bounded.
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Secondly,
r̃′

r̃ + 1
− r̃′h
r̃h + 1

=
r̃′ (r̃h − r̃) + r̃ (r̃′ − r̃′h) + (r̃′ − r̃′h)

(r̃ + 1) (r̃h + 1)
.

Using A1 and (3.10), we obtain∥∥∥∥ r̃′

r̃ + 1
− r̃′h
r̃h + 1

∥∥∥∥ ≤ 1
rmrm/2

(‖r̃′‖∞ ‖r̃h − r̃‖+ (1 + ‖r̃‖∞) ‖r̃′ − r̃′h‖)

≤ D4h
k.

(4.13)

Combining (4.12) and (4.13), we obtain (4.11).

Lemma 5. For h sufficiently small (4.7) determines a unique w̃h ∈ Xw
h .

Proof. As (4.7) represents a square linear system of equations, existence and uniqueness of w̃h
is equivalent to the invertible of the coefficient matrix.

Choosing v = w̃h in (4.7), we have

A (r̃h; w̃h, w̃h) =
∫ 1

0

w̃′h (w̃h + νhw̃′h) dz +
∫ 1

0

H (r̃h) w̃h (w̃h + νhw̃′h) dz

= νh ‖w̃′h‖
2 +

∫ 1

0

w̃′hw̃h dz +
∫ 1

0

H (r̃h) w̃hw̃h dz + νh

∫ 1

0

H (r̃h) w̃hw̃′h dz

= νh ‖w̃′h‖
2 +

1
3
w̃h(1)2 +

∫ 1

0

H (r̃) w̃hw̃h dz + νh

∫ 1

0

H (r̃) w̃hw̃′h dz

+
∫ 1

0

(H (r̃h)− H (r̃)) w̃hw̃h dz + νh

∫ 1

0

(H (r̃h)− H (r̃)) w̃hw̃′h dz.

Now, using Assumption A2, (4.11), (3.7), we have that

A (r̃h; w̃h, w̃h) ≥ νh ‖w̃′h‖
2 +

1
2
w̃h(1)2 + c1 ‖w̃h‖2 − νhc2 ‖w̃h‖ ‖w̃′h‖

− ‖H (r̃h)− H (r̃)‖ ‖w̃h‖2L4
− νh ‖H (r̃h)− H (r̃)‖ ‖w̃h‖L4

‖w̃′h‖L4

≥ νh
(

1− νhc22
4ε1

)
‖w̃′h‖

2 +
1
2
w̃h(1)2 + (c1 − ε1) ‖w̃h‖2

− C0h
kh−1/2‖w̃h‖2 − νhC0h

kh−1/2‖w̃h‖‖w̃′h‖

≥ νh
(

1− νhc22
4ε1

− νh2kC2
0

4ε2

)
‖w̃′h‖

2

+
1
2
w̃h(1)2 +

(
c1 − ε1 − C0h

k−1/2 − ε2
)
‖w̃h‖2 .

(4.14)

Hence, for h sufficiently small (4.14) establishes the positivity of A(r̃h; w̃h, v) which guarantees
the invertibility of the approximating linear system.

Next, consider the function q(z) denoting the solution of

q′ +
(

r̃′h
2 (r̃h + 1)

+
1
4

(
B (r̃h + 1)2 + Fc

) (
1 + r̃′2h

))
q

= −
(

r̃′h
2 (r̃h + 1)

+
1
4

(
B (r̃h + 1)2 + Fc

) (
1 + r̃′2h

))
,

(4.15)

q(0) = 0. (4.16)

Note that (4.15),(4.16) is a linear differential differential equation for q(z). Existence and
uniqueness of q(z) follows from Lemma 3. Important in the subsequent error analysis for q− w̃h
is the order of approximation of q by its interpolant in Xw

h . We address this issue in the following
lemma.
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Lemma 6. For q satisfying (4.15),(4.16), we have that q ∈ H3/2−ε(I), for any ε > 0. In addition,

for r ∈ Hk+1(I), the interpolant of q ∈ Xw
h ,Q, satisfies

h ‖q′ −Q′‖+ ‖q −Q‖ ≤ Chmin{k+1,m+1}. (4.17)

Proof. From (4.4) q′(z) is given by

q′(z) = −H (r̃h) (z)e−
∫ z
0 H(r̃h)(t) dt.

