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Abstract. In this work a dual-mixed approximation of a nonlinear generalized Stokes problem is
studied. The problem is analyzed in Sobolev spaces which arise naturally in the problem formulation.
Existence and uniqueness results are given and error estimates are derived. It is shown that both
lowest-order and higher-order mixed finite elements are suitable for the approximation method.
Numerical experiments that support the theoretical results are presented.
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1 Introduction

In this article we investigate the solution of a nonlinear generalized Stokes problem using a dual-
mixed formulation. The nonlinear generalized Stokes problem arises in modeling flows of, for exam-
ple, biological fluids, lubricants, paints, polymeric fluids, where the fluid viscosity is assumed to be
a nonlinear function of the fluid’s velocity gradient tensor. The generalized Stokes problem is given
by: Find (u, p) such that

−∇ · (ν(|∇u|)∇u) +∇p = f in Ω , (1.1)
∇ · u = 0 in Ω , (1.2)

u = uΓ on Γ , (1.3)

where Ω is a bounded open subset of Rn with Lipschitz continuous boundary Γ. The fluid velocity
is denoted by u, and ∇u := (∇u)ij = ∂ui/∂xj is the tensor gradient of u. Here and throughout
the paper we use the following notation: for tensors σ = (σij), τ = (τij), σ : τ =

∑
i,j σijτij ,

|σ|2 = σ : σ. The pressure is denoted by p, and f describes the external forces on the fluid. The
function ν describes the nonlinear kinematic viscosity of the fluid.
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Some classical examples of ν are given by:

Power Law

ν(|d(u)|) = ν0 |d(u)|r−2 , ν0 > 0, 1 < r < 2, (1.4)

where d(u) = 1
2(∇u +∇uT) denotes the fluid deformation tensor. The power law model has been

used to model the viscosity of many polymeric solutions and melts over a considerable range of shear
rates [18].

Ladyzhenskaya Law[21]:

ν(|∇u|) = (ν0 + ν1 |∇u|)r−2 , ν0 ≥ 0, ν1 > 0, r > 1 , (1.5)

which has been used in modeling fluids with large stresses.

Carreau Law:

ν(|d(u)|) = ν0

(
1 + |d(u)|2

)(r−2)/2
, ν0 > 0, r ≥ 1 , (1.6)

used in modeling visco-plastic flows and creeping flow of metals.

General descriptions of (1.1) are often written in terms of the tensor σ = ν(|∇u|)∇u:

−∇ · σ +∇p = f in Ω . (1.7)

The work in this paper extends the investigates of [4, 23, 15]. In [4] Baranger, Najib, and Sandri
provided an analysis for the existence and uniqueness of the modeling equations in appropriate
Sobolev spaces and gave an error analysis of a finite element approximation method applied to the
primitive variables (σ, p, u). Manouzi and Farhloul in [23] reformulated the modeling equations
into a saddle point problem and used a mixed formulation to study the existence and uniqueness
of the solution, again in appropriate Sobolev spaces. An error analysis for the finite element ap-
proximation was also given. In both [4] and [23] the analysis used the assumption that the equation
describing σ in terms of d(u) or ∇u was invertible to give d(u) or ∇u as a function of σ. Gatica,
González, and Meddahi in [15] reformulated the modeling equations, using the tensor ψ in place of
the σ (ψ = σ−pI) and introducing an additional variable for ∇u. Doing so their formulation used
the constitutive equation for σ as a function of ∇u and reduced the regulatity requirement for the
velocity. Advantages of this approach include: (i) more flexibility in choosing the approximating
finite element space for u, (ii) Dirichlet boundary conditions for u become natural boundary con-
ditions and are easily incorporated into the variational formulations, (iii) avoids the assumption of
expressing ∇u was a function of σ. A disadvantage in this formulation is that additional unknowns
are introduced. The analysis of this approach was only studied in a Hilbert space setting.

In this paper we recast the formulation described in [15] in appropriate Sobolev spaces. Because
of the nonlinearity in (1.7), this problem is more appropriately studied in Sobolev spaces which
should result in tighter error estimates for the approximate solution. This extends the work of [23]
by avoiding the assumption of expressing ∇u as a function of σ. In addition, we show that higher-
order approxmiating spaces can be used in the mixed finite element method for this formulation
and give the associated a priori error estimates.
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A description of the notation used in this paper, the mathematical problem, and the dual-mixed
variational formulation is given in Section 2. Existence and uniqueness of the variational formulation
is studied in Section 3. In Section 4 the finite element approximation is presented and analyzed.
Numerical results are given in Section 5.

2 Mathematical Setting

For r > 1 we denote its unitary conjugate by r′, satisfying r−1 + r′−1 = 1. Used in the analysis
below are the following function spaces and norms.

T := (Lr(Ω))n×n = {τ = (τij); τij ∈ Lr(Ω) ; i, j = 1, . . . , n } ,

with norm ‖τ‖T :=
(∫

Ω |τ |
r dΩ

)1/r.

T
′
:=
(
Lr′(Ω)

)n×n
and T

′
div :=

{
τ ∈ T ′

; div τ ∈
(
Lr′(Ω)

)n }
,

with norm ‖τ‖
T
′
div

:=
(∫

Ω(|τ |r′ + |div τ |r′) dΩ
)1/r′

. Let U := (Lr(Ω))n, and P := Lr′(Ω).

For a Banach space X, X∗ denotes its dual space with associated norm ‖ · ‖X∗ . Note that T ∗ = T
′
,

and
(
T

′
)∗

= T . The norm and seminorm associated with the Sobolev space Wm,r(Ω) will be
denoted by ‖ · ‖m,r,Ω and | · |m,r,Ω, respectively, and the infinity norm will be denoted by ‖ · ‖∞.

Motivated by (1.4),(1.5),(1.6), we will assume that the extra stress tensor is a function of the velocity
gradient, i.e.

σ := g(∇u) = ν(|∇u|)∇u . (2.1)

Specifically, we assume

A1: g : T → T ∗ is a bounded, continuous, strictly monotone operator [26];

and that there exist constants Ĉ1 and Ĉ2 such that, for s, t,w ∈ T ,

A2:
∫

Ω
(g(s)− g(t)) : (s− t) dΩ ≥ Ĉ1

(∫
Ω
|g(s)− g(t)||s− t| dΩ +

‖s− t‖2
T

‖s‖2−r
T + ‖t‖2−r

T

)
, (2.2)

A3:
∫

Ω
(g(s)− g(t)) : w dΩ ≤ Ĉ2

∥∥∥∥ |s− t|
|s|+ |t|

∥∥∥∥ 2−r
r

∞

(∫
Ω
|g(s)− g(t)||s− t| dΩ

)1/r′

‖w‖T , (2.3)

with the convention that g(s) = 0 if s = 0 and |s(x)− t(x)|/(|s(x)|+ |t(x)|) = 0 if s(x) = t(x) = 0.
Properties A1–A3 have been established for power law and Carreau law fluids [3]. (For the case of
a power law fluid monotonicity is also shown in [28, 8].)

Remark 2.1 From (1.2) it follows that uΓ must satisfy the compatibility condition∫
Γ

uΓ · n dΓ = 0 ,

where n denotes the outward pointing unit normal vector to Ω.
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In order to obtain the dual-mixed formulation, introduce two new variables, φ and ψ.

φ := ∇u , (2.4)
ψ := σ − pI , the total stress tensor, (2.5)

= g(φ) − pI , using (2.1) . (2.6)

With the definition of ψ a variational form for (1.1) can be written as

−
∫

Ω
v · divψ dΩ =

∫
Ω

v · f dΩ , for v ∈ T . (2.7)

Note that from the definition of φ we have that, for sufficiently smooth functions,

0 = −
∫

Ω
φ : τ dΩ +

∫
Ω
∇u : τ dΩ

= −
∫

Ω
φ : τ dΩ +

∫
Γ
(τ · n) · uΓ dΓ −

∫
Ω

u · div τ dΩ (2.8)

and the condition div u = 0 is equivalent to

tr(φ) = 0 , (2.9)

where we use tr(φ) to denote the trace of φ.

Combining (1.4), (2.8), and (2.7) a variational formulation to (1.4), (2.8), and (2.7) is: Given
f ∈

(
Lr′(Ω)

)n
, uΓ ∈

(
W 1−1/r , r(Γ)

)n
, determine (φ,ψ, p,u) ∈ T × T

′
div × P × U such that∫

Ω
g(φ) : ς dΩ −

∫
Ω
ψ : ς dΩ −

∫
Ω
p tr(ς) dΩ = 0 ,∀ς ∈ T , (2.10)

−
∫

Ω
τ : φ dΩ −

∫
Ω
q tr(φ) dΩ −

∫
Ω

u · div τ dΩ = −
∫

Γ
(τ · n) · uΓ dΓ ,

∀(τ , q) ∈ T ′
div × P , (2.11)

−
∫

Ω
v · divψ dΩ =

∫
Ω

v · f dΩ ,∀v ∈ U . (2.12)

Note that equations (2.10)-(2.12) do not uniquely define a solution; as adding (0, cI,−c,0) to a
solution (φ,ψ, p,u), also satisfies (2.10)-(2.12) for any c ∈ R. In order to guarantee uniqueness we
proceed as in [2, 7, 15] and impose, via a Lagrange multiplier, the constraint

∫
Ω tr(ψ) dΩ = 0.

The variational formulation may then be restated as: Given f ∈
(
Lr′(Ω)

)n
, uΓ ∈

(
W 1−1/r , r(Γ)

)n
,

determine (φ,ψ, p,u, λ) ∈ T × T
′
div × P × U × R such that∫

Ω
g(φ) : ς dΩ −

∫
Ω
ψ : ς dΩ −

∫
Ω
p tr(ς) dΩ = 0 ,∀ς ∈ T , (2.13)

−
∫

Ω
τ : φ dΩ −

∫
Ω
q tr(φ) dΩ −

∫
Ω

u · div τ dΩ + λ

∫
Ω
tr(τ ) dΩ

= −
∫

Γ
(τ · n) · uΓ dΓ ,∀(τ , q) ∈ T ′

div × P , (2.14)

−
∫

Ω
v · divψ dΩ + η

∫
Ω
tr(ψ) dΩ =

∫
Ω

v · f dΩ ,∀(v, η) ∈ U × R . (2.15)
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Remark 2.2 As commented in [15], the value of the Lagrange multiplier λ is 0, as can be seen
from the choice of τ = I and q = −1. However, it is included in the variational formulation so that
the formulation has a twofold saddle point structure.

To formally rewrite (2.13)-(2.15) as a twofold saddle point problem define the following operators:

A : T −→ T
′
, B : T −→ (T

′
div × P )∗ , C : T

′
div × P −→ (U × R)∗ .

[A(φ) , ς] :=
∫

Ω
g(φ) : ς dΩ , (2.16)

[B(φ) , (τ , q)] := −
∫

Ω
τ : φ dΩ −

∫
Ω
q tr(φ) dΩ , (2.17)

[C(ψ, p) , (v, η)] := −
∫

Ω
v · divψ dΩ + η

∫
Ω
tr(ψ) dΩ . (2.18)

The modeling equations can then be written in the form

[A(φ) , ς] + [ς , B∗(ψ, p)] = 0 ,∀ς ∈ T , (2.19)

[B(φ) , (τ , q)] + [(τ , q) , C∗(u, λ)] = −
∫

Γ
(τ · n) · uΓ dΓ ,∀(τ , q) ∈ T ′

div × P , (2.20)

[C(ψ, p) , (v, η)] =
∫

Ω
v · f dΩ ,∀(v, η) ∈ U × R , (2.21)

where B∗ and C∗ denote the respective adjoint operators of B and C, respectively.

3 Existence and Uniqueness

The existence and uniqueness of (2.19)-(2.21) follows from
(i) [C(ψ, p) , (v, η)] defining a bounded (componentwise) linear functional and satisfying an inf-sup
condition;
(ii) [B(φ) , (τ , q)] defining a bounded (componentwise) linear functional and satisfying an inf-sup
condition;
(iii) A(φ) defining a bounded, continuous, strictly monotone operator on a reflexive Banach space.

Remark 3.1 A direct application of Hölder’s inequality establishes that [C(·, ·), (·, ·)] : (T
′
div ×P )×

(U × R) → R is a bounded (componentwise) linear functional.

Remark 3.2 A direct application of Hölder’s inequality establishes that [B(·), (·, ·)] : T × (T
′
div ×

P ) → R is a bounded (componentwise) linear functional.

Remark 3.3 From the assumptions A1-A3 discussed in Section 2, A(φ) defines a bounded, con-
tinuous, strictly monotone operator on a reflexive Banach space.

Thus it remains to show the inf-sup conditions for B and C.
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3.1 Inf-sup Condition for B

Define the null space for the operator C, Z1, as

Z1 :=
{

(τ , q) ∈ T ′
div × P : [C(τ , q) , (v, η)] = 0 , ∀(v, η) ∈ U × R

}
,

=
{

(τ , q) ∈ T ′
div × P : div τ = 0 in Ω, and

∫
Ω
tr(τ ) dΩ = 0

}
. (3.1)

Note that for (τ , q) ∈ Z1, ‖τ‖T
′
div

= ‖τ‖T ′ . Helpful in establishing the inf-sup condition for B is
the following lemma.