Using Corollary 3.1, we have that ‖r̃′h‖∞ and ‖r̃h‖∞ are bounded, and for h sufficiently small
(r̃h + 1) is bounded away from zero. Thus, exp(−

∫ z
0

H(r̃h)(t) dt) is bounded for 0 ≤ z ≤ L, as is
‖q′‖∞. As q′ is only a piecewise continuous function it follows that q ∈ H3/2−ε(I), for any ε > 0.

Because of this lack of regularity for q(z) on I, we cannot use the standard interpolation result
to conclude (4.17). However, on each subinterval K ∈ Th q(z) has much higher regularity, and
as the interpolants are constructed on each subinterval, it is the regularity within K which is
important.

Without loss of generality assume that n = min{k,m}. Then, on each subinterval K, we have

h ‖q′ −Q′‖L2(K) + ‖q −Q‖L2(K) ≤ Chn+1
∥∥∥q(n+1)

∥∥∥
L2(K)

. (4.18)

We need to establish that ‖qn+1‖L2(K) is bounded independent of h.
Note that q(n+1) is of the form

q(n+1)(z) = −H (r̃h)(n) (z)e−
∫ z
0 H(r̃h)(t) dt + CH (r̃h)(n−1) (z)H (r̃h) (z)e−

∫ z
0 H(r̃h)(t) dt

+ · · ·+ (H (r̃h) (z))n+1
e−

∫ z
0 H(r̃h)(t) dt.

(4.16)

We first show that ‖H(r̃h)(n)(z) exp(−
∫ z

0
H(r̃h)(t) dt)‖L2(K) is bounded independent of h. As

exp(−
∫ z

0
H(r̃h)(t) dt)‖∞ is bounded all we need show is that ‖H(r̃h)(n)(z)‖L2(K) is bounded in-

dependent of h.
Note that the highest derivative term in H(r̃h)(n)(z) is r̃(n+1)

h . For R the interpolant of r̃, and
E = R− r̃h (as defined above)∥∥∥r̃(n+1)

h

∥∥∥
L2(K)

≤
∥∥∥R(n+1)

∥∥∥
L2(K)

+
∥∥∥R(n+1) − r̃(n+1)

h

∥∥∥
L2(K)

≤ C
∥∥∥r̃(n+1)

∥∥∥
L2(K)

+
∥∥∥E(n+1)

∥∥∥
L2(K)

≤ C
∥∥∥r̃(n+1)

∥∥∥
L2(K)

+ h−n ‖E′‖L2(K) , using (3.7).

Summing across all the subintervals K, we have using (3.38)∑
K∈Th

∥∥∥r̃(n+1)
h

∥∥∥2

L2(K)
≤ C̃1

∥∥∥r̃(n+1)
∥∥∥2

L2(I)
+ C̃2h

−2n ‖E′‖2L2(I)

≤ C̃1

∥∥∥r̃(n+1)
∥∥∥2

L2(I)
+ C̃2h

−2nh2k

(
C̃3

∥∥∥r̃(k+1)
∥∥∥2

L2(I)
+ C̃4

)
.

As ‖r̃(n+1)
h ‖L2(K) is uniformly bounded across all the subintervals, independent of h, it follows

that ‖r̃(j)
h ‖L∞(K) is also uniformly bounded across all the subintervals, independent of h, for

j = 0, 1, . . . , n. Thus, all the terms on the right-hand side of (4.19), except the first term, are
uniformly bounded independent of h and n. Moreover,∑

K∈Th

∥∥∥H (r̃h)(n) (z)e−
∫ z
0 H(r̃h)(t) dt

∥∥∥2

L2(K)

≤ C1

∥∥∥r̃(n+1)
∥∥∥2

L2(I)
+ h2(k−n)

(
C2

∥∥∥r̃(k+1)
∥∥∥2

L2(I)
+ C3

)
+ C4.
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Therefore, we have that( ∑
K∈Th

∥∥∥q(n+1)
∥∥∥2

L2(K)

)1/2

≤ C6

(∥∥∥r̃(n+1)
∥∥∥
L2(I)

+ hk−n
∥∥∥r̃(k+1)

∥∥∥
L2(I)

)
+ C7,

which in view of (4.18) the stated result follows.
We have the following estimate for (q − w̃h).