Lemma 3.1 (See Lemma 3.1 in [2] for Hilbert space setting.)
For τ ∈ T

′
div satisfying

∫
Ω tr(τ ) dΩ = 0, let τ 0 = τ − 1

n tr(τ )I. Then, there exists C, depending
only Ω, such that

‖τ‖Lr′ ≤ C
(
‖τ 0‖Lr′ + ‖div τ‖W−1,r′

)
. (3.2)

Proof : Now, there exists a non-zero function ϕ ∈ Lr(Ω) such that

‖tr(τ )‖Lr′ (Ω) ‖ϕ‖Lr(Ω) =
∫

Ω
tr(τ )ϕdΩ . (3.3)

Since
∫
Ω tr(τ ) dΩ = 0, we can assume

∫
Ω ϕdΩ = 0 (shift ϕ by its average). From [14], pg. 116,

given ϕ ∈ Lr(Ω), 1 < r < ∞ with
∫
Ω ϕdΩ = 0, then there exists v ∈ W 1,r

0 (Ω) and a constant C
such that

div v = ϕ in Ω and ‖v‖W 1,r(Ω) ≤ C‖ϕ‖Lr(Ω) . (3.4)

From (3.3) and (3.4),

1
nC

‖tr(τ )‖Lr′ (Ω) ‖v‖W 1,r(Ω) ≤ 1
n

∫
Ω
tr(τ ) div v dΩ =

1
n

∫
Ω
tr(τ ) I : ∇v dΩ

=
∫

Ω
(τ − τ 0) : ∇v dΩ (using the defn. of τ 0)

= −
∫

Ω
(τ 0 : ∇v + div τ · v) dΩ

≤
(
‖τ 0‖Lr′ (Ω) + ‖div τ‖W−1,r′ (Ω)

)
‖v‖W 1,r(Ω) .

Lemma 3.2 There exists a constant c1 > 0 such that

inf
(τ ,q)∈Z1

sup
φ∈T

[B(φ) , (τ , q)]
‖φ‖T ‖(τ , q)‖T

′
div×P

≥ c1 . (3.5)

Proof : We establish the inf-sup condition by considering two cases.
Case 1.: ‖q‖P ≤ ‖τ‖

T
′
div

.
Let

τ 0 = τ − 1
n
tr(τ )I, and φ = −|τ 0|r′/r−1 τ 0/‖τ 0‖r′−1

T ′ . (3.6)
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Note that φ ∈ T , and ‖φ‖T = 1. Then,

[B(φ), (τ , q)]
‖φ‖T

=
∫

Ω

|τ 0|r′/r−1

‖τ 0‖r′−1
T ′

τ : τ 0 dΩ +
∫

Ω
q
|τ |r′/r−1 tr(τ 0)

‖τ 0‖r′−1
T ′

dΩ

=
1

‖τ 0‖r′−1
T ′

∫
Ω
|τ 0|r′/r−1 τ 0 : τ 0 dΩ , (as tr(τ 0) = 0 , and τ : τ 0 = τ 0 : τ 0)

= ‖τ 0‖T ′ ≥ 1
C
‖τ‖T ′ =

1
C
‖τ‖

T
′
div

( as (τ , q) ∈ Z1 , see (3.2))

≥ 1
2C

(
‖τ‖

T
′
div

+ ‖q‖P

)
=

1
2C

‖(τ , q)‖
T
′
div×P

. (3.7)

Case 2.: ‖q‖P ≥ ‖τ‖
T
′
div

.
Let

φ =
−|qI + τ |r′/r−1 (qI + τ )

‖qI + τ‖r′−1
T ′

. (3.8)

Again, φ ∈ T , and ‖φ‖T = 1. For this choice of φ,

[B(φ), (τ , q)]
‖φ‖T

=
∫

Ω

|qI + τ |r′/r−1

‖qI + τ‖r′−1
T ′

(τ : (qI + τ ) + q tr(qI + τ )) dΩ

=
∫

Ω

|qI + τ |r′/r−1

‖qI + τ‖r′−1
T ′

(qI + τ ) : (qI + τ ) dΩ

= ‖qI + τ‖T ′ ≥ ‖qI‖T ′ − ‖τ‖T ′

= n1/r′‖q‖P − ‖τ‖T ′ ≥ (n1/r′ − 1)‖q‖P

≥ C‖(τ , q)‖
T
′
div×P

. (3.9)

3.2 Inf-sup Condition for C

The following two lemmas are helpful in establishing the inf-sup condition for C.

Lemma 3.3 Let 0T
′
div :=

{
τ ∈ T ′

div :
∫
Ω tr(τ ) dΩ = 0

}
. Then, there exists C > 0 such that for

any u ∈ U

sup
τ̂∈ 0T

′
div

τ̂ 6=0

∫
Ω u · divτ̂ dΩ
‖τ̂‖

T
′
div

≥ C sup
τ∈T

′
div

τ 6=0

∫
Ω u · divτ dΩ
‖τ‖

T
′
div

. (3.10)

Proof : For τ ∈ T
′
div, let τ 0 = τ − 1

n|Ω|
(∫

Ω tr(τ )) dΩ
)
I. Then, τ 0 ∈ 0T

′
div, and divτ = divτ 0.

Let

ς := |τ 0|r
′/r− 1τ 0 +

sgn
(
(
∫
Ω tr(τ ) dΩ) (

∫
Ω |τ 0|r

′/r− 1τ 0 dΩ)
)

n |Ω|

(∫
Ω
|τ 0|r

′/r− 1τ 0 dΩ
)

I .
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Note that as

‖|τ 0|r
′/r− 1τ 0‖Lr =

(∫
Ω
|τ 0|r

′
dΩ
)1/r

= ‖τ 0‖r′/r

Lr′ ,

and ∣∣∣∣∫
Ω
|τ 0|r

′/r− 1tr(τ 0) dΩ
∣∣∣∣ ≤ √

n

∫
Ω
|τ 0|r

′/r 1 dΩ ≤ C ‖τ 0‖r′/r

Lr′ .

Thus
‖ς‖Lr ≤ C‖τ 0‖r′/r

Lr′ . (3.11)

We have that
‖τ‖Lr′ = sup

σ∈Lr

(τ , σ)
‖σ‖Lr

. (3.12)

Now, using τ 0 ∈ 0T
′
div,

(τ , ς) =
∫

Ω
|τ 0|r

′
dΩ +

1
n|Ω|

(∫
Ω
tr(τ ) dΩ

)(∫
Ω
|τ 0|r

′/r− 1 tr(τ 0) dΩ
)

+
∣∣∣∣ 1
n|Ω|

(∫
Ω
tr(τ ) dΩ

)(∫
Ω
|τ 0|r

′/r− 1 tr(τ 0) dΩ
)∣∣∣∣

≥ ‖τ 0‖r′

Lr′ . (3.13)

Therefore, from (3.11), (3.12), and (3.13) we have that ‖τ‖Lr′ ≥ C ‖τ 0‖Lr′ . Combining the above
we obtain ∫

Ω u · divτ dΩ
‖τ‖

T
′
div

=

∫
Ω u · divτ 0 dΩ
‖τ‖

T
′
div

≤ C

∫
Ω u · divτ 0 dΩ
‖τ 0‖T

′
div

,

from which (3.10) then follows.

Lemma 3.4 There exists a constant c2 > 0 such that

inf
(u,λ)∈U×R

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

‖(u, λ)‖U×R
≥ c2 . (3.14)

Proof : We establish the inf-sup condition by considering two cases.
Case 1.: |λ| ≥ ‖u‖U .
For this case we have

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

≥ [C(λI, 0) , (u, λ)]
‖λI‖

T
′
div

=
nλ2 |Ω|

|λ|nr′/2 |Ω|1/r′
≥ C‖(u, λ)‖U×R . (3.15)

Case 2.: |λ| ≤ ‖u‖U .
Using Lemma 3.3,

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

≥ sup
τ 0∈ 0T

′
div

[C(τ 0, 0) , (u, λ)]
‖τ 0‖T

′
div

= sup
τ 0∈ 0T

′
div

−
∫
Ω u · divτ 0 dΩ
‖τ 0‖T

′
div

≥ C sup
τ∈T

′
div

−
∫
Ω u · divτ dΩ
‖τ‖

T
′
div

. (3.16)
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Choose w ∈ (Lr′(Ω))n such that ‖u‖Lr ‖w‖Lr′ =
∫
Ω u · w dΩ , and let τ satisfy div τ = w in Ω

with
‖τ‖

T
′
div

≤ C ‖w‖Lr′ ,

(see [14] pg. 116). Then,

sup
(τ ,q)∈T

′
div×P

[C(τ , q) , (u, λ)]
‖(τ , q)‖

T
′
div×P

≥ C
−
∫
Ω u · div(−τ ) dΩ
‖ − τ‖

T
′
div

≥ C

∫
Ω u ·w dΩ
‖w‖Lr′

≥ C‖u‖U ≥ C‖(u, λ)‖U×R . (3.17)

We now summarize the above results in the following theorem.

Theorem 3.1 There exists a unique solution (φ,ψ, p,u, λ) ∈ T × T
′
div × P × U × R satisfying

(2.19)–(2.21). In addition, we have that

‖φ‖T ≤ C
(
‖uΓ‖1−1/r,r,Γ + ‖f‖r′/r

0,r′,Ω

)
. (3.18)

Proof : The bound (3.18) is derived using the inf-sup conditions for B and C, and (2.2). (See [10]
for details.)

4 Finite Element Approximation

Let Ω ⊂ Rn be a polygonal domain and let Th be a triangulation of Ω into triangles (n = 2) or
tetrahedrals (n = 3). Thus

Ω = ∪K , K ∈ Th ,

and assume that there exist constants γ1, γ2 such that

γ1h ≤ hK ≤ γ2ρK (4.1)

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the greatest ball (sphere)
included in K, and h = maxK∈Th

hK . Define the finite-dimensional subspaces Th ⊆ T , T
′
div, h ⊆ T

′
div,

Ph ⊆ P , and Uh ⊆ U . Then the discrete formulation of (2.13)-(2.15) is defined as:

[A(φh) , ςh] + [ςh , B∗(ψh, ph)] = 0 ,∀ςh ∈ Th , (4.2)

[B(φh), (τ h, qh)] + [(τ h, qh),C∗(uh, λh)] = −
∫

Γ
(τ h · n) · uΓ dΓ ,

∀(τ h, qh) ∈ T ′
div,h × Ph , (4.3)

[C(ψh, ph) , (vh, ηh)] =
∫

Ω
vh · f dΩ ,∀(vh, ηh) ∈ Uh × R . (4.4)

The corresponding discrete kernels of B and C are defined similarly. We have

Z1h :=
{

(τ h, qh) ∈ T ′
div,h × Ph : [C(τ h, qh) , (vh, ηh)] = 0 , ∀(vh, ηh) ∈ Uh × R

}
,

and
Z2h := {ςh ∈ Th : [B(ςh), (τ h, qh)] = 0 , ∀(τ h, qh) ∈ Z1h} .
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4.1 A Priori Estimates

Theorem 4.1 Let 1 < r < 2 and g satisfy (2.2) and (2.3). Let (φ,ψ, p,u, λ) ∈ T×T ′
div×P×U×R

solve (2.13)-(2.15). Assume that
(1) There exists a positive constant c1 such that

inf
(τ h,qh)∈Z1h

sup
ςh∈Th

[B(ςh) , (τ h, qh)]
‖ςh‖T ‖(τ h, qh)‖

T
′
div×P

≥ c1 . (4.5)

(2) There exists a positive constant c2 such that

inf
(uh,λh)∈Uh×R

sup
(τ h,qh)∈T

′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

‖(uh, λh)‖U×R
≥ c2 . (4.6)

Then, for f ∈
(
Lr′(Ω)

)n
and uΓ ∈

(
W 1−1/r , r(Γ)

)n
, there exists a unique solution

(φh,ψh, ph,uh, λh) ∈ Th × T
′
div, h × Ph × Uh × R to the problem (4.2)-(4.4). In addition, we have

‖φh‖T ≤ C
(
‖uΓ‖1−1/r,r,Γ + ‖f‖r′/r

0,r′,Ω

)
, (4.7)

for some constant C > 0.

Proof : With the assumptions as stated above, existence and uniqueness of
(φh,ψh, ph,uh, λh) ∈ Th×T

′
div, h×Ph×Uh×R solving (4.2)-(4.4) follows directly from the continuous

solution approach outlined in Section 3 and summarized in Theorem 3.1.

Theorem 4.2 Let

E(φ,φh) =
∥∥∥∥ |φ− φh|
|φ|+ |φh|

∥∥∥∥(2−r)/r

∞
. (4.8)

Assume the hypotheses of Theorem 4.1 are satisfied. Also assume that for h sufficiently small, there
is a constant c3 > 0 such that

inf
(τ h,qh)∈T

′
div,h×Ph

sup
(ςh,vh,ηh)∈Th×Uh×R

[B(ςh), (τ h, qh)] + [C(τ h, qh) , (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R ‖(τ h, qh)‖

T
′
div×P

≥ c3 . (4.9)

where ‖(ςh,vh, ηh)‖T×U×R = ‖ςh‖T + ‖vh‖U + ‖λh‖R. Then

‖φ− φh‖2
T +

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

≤ C

{
inf
ςh∈Th

(
‖φ− ςh‖2

T + E(φ,φh)r ‖φ− ςh‖r
T

)
+ inf

vh∈Uh

‖u− vh‖2
U

+ inf
τ h∈T

′
div, h

‖ψ − τ h‖2
T
′
div

+ inf
qh∈Ph

‖p− qh‖2
P

}
, (4.10)

‖ψ −ψh‖T
′
div

+ ‖p− ph‖P ≤ C

{
inf

τ h∈T
′
div, h

‖ψ − τ h‖T
′
div

+ inf
qh∈Ph

‖p− qh‖P

}

+ E(φ,φh)
(∫

Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

, (4.11)
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and
‖u− uh‖U + |λ− λh| ≤ C ‖φ− φh‖T + inf

vh∈Uh

‖u− vh‖U , (4.12)

for some constant C > 0.

Outline of Proof : We briefly describe the how the bounds (4.10)-(4.12) are obtained. Complete
details are given in [10].