Lemma 7. For q satisfying (4.15),(4.16), h sufficiently small, and w̃h determined by (4.7), we

have that √
h ‖q′ − w̃′h‖+ ‖q − w̃h‖ ≤ Cwhmin{m+1/2,k+1/2}. (4.20)

Proof. Note that q satisfies A(r̃h; q, v) = F (r̃h; v) for all v ∈ Xh. Therefore, we have that

A (r̃h; q, v)−A (r̃h; w̃h, v) =
∫ L

0

(q′ − w̃′h) v̂ dz +
∫ L

0

H (r̃h) (q − w̃h) v̂ dz = 0.

Let Q denote the interpolant of q in Xw
h , and introduce

Λ = q −Q, E = Q− w̃h. (4.21)

Then, e := q − w̃h = Λ + E.
With these definitions, and the choice v = E, we have

A (r̃; w̃, E)−A (r̃h; w̃h, E) =
∫ L

0

E′ (E + νhE′) dz +
∫ L

0

Λ′ (E + νhE′) dz

+
∫ L

0

H (r̃h)E (E + νhE′) dz +
∫ L

0

H (r̃h) Λ (E + νhE′) dz

:= J1 + J2 + J3 + J4 = 0.
(4.22)

We now proceed to estimate the terms J1 through J4.

J1 :=
∫ L

0

E′ (E + νhE′) dz

= νh ‖E′‖2 +
1
2
E(L)2.

(4.23)

J2 :=
∫ L

0

Λ′ (E + νhE′) dz =
∫ L

0

Λ′νhE′ dz +
∫ L

0

Λ′E dz

≥ −ε11νh ‖E′‖2 −
νh

4ε11
‖Λ′‖2 + Λ(L)E(L)−

∫ L

0

ΛE′ dz

≥ −ε11νh ‖E′‖2 −
νh

4ε11
‖Λ′‖2 − 1

4
E(L)2 − Λ(L)2 − ε1h ‖E′‖2 −

1
4ε1

h−1 ‖Λ‖2 (4.24)

≥ − (ε1h+ ε11νh) ‖E′‖2 − 1
4ε1

h−1 ‖Λ‖2 − νh

4ε11
‖Λ′‖2 − 1

4
E(L)2 − ‖Λ‖2∞

J3 :=
∫ L

0

H (r̃h)E (E + νhE′) dz

=
∫ L

0

(H (r̃h)− H (r̃))E (E + νhE′) dz +
∫ L

0

H (r̃)E (E + νhE′) dz

≥ −‖H (r̃)− H (r̃h)‖ ‖E‖2L4
− ‖H (r̃)− H (r̃h)‖ ‖E‖∞νh ‖E′‖

+ c1‖E‖2 − ‖H (r̃)‖∞ ‖E‖νh ‖E′‖
(4.25)

≥ −C0h
k
(
h−1/4‖E‖

)2

− C0h
kh−1/2‖E‖νh ‖E′‖+ c1‖E‖2 − c2‖E‖νh ‖E′‖

≥
(
c1 − C0h

k−1/2 − ν

4ε2
C2

0h
2k − νh

4ε12
c22

)
‖E‖2 − νh (ε2 + ε12) ‖E′‖2
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Similarly,

J4 :=
∫ L

0

H (r̃h) Λ (E + νhE′) dz

=
∫ L

0

(H (r̃h)− H (r̃)) Λ (E + νhE′) dz +
∫ L

0

H (r̃) Λ (E + νhE′) dz

≥ −‖H (r̃)− H (r̃h)‖ ‖E‖‖Λ‖∞ − ‖H (r̃)− H (r̃h)‖ ‖Λ‖∞νh ‖E′‖
− ‖H (r̃)‖∞ ‖E‖‖Λ‖ − ‖H (r̃)‖∞ ‖Λ‖νh ‖E′‖
≥ −C0h

k‖E‖‖Λ‖∞ − C0h
k‖Λ‖∞νh ‖E′‖ − c2‖E‖‖Λ‖ − c2‖Λ‖νh ‖E′‖

≥ − (ε3 + ε14) ‖E‖2 − νh (ε13 + ε15) ‖E′‖2

−
(

1
4ε3

C2
0h

2k +
ν

4ε13
C2

0h
2k+1

)
‖Λ‖2∞ −

(
1

4ε14
c22 +

νh

4ε15
c22

)
‖Λ‖2.