Using properties (2.2), (2.3), and the definitions

Z̃1h :=
{

(τ h, qh) ∈ T ′
div,h × Ph : [C(τ h, qh) , (vh, ηh)] =

∫
Ω

vh · f dΩ ,

∀(vh, ηh) ∈ Uh × R
}
, (4.13)

and

Z̃2h :=
{
ςh ∈ Th : [B(ςh), (τ h, qh)] + [(τ h, qh), C∗(uh, λh)] = −

∫
Γ
(τ h · n) · uΓ dΓ ,

∀(τ h, qh) ∈ Z̃1h

}
, (4.14)

we obtain the estimate

‖φ− φh‖2
T +

∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ ≤ C

{
inf

ςh∈Z̃2h

(
‖φ− ςh‖2

T + E(φ,φh)r ‖φ− ςh‖r
T

)
+ inf

(τ h,qh)∈Z̃1h

(
‖ψ − τ h‖2

T ′ + ‖p− qh‖2
P

)}
. (4.15)

A “lifting argument” which requires the combined inf-sup condition (4.9) is then used to lift the
“best approximations” in Z̃1h and Z̃2h to the “best approximations” in Th, Uh, T

′
div, h, and Ph. The

bounds (4.10)-(4.12) are then obtained using the discrete inf-sup conditions (4.5) and (4.6).

Remark 4.1 As previously noted, E(φ,φh) ≤ 1. In addition, if 1/(|φ| + |φh|) ≤ C for some
constant C > 0, then

E(φ,φh) ≤ min
{

1, C ‖φ− φh‖(2−r)/r
∞

}
.

Furthermore, if ‖φ− φh‖∞ ∼ ‖φ− φh‖T , the estimates (4.10)–(4.12) may be written as

‖φ− φh‖T + ‖ψ −ψh‖T
′
div

+ ‖p− ph‖P + ‖u− uh‖U + |λ− λh|

≤ C

{
inf
ςh∈Th

‖φ− ςh‖T + inf
vh∈Uh

‖u− vh‖U

+ inf
τ h∈T

′
div, h

‖ψ − τ h‖T
′
div

+ inf
qh∈Ph

‖p− qh‖P

}
. (4.16)
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4.2 T
′

div Approximation Using Raviart-Thomas Elements

In this section, we show that approximating spaces of discontinuous piecewise polynomials and
Raviart-Thomas elements are suitable for problem (2.13)-(2.15). Specifically, we show that these
spaces satisfy the inf-sup conditions (4.5), (4.6), and (4.9).

Let n = 2. Let K ∈ Th and let Pk(K) be the set of all polynomials in the variables x1, x2 of degree
less than or equal to k defined on the triangle K. Let RTk(K) be the 2-vector of Raviart-Thomas
elements [25, 27] on K defined by

RTk(K) = (Pk(K))2 +
[
x1

x2

]
Pk(K) .

For k ≥ 0, define the following discrete spaces:

Th :=
{
φ ∈ T : φ|K ∈ (Pk(K))2×2 , ∀K ∈ Th

}
,

T
′
div, h :=

{
ψ ∈ T ′

div : ψ = (ψ1 ψ2)
T|K ∈ (RTk(K))2 ,

(ψi1 ψi2)T|K ∈ RTk(K) , ∀i ∈ {1, 2}, ∀K ∈ Th

}
,

Ph := {p ∈ P : p|K ∈ Pk(K) , ∀K ∈ Th} ,
Uh :=

{
u ∈ U : u|K ∈ (Pk(K))2 , ∀K ∈ Th

}
.

Remark 4.2 There is no interelement continuity requirement on the spaces Th, Uh, and Ph.

Let s > 1 and let Ik
h :

(
W 1,s(Ω)

)2×2 −→ T
′
div, h be the k-th order Raviart-Thomas interpolation

operator [25, 7, 9], defined by, for row j = 1, 2 of τ ∈ T ′
div,∫

ei

(τ j − Ik
hτ j) · neivk ds = 0, ∀vk ∈ Pk(K) , ∀ei ∈ ∂K, i = 1, 2, 3, ∀K ∈ Th ,∫

K
(τ j − Ik

hτ j) · vk−1 dK = 0, ∀vk−1 ∈ (Pk−1(K))2 , ∀K ∈ Th ,

where nei denotes the outer unit normal vector to edge ei of K. Then, for 0 ≤ m ≤ k + 1, we have

‖τ − Ik
hτ‖0,r′,Ω ≤ Chm|τ |m,r′,Ω , (4.17)

‖div (τ − Ik
hτ )‖0,r′,Ω ≤ Chm|div τ |m,r′,Ω , (4.18)

and, for v ∈ U , ∫
Ω

v · div(τ − Ik
hτ ) dΩ = 0, ∀τ ∈ T ′

div . (4.19)

In the lowest-order case, i.e., k = 0, for (τ h, qh) ∈ Z1h,

φ∗ =
−|qhI + τ h|r

′/r−1 (qhI + τ h)
‖qhI + τ h‖r′−1

T ′

∈ Th . (4.20)
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The proof of the discrete inf-sup condition for B then follows as in the continuous case. However,
for higher-order approximations, φ∗ defined by (4.20) for (τ h, qh) ∈ Z1h is not a polynomial and
hence not in Th. In these cases a suitable projection of φ∗ is required.

From [1], if f ∈ L2(Ω), then f ∈ Lr(Ω) for 1 < r < 2, and ‖f‖0,r,Ω ≤ |Ω|
2−r
2r ‖f‖0,2,Ω. Also the

following relationship of norms in L2(Ω) and Lr(Ω) holds.

Lemma 4.1 Let f, g ∈ L2(Ω) and 1 < r < 2. If ‖f‖0,r = µ and ‖f‖0,2 = ‖g‖0,2, then ‖g‖0,r ≤ µ.

Proof : Assume ‖f‖0,r = µ and ‖f‖0,2 = ‖g‖0,2. Using Hölder’s inequality we have

‖f‖2
0,2 =

∫
Ω
|f |2 dΩ ≤

(∫
Ω
|f |r dΩ

)2/r (∫
Ω

1 dΩ
)(r−2)/r

≤ µ2|Ω|(r−2)/r ,

thus
‖f‖0,2 ≤ µ|Ω|(r−2)/2r . (4.21)

Also,

‖g‖r
0,r =

∫
Ω
|g|r dΩ ≤ ‖g‖r

0,2|Ω|(2−r)/2 = ‖f‖r
0,2|Ω|(2−r)/2 ≤ µr|Ω|(r−2+2−r)/r = µr .

Lemma 4.2 For the choices of Th, T
′
div, h, Ph, and Uh above, there exists a positive constant c1

such that
inf

(τ h,qh)∈Z1h

sup
φh∈Th

[B(φh) , (τ h, qh)]
‖φh‖T ‖(τ h, qh)‖

T
′
div×P

≥ c1 .

Proof : Note that for (φh, qh) ∈ Z1h, div τ h = 0 implies τ h|K ∈ (Pk(K))2×2 for all K ∈ Th. We
also have that (τ h + qhI)|K ∈ (Pk(K))2×2 for all K ∈ Th. Thus (τ h, qh) ∈ Z1h implies τ h ∈ Th and
(τ h + qhI) ∈ Th.
Assume that ‖qh‖P ≤ ‖τ h‖T

′
div

. Let τ 0
h = τ h − 1

n tr(τ h)I, and

φ∗ = −|τ 0
h|r

′/r−1 τ 0
h/‖τ 0

h‖r′−1
T ′ .

Then ‖φ∗‖T = 1 and

(φ∗,φh) =
∫

Ω
φ∗ : φh dΩ , ∀φh ∈ Th

defines a continuous linear functional on Th. Note that Th equipped with the L2 inner product is a
Hilbert space. Then by the Riesz Representation Theorem there exists a ςh ∈ Th such that

(ςh,φh) =
∫

Ω
ςh : φh dΩ =

∫
Ω
φ∗ : φh dΩ = (φ∗,φh) , ∀φh ∈ Th ,

with
‖ςh‖0,2 = ‖φ∗‖0,2 .
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From Lemma 4.1, we have that ‖ςh‖T ≤ 1. Then [B(ςh), (τ h, ph)] = [B(φ∗), (τ h, ph)] for all
(τ h, qh) ∈ Z1h. Continuing as in (3.7), the result is shown as in Case 1 of Lemma 3.2.
Now assume ‖qh‖P ≥ ‖τ h‖T

′
div

. Let

φ∗ =
−|qhI + τ h|r

′/r−1 (qhI + τ h)
‖qhI + τ h‖r′−1

T ′

.

Again let ςh ∈ Th satisfy (ςh,φh) = (φ∗,φh) for all φh ∈ Th and ‖φ∗‖0,2 = ‖ςh‖0,2 ≤ ‖φ∗‖T = 1.
Continuing as in the proof of Case 2 of Lemma 3.2, the result is shown.

Lemma 4.3 For the choices of Th, T
′
div, h, Ph, and Uh above, there exists a positive constant c2

such that
inf

(uh,λh)∈Uh×R
sup

(τ h,qh)∈T
′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

‖(uh, λh)‖U×R
≥ c2 . (4.22)

Proof : As in the approach to the proof of Lemma 3.4, we consider two cases:
Case 1: |λh| ≥ ‖uh‖U .
The choice (τ h, qh) = (λhI, 0) ∈ T

′
div, h × Ph shows the result as in Case 1 of the proof of Lemma

3.4.
Case 2: |λh| ≤ ‖uh‖U .
Note that Lemma 3.3 applies to the subspace T

′
div, h ⊂ T

′
div, thus we have

sup
(τ h,qh)∈T

′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

≥ sup
τ 0∈ 0T

′
div,h

[C(τ 0, 0) , (uh, λh)]
‖τ 0‖T

′
div

= sup
τ 0∈ 0T

′
div,h

−
∫
Ω uh · div τ 0 dΩ
‖τ 0‖T

′
div,h

≥ C sup
τ∈T

′
div,h

−
∫
Ω uh · div τ h dΩ
‖τ h‖T

′
div,h

. (4.23)

Now we proceed in a manner similar to that of Proposition 5 of [23] (as well as Proposition 3.1 of
[13]). Let w be the solution of the Laplacian problem

−∆w = |uh|r−2uh , in Ω ,
w = 0 , on Γ .

Note that |uh|r−2uh ∈ (W 0,r′(Ω))2. Hence, from [17], this problem has a unique solution w ∈
(W 2,r

0 (Ω))2, and there exists a constant C > 0 such that

‖w‖2,r′,Ω ≤ C
∥∥|uh|r−2uh

∥∥
0,r′,Ω

= C

(∫
Ω
|uh|r

′(r−1) dΩ
)(r−1)/r

= C ‖uh‖r−1
0,r,Ω . (4.24)

Now let τ ∗ = ∇w. Thus from (4.24) we have

‖τ ∗‖1,r′,Ω = ‖w‖2,r′,Ω ≤ C ‖uh‖r−1
0,r,Ω , (4.25)
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and ∇ · τ ∗ = ∆w = −|uh|r−2uh. Thus τ ∗ ∈ T ′
div and we have

‖τ ∗‖
T
′
div

≤ C ‖uh‖r−1
0,r,Ω . (4.26)

Let τ h = Ik
hτ

∗. Then we have, from (4.19), that

−
∫

Ω
uh · div τ h dΩ = −

∫
Ω

uh · div τ ∗ dΩ =
∫

Ω
|uh|r−2uh · uh dΩ = ‖uh‖r

U . (4.27)

The estimate (4.18) and the triangle inequality gives, for m = 0,

‖∇ · τ h‖0,r′,Ω ≤ C‖∇ · τ ∗‖0,r′,Ω . (4.28)

Then, from (4.17), (4.26), (4.28), and the triangle inequality, we have

‖τ h‖T
′
div

≤ ‖τ h‖0,r′,Ω + ‖∇ · τ h‖0,r′,Ω

≤ C
(
‖τ ∗‖0,r′,Ω + ‖τ ∗ − τ h‖0,r′,Ω + ‖∇ · τ ∗‖0,r′,Ω

)
≤ C

(
‖τ ∗‖

T
′
div

+ h ‖τ ∗‖1,r′,Ω + ‖u‖r−1
0,r,Ω

)
≤ C

(
‖uh‖r−1

0,r,Ω + h‖uh‖r−1
0,r,Ω + ‖uh‖r−1

0,r,Ω

)
≤ C‖uh‖r−1

U . (4.29)

Combining (4.23), (4.27), and (4.29), we have that

sup
(τ h,qh)∈T

′
div,h×Ph

[C(τ h, qh) , (uh, λh)]
‖(τ h, qh)‖

T
′
div×P

≥
−
∫
Ω uh · div τ h dΩ
‖τ h‖T

′
div

≥
‖uh‖r

U

C‖uh‖r−1
U

≥ C‖uh‖U ≥ c2‖(uh, λh)‖U×R ,

and thus we obtain (4.22).

Before showing the inf-sup condition (4.9) holds for the chosen approximation spaces, we first discuss
some properties of the Raviart-Thomas elements. Let K ∈ Th and let r ∈ RTk(K). Then r can be
written as r = rk + r∗, where rk ∈ (Pk(K))2 and the components of r∗ consist of polynomial terms
of degree k + 1 only. In fact, r∗ can be written as

r∗ =
[
x1

x2

] k∑
j=0

γj x
k−j
1 xj

2 =


k∑

j=0

γj x
k−j+1
1 xj

2

k∑
j=0

γj x
k−j
1 xj+1

2

 ,

for some constants γj , j = 0, . . . , k.

We can also write div r = div rk + div r∗ , where div rk is a polynomial of degree at most k − 1 and
div r∗ is a polynomial with terms of degree k only. It is important to note that if div r = 0, then
div r∗ = 0. For Raviart-Thomas elements we have that the norm of the gradient of the highest-degree
terms can be bounded by the norm of the divergence.
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Lemma 4.4 Let K ∈ Th and let r = rk + r∗ ∈ RTk(K) where the components of r∗ consist of
polynomial terms of degree k+ 1 only. Then there exists a constant C̃ > 0, independent of K, such
that

‖∇r∗‖0,r′,K ≤ C̃ ‖div r‖0,r′,K . (4.30)

Outline of Proof : The proof follows from the special form of the Raviart-Thomas element and
the equivalence of finite dimensional norms. (See [10] for complete details.)