(4.26)

Combining estimates (4.23)–(4.26) with (4.22), we have

(νh (1− (ε2 + ε11 + ε12 + ε13 + ε15))− ε1h) ‖E′‖2 +
1
4
E(L)2

+
(
c1 − (ε3 + ε14)− C0h

k−1/2 − ν

4ε2
C2

0h
2k − νh

4ε12
c22

)
‖E‖2

=
(

1
4ε1

h−1 +
1

4ε14
c22 +

νh

4ε15
c22

)
‖Λ‖2

+
(

1 +
1

4ε3
C2

0h
2k +

ν

4ε13
C2

0h
2k+1

)
‖Λ‖2∞ +

(
νh

4ε11

)
‖Λ′‖2 .

(4.27)

Note that as we have a quasi-uniform mesh partition, applying (3.6) across each of the subinter-
vals, we have that

‖Λ‖∞ ≤ Ch1/2 ‖Λ′‖ .
Thus, for h sufficiently small,

h ‖E′‖2 + ‖E‖2 ≤ C
(
h−1‖Λ‖2 + h‖Λ′‖2

)
. (4.28)

Finally, as
√
h ‖q′ − w̃′h‖+ ‖q − w̃h‖ ≤

√
h (‖Λ′‖+ ‖E′‖) + (‖Λ‖+ ‖E‖) ,

(4.20) follows from (4.28) and the interpolation properties of Q.
We now combine the above results to establish the convergence estimate.

Theorem 4.2. For m ∈ N, and assuming the conditions of Theorem 3.1, and A1 and A2 are

satisfied, then there exists unique solutions w̃ and w̃h to (4.5), (4.6), and (4.7), respectively. In

addition,

‖w̃′ − w̃′h‖ ≤ Chmin{m,k}. (4.29)

Proof. From Lemma 3 and (4.19), w̃ is given by

w̃(z) = −1 + e−
∫ z
0 H(r̃)(t) dt, (4.30)

w̃′(z) = −H (r̃) (z)e−
∫ z
0 H(r̃)(t) dt (4.31)

w̃(j)(z) = −H (r̃)(j−1) (z)e−
∫ z
0 H(r̃)(t) dt + cH (r̃)(j−2) (z)H (r̃) (z)e−

∫ z
0 H(r̃)(t) dt

+ · · ·+ (H (r̃) (z))j e−
∫ z
0 H(r̃)(t) dt. (4.32)

If r̃ ∈ H1(I) then from (4.31), w̃ ∈ W 1
1 (I). For r̃ ∈ Hn(I), n > 1, then from (4.32) and the

discussion in the proof of Lemma 6, w̃ ∈ Hn(I) also.
We have that

‖w̃′ − w̃′h‖ ≤ ‖w̃′ − q′‖+ ‖q′ − w̃′h‖ . (4.33)

From (4.5),(4.6) and (4.15),(4.16), we have that g(z) := w̃(z) − q(z) satisfies (4.1),(4.2) for
δ(z) := H (r̃)− H (r̃h). Thus, (4.29) follows from (4.33), (4.11), and (4.20).
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4.1. Numerical Results for wh(z)

In this section, we present numerical results for the approximation of the (dimensionless) film
thickness, w(z) = 1 + w̃(z). The numerical results are compared with the predicted theoretical
results given in Theorem 4.2.

As described in Section 3.3, computations were performed on a sequence of uniform partitions
of [0, L]. The approximation w̃h was computed as follows. First, on the given partition, r̃h was
computed by solving (3.9). Then, (4.7) was solved for w̃h. The values used for B,Fc, and L were
the same as in Section 3.3. For ν, the value ν = 1 was used. Various combinations of polynomial
degrees were used for the approximation of r̃ and w̃. Analogous to (3.40), and using Theorem 4.2,
we have that

‖w̃′h − w̃′2h‖ ≤ ‖w̃′h − w̃′‖+ ‖w̃′ − w̃′2h‖
≤ Chmin{m,k} + C(2h)min{m,k} = C̃hmin{m,k},

(4.34)

where k and m denotes the degree of the approximating, piecewise polynomials used for r̃h and
w̃h, respectively.