The above result can be applied to the tensor space T
′
div, h to obtain, for τ h = τ k + τ ∗ where the

components of τ ∗ consist of polynomial terms of degree k + 1 only,

‖∇τ ∗‖0,r′,K ≤ C̃ ‖div τ h‖0,r′,K , ∀K ∈ Th . (4.31)

Let Πk : T
′
div, h −→ Th be the classical Lagrangian Pk interpolation operator ([9]) and define

τ̂ = τ k + Πkτ
∗ . (4.32)

Note that τ̂ |K ∈ (Pk(K))2×2 for all K ∈ Th, and div τ h = 0 implies τ ∗ = 0 and τ̂ = τ h. Then,
using (4.31) and standard polynomial approximation properties [6, 9], the error associated in the
approximation of τ h by τ̂ is given by

‖τ h − τ̂‖0,r′,Ω = ‖τ ∗ −Πkτ
∗‖0,r′,Ω ≤ C h

∑
K∈Th

‖∇τ ∗‖r′
0,r′,K

1/r′

≤ C h

∑
K∈Th

C̃ ‖div τ h‖r′
0,r′,K

1/r′

≤ CC̃ h ‖div τ h‖0,r′,Ω = Ĉ h ‖div τ h‖0,r′,Ω . (4.33)

Lemma 4.5 For h sufficiently small, there is a constant c3 > 0 such that

inf
(τ h,qh)∈T

′
div,h×Ph

sup
(ςh,vh,ηh)∈Th×Uh×R

[B(ςh), (τ h, qh)] + [C(τ h, qh) , (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R ‖(τ h, qh)‖

T
′
div×P

≥ c3 . (4.34)

where ‖(ςh,vh, ηh)‖T×U×R = ‖ςh‖T + ‖vh‖U + ‖λh‖R.

Proof : Again we need to consider the two cases ‖τ h‖T
′
div

≤ ‖qh‖P and ‖τ h‖T
′
div

> ‖qh‖P .
Case 1: (‖τ h‖T

′
div

≤ ‖qh‖P )
Let τ̂ be as defined in (4.32). Let

φ∗ =
−1

‖qhI + τ̂‖r′−1
T ′

|qhI + τ̂ |r′/r−1(qhI + τ̂ ) .

Note that ‖φ∗‖T = 1. Now, there exists a ςh ∈ Th such that∫
Ω
ςh : φh dΩ =

∫
Ω
φ∗ : φh dΩ , ∀φh ∈ Th ,
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with ‖ςh‖T ≤ ‖φ∗‖T = 1. Then, since qhI + τ̂ ∈ Th, we have that∫
Ω
ςh : (qhI + τ̂ ) dΩ =

∫
Ω
φ∗ : (qhI + τ̂ ) dΩ .

Let vh = 0 and ηh = 0. Then we have

[B(ςh), (τ h, qh)]
‖ςh‖T

= −
∫

Ω
ςh : (qhI + τ h) dΩ

= −
∫

Ω
ςh : (qhI + τ̂ ) dΩ−

∫
Ω
ςh : (τ h − τ̂ ) dΩ

=
∫

Ω

|qhI + τ̂ |r′/r−1

‖qhI + τ̂‖r′−1
T ′

(qhI + τ̂ ) : (qhI + τ̂ ) dΩ−
∫

Ω
ςh : (τ h − τ̂ ) dΩ

≥ ‖qhI + τ̂‖T ′ − ‖ςh‖T ‖τ h − τ̂‖T ′

≥ (n1/r′ − 1)‖qh‖P − 2Ĉh‖div τ h‖0,r′,Ω . (4.35)

Let

u∗ =
−(n1/r′ − 1)|div τ h|r

′/r−1

‖div τ h‖r′−1
0,r′,Ω

(div τ h) ,

and note that ‖u∗‖U = n1/r′ − 1. Recall that divψh ∈ Uh for all ψh ∈ T
′
div, h. Thus, there is a

vh ∈ Uh such that ∫
Ω

vh ·wh dΩ =
∫

Ω
u∗ ·wh dΩ , ∀wh ∈ Uh ,

with vh ∈ Uh and ‖vh‖U ≤ ‖u∗‖U = n1/r′ − 1. Let ηh = 0, then we have

[C(τ h, qh) , (vh, ηh)] = (n1/r′ − 1)
∫

Ω

|div τ h|r
′/r−1

‖div τ h‖r′−1
0,r′,Ω

(div τ h) · (div τ h) dΩ

= (n1/r′ − 1)‖div τ h‖0,r′,Ω . (4.36)

Thus, from (4.35) and (4.36), we have

[B(ςh), (τ h, qh)] + [C(τ h, qh) , (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R

≥ 1
n1/r′

(
(n1/r′ − 1)‖qh‖P + (n1/r′ − 1− 2Ĉh)‖div τ h‖0,r′,Ω

)
, (4.37)

and, for h small enough to satisfy n1/r′ − 1− 2Ĉh > 0, we have that

[B(ςh), (τ h, qh)] + [C(τ h, qh) , (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R

≥ C‖(τ h, qh)‖
T
′
div×P

,

for some constant C > 0.

Case 2: (‖τ h‖T
′
div

≥ ‖qh‖P )
Let

τ̃ = τ̂ − 1
n

(∫
Ω
tr(τ̂ ) dΩ

)
I , τ 0 = τ̃ − 1

n
tr(τ̃ )I , φ∗ =

−|τ 0|r′/r−1

‖τ 0‖r′−1
T ′

τ 0 ,

17



and ςh ∈ Th satisfying ∫
Ω
ςh : φh dΩ =

∫
Ω
φ∗ : φh dΩ , ∀φh ∈ Th .

Note that τ̃ , τ 0 ∈ Th and ‖ςh‖T ≤ ‖φ∗‖T = 1. Let

u∗ =
−2|div τ h|r

′/r−1

‖div τ h‖r′−1
0,r′,Ω

(div τ h) ,

and vh ∈ Uh be given by ∫
Ω

vh ·wh dΩ =
∫

Ω
u∗ ·wh dΩ , ∀wh ∈ Uh .

Observe that ‖vh‖U ≤ ‖u∗‖U = 2. Let

ηh = sgn

(∫
Ω
tr(τ h) dΩ

) (
1 +

1
C0

)
n−1/2|Ω|1/r′ .