Table 2. Experimental rates of convergence for ‖w′h−w′‖, using a quadratic approx-
imation for r̃.

P/W Linear Approx. (m = 1) P/W Quad. Approx. (m = 2) P/W Cubic Approx. (m = 3)

k = 2 ‖w̃′h − w̃′2h‖ Cvge. Rate ‖w̃′h − w̃′2h‖ Cvge. Rate ‖w̃′h − w̃′2h‖ Cvge. Rate

h = L/40 5.01E− 02 7.86E− 03 8.49E− 03

h = L/80 2.52E− 02 0.99 1.88E− 03 2.07 2.01E− 03 2.08

h = L/160 1.26E− 02 1.00 4.68E− 04 2.00 4.99E− 04 2.01

h = L/320 6.28E− 03 1.00 1.17E− 04 2.00 1.25E− 04 2.00

h = L/640 3.14E− 03 1.00 2.92E− 05 2.00 3.12E− 05 2.00

Predicted 1.0 2.0 2.0

Figure 3. Plot of the dimensionless film thickness.
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Figure 4. Plot of the (dimensionless) film thickness and bubble radius.

Presented in Table 2 are computations for ‖w̃′h − w̃′2h‖, obtained using a piecewise quadratic
approximation for r̃, i.e., k = 2, and piecewise linear, quadratic and cubic approximations for w̃.
The numerical convergence rates agree with those predicted (see (4.34)). Computations were also
performed using piecewise linear and piecewise quadratic approximations for r̃. The numerical
converge rates for these cases also agree with those predicted by Theorem 4.2.

Displayed in Figure 3 is a plot of the (dimensionless) film thickness, computed using 320
subdivisions and quadratic approximations for r̃ and w̃. The profile of the film thickness is
consistent with physically expectations. In Figure 4, both the quadratic approximations for r̃
and w̃, computed using 320 subdivisions, are displayed. Of interest to note is the consistency of
the rate of change of r̃h and w̃h, what is expected to occur.

APPENDIX

DETAILED BOUND DERIVATIONS

First, note that

‖r̃′1‖ ≤ ‖r̃′‖+ ‖r̃′ − r̃′1‖ ≤ ‖r̃′‖+R := D2, (A.1)

‖r̃1‖∞ ≤ L1/2 ‖r̃′1‖ ≤ D2. (A.2)

Lemma 8. There exists a constant D4 <∞, such that

∥∥∥∥(2 (r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

))′∥∥∥∥ ≤ D4 ‖r̃′1‖ . (A.3)
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Proof. Expanding the derivative,∥∥∥∥(2 (r̃1 + 1)2
(
B (r̃1 + 1)2 + Fc

))′∥∥∥∥ = 2
∥∥∥2r̃′1 (r̃1 + 1)

(
B (r̃1 + 1)2 + Fc

)
+ (r̃1 + 1)2 2Br̃′1 (r̃1 + 1)

∥∥∥
≤ 4 (‖r̃1‖∞ + 1)

(
B (‖r̃1‖∞ + 1)2 + Fc

)
‖r̃′1‖

+ 4B (‖r̃1‖∞ + 1)2 (‖r̃1‖∞ + 1) ‖r̃′1‖
= D4 ‖r̃′1‖ .

Lemma 9. There exists constants D5, D6 <∞, such that∥∥∥3B (r̃1 + 1)2 (1 + r̃′21
)∥∥∥
L1

≤ D5 +D6 ‖r̃′1‖
2
. (A.4)

Proof. We have that∥∥∥3B (r̃1 + 1)2 (1 + r̃′21
)∥∥∥
L1

≤
∥∥∥3B (r̃1 + 1)2

∥∥∥
L1

+
∥∥∥3B (r̃1 + 1)2

r̃′21

∥∥∥
L1

≤ L3B (‖r̃1‖∞ + 1)2 + 3B (‖r̃1‖∞ + 1)2 ‖r̃′1‖
2

= D5 +D6 ‖r̃′1‖
2

Lemma 10. There exists constants D7, D8 <∞, such that∥∥∥(Fc − 3B (r̃1 + 1)2
) (

1 + r̃′21
)∥∥∥
L1

≤ D7 +D8 ‖r̃′1‖
2
. (A.5)

Proof. The proof of (A.5) follows as that of (A.4).

Lemma 11. There exists a constant D25 <∞, such that∥∥∥(2G2(w + 1)2
(
f0 +B

(
(w + 1)2 − 1

)))′∥∥∥ ≤ D25 ‖r̃′‖ . (A.6)

Proof. The proof of equation (A.6) follows similarly to that of (A.3).

Lemma 12. There exists a constant D26 <∞, such that∥∥∥∥[2 (r̃ − r̃1) (r̃ + r̃1 + 2)
(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)]′∥∥∥∥ ‖r̃′1‖ ≤ D26 ‖r̃′ − r̃′1‖ . (A.7)

Proof. Expanding the derivative, we have∥∥∥∥[2 (r̃ − r̃1) (r̃ + r̃1 + 2)
(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)]′∥∥∥∥
=
∥∥∥2 (r̃′ − r̃′1) (r̃ + r̃1 + 2)

(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)
+ 2 (r̃ − r̃1) (r̃′ + r̃′1)

(
B
[
(r̃1 + 1)2 + (r̃ + 1)2

]
+ Fc

)
+2 (r̃ − r̃1) (r̃ + r̃1 + 2) 2B ((r̃1 + 1) r̃′1 + (r̃ + 1) r̃′)‖

≤ 2 ‖r̃′ − r̃′1‖ (‖r̃‖∞ + ‖r̃1‖∞ + 2)
(
B
[
(‖r̃1‖∞ + 1)2 + (‖r̃‖∞ + 1)2

]
+ Fc

)
+ 2 ‖r̃ − r̃1‖∞ (‖r̃′‖+ ‖r̃′1‖)

(
B
[
(‖r̃1‖∞ + 1)2 + (‖r̃‖∞ + 1)2

]
+ Fc

)
+ 4B ‖r̃ − r̃1‖∞ (‖r̃‖∞ + ‖r̃1‖∞ + 2) ((‖r̃1‖∞ + 1) ‖r̃′1‖+ (‖r̃‖∞ + 1) ‖r̃′‖) .

Using (3.6), we therefore obtain (A.7), where

D26 = 2 (‖r̃‖∞ + ‖r̃1‖∞ + 2)
(
B
[
(‖r̃1‖∞ + 1)2 + (‖r̃‖∞ + 1)2

]
+ Fc

)
‖r̃′1‖

+ 2L1/2 (‖r̃′‖+ ‖r̃′1‖)
(
B
[
(‖r̃1‖∞ + 1)2 + (‖r̃‖∞ + 1)2

]
+ Fc

)
‖r̃′1‖

+ 4BL1/2 (‖r̃‖∞ + ‖r̃1‖∞ + 2) ((‖r̃1‖∞ + 1) ‖r̃′1‖+ (‖r̃‖∞ + 1) ‖r̃′‖) ‖r̃′1‖ .
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Lemma 13. There exists a constant D28 <∞, such that

‖r̃′ − r̃′1‖∞
∥∥3B

[
(r̃1 + 1) (r̃′ + r̃′1) + (r̃ + r̃1 + 2)

(
1 + r̃′2

)]∥∥
L1
‖r̃1‖∞ ≤ D28 ‖r̃′ − r̃′1‖ (A.8)

Proof. We have that∥∥3B
[
(r̃1 + 1) (r̃′ + r̃′1) + (r̃ + r̃1 + 2)

(
1 + r̃′2

)]∥∥
L1

≤ 3B
[
(‖r̃1‖∞ + 1)L1/2 (‖r̃′‖+ ‖r̃′1‖) + (‖r̃‖∞ + ‖r̃1‖∞ + 2)

(
1 + ‖r̃′‖2

)]
as ‖ · ‖L1 ≤ L1/2‖ · ‖ . Using (3.6), we therefore obtain (A.8), where

D28 = L1/23B
[
(‖r̃1‖∞ + 1)L1/2 (‖r̃′‖+ ‖r̃′1‖) + (‖r̃‖∞ + ‖r̃1‖∞ + 2)

(
1 + ‖r̃′‖2

)]
‖r̃1‖∞ .
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