Then we have

[B(ςh), (τ h, qh)] =
∫

Ω

|τ 0|r′/r−1

‖τ 0‖r′−1
T ′

τ 0 : τ h dΩ

=
∫

Ω

|τ 0|r′/r−1

‖τ 0‖r′−1
T ′

τ 0 : τ̃ dΩ−
∫

Ω

|τ 0|r′/r−1

‖τ 0‖r′−1
T ′

τ 0 : (τ̃ − τ h) dΩ

≥
∫

Ω

|τ 0|r′/r−1

‖τ 0‖r′−1
T ′

τ 0 : τ 0 dΩ− ‖ςh‖T ‖τ̃ − τ h‖T ′

≥ ‖τ 0‖T ′ − ‖τ̃ − τ h‖T ′

≥ 1
C0
‖τ h‖T ′ −

(
1 +

Ĉ (1 + C0 + |Ω|)
C0

h

)
‖div τ h‖0,r′,Ω

− n−1/2|Ω|1/r′

C0

∣∣∣∣∫
Ω
tr(τ h) dΩ

∣∣∣∣
− Ĉ (1 + |Ω|)h ‖div τ h‖0,r′,Ω − n−1/2|Ω|1/r′

∣∣∣∣∫
Ω
tr(τ h) dΩ

∣∣∣∣
=

1
C0
‖τ h‖T ′ −

(
1 +

Ĉh(1 + 2C0 + (1 + C0)|Ω|)
C0

)
‖div τ h‖0,r′,Ω

−
(

1 +
1
C0

)
n−1/2|Ω|1/r′

∣∣∣∣∫
Ω
tr(τ h) dΩ

∣∣∣∣ , (4.38)

and

[C(τ h, qh), (vh, ηh)] =
∫

Ω

2|div τ h|r
′/r−1

‖div τ h‖r′−1
0,r′,Ω

(div τ h) · (div τ h) dΩ

+
(

1 +
1
C0

)
n−1/2|Ω|1/r′

∣∣∣∣∫
Ω
tr(τ h) dΩ

∣∣∣∣
= 2‖div τ h‖0,r′,Ω +

(
1 +

1
C0

)
n−1/2|Ω|1/r′

∣∣∣∣∫
Ω
tr(τ h) dΩ

∣∣∣∣ , (4.39)
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and

‖ςh‖T + ‖vh‖U + |ηh| = 3 +
(

1 +
1
C0

)
n−1/2|Ω|1/r′ = C̃ . (4.40)

Thus, (4.38)-(4.40) and h small enough to guarantee that

C0 > Ĉh(1 + 2C0 + (1 + C0)|Ω|)

imply

[B(ςh), (τ h, qh)] + [C(τ h, qh), (vh, ηh)]
‖(ςh,vh, ηh)‖T×U×R

≥ 1
C̃ C0

(
‖τ h‖T ′

+
(
C0 − Ĉh(1 + 2C0 + (1 + C0)|Ω|)

)
‖div τ h‖0,r′,Ω

)
≥ C‖τ h‖T

′
div

≥ C

2
‖(τ h, qh)‖

T
′
div×P

. (4.41)

Thus (4.34) is shown.
From the standard approximation properties [9, 7], the following error estimate is derived.

Theorem 4.3 Let f ∈
(
Lr′(Ω)

)2
and uΓ ∈

(
W 1−1/r , r(Γ)

)2
. Let (φ,ψ, p,u, λ) ∈ T×T ′

div×P×U×R
solve (2.13)-(2.15) and let (φh,ψh, ph,uh, λh) ∈ Th×T

′
div, h×Ph×Uh×R solve (4.2)-(4.4). Assume

1 ≤ m ≤ k + 1 and (φ,ψ, p,u) ∈ (Wm,r(Ω))2×2 ×
(
Wm,r′(Ω)

)2×2
×Wm,r′(Ω) × (Wm,r(Ω))2 with

divψ ∈
(
Wm,r′(Ω)

)2
. Then there exists a positive constant C such that

‖φ− φh‖2
T ≤ C

{
hmrE(φ,φh)r‖φ‖r

m,r,Ω

+ h2m

(
‖φ‖m,r,Ω + ‖u‖m,r,Ω + ‖ψ‖m,r′,Ω + ‖divψ‖m,r′,Ω + ‖p‖m,r′,Ω

)}
, (4.42)

‖ψ −ψh‖T
′
div

+ ‖p− ph‖P ≤ C hm
(
‖ψ‖m,r′,Ω + ‖divψ‖m,r′,Ω + ‖p‖m,r′,Ω

)
+ E(φ,φh)

(∫
Ω
|g(φ)− g(φh)| |φ− φh| dΩ

)1/r′

, (4.43)

‖u− uh‖U + |λ− λh| ≤ C ‖φ− φh‖T . (4.44)

Remark 4.3 The extension of Remark 4.1 to these approximation spaces is given by: If 1/(|φ| +
|φh|) ≤ C for some constant C > 0 and ‖φ−φh‖∞ ∼ ‖φ−φh‖T , the estimates (4.42)–(4.44) may
be written as

‖φ− φh‖T + ‖ψ −ψh‖T
′
div

+ ‖p− ph‖P + ‖u− uh‖U + |λ− λh|

≤ C hm

{
‖φ‖m,r,Ω + ‖u‖m,r,Ω + ‖ψ‖m,r′,Ω + ‖divψ‖m,r′,Ω + ‖p‖m,r′,Ω

}
. (4.45)
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5 Numerical Experiments

In this section we describe numerical experiments that support the theoretical results outlined in
Sections 3 and 4. The first example illustrates the theoretical rate of convergence of the solution
method and the second example illustrates the computed approximation for a benchmark physical
problem. Computations are performed using the FreeFEM++ finite element software package [19].
All computations below are performed in the lowest-order case (k = 0).

5.1 Example 1

For this example (similar to one in [16]) approximations are computed for a Ladyzhenskaya law fluid
with ν0 = 0 and ν1 = 1.0. The computational domain is Ω = [0, 2]× [0, 2], with f and uΓ chosen so
that the exact solution of (2.10)-(2.12) is given by

u =
[
u1

u2

]
and p = x1 + x2 ,

with
u1 = −(4.0− x1 − x2)α and u2 = −u1

for α just large enough to ensure f = − divψ ∈Wµ−ε,r′(Ω). It should be noted that α = −2
r + r′ +

µ
r−1 + ε ensures f ∈Wµ,r′(Ω) for ε > 0.

Computations are performed on uniform meshes of decreasing size h and for selected values of
r, α, and µ. For 1 < r < 2, the resulting system of equations is nonlinear, and a fixed-point
iteration is used to compute approximations. The fixed-point iteration is terminated when the
pointwise maximum absolute difference in successive approximations falls below 10−5. Results for
the velocity, u, the gradient of the velocity, φ (= ∇u), and the total stress, ψ, are shown in Table
5.1.

For this example, divψ ∈ Wµ−ε,r′(Ω) is the most singular of the quantities to be approximated.
The observed experimental convergence rate for ‖divψ − divψh‖0,r′ of Chµ is in agreement with
that predicted by (4.16). The experimental convergence rates observed for ‖φ−φh‖T and ‖u−uh‖U

are both better than that given by (4.16).

5.2 Example 2

This example is the benchmark driven cavity problem. Driven cavity flows of power law fluids were
computed using a mixed method by Manouzi and Farhloul in [23]. (In [23] the authors explicitly
inverted the constitutive equation to obtain Φα(σ) = ∇u, which was used in their formulation.)

For Ω = [0, 1] × [0, 1], we have that f = 0 in Ω, uΓ = 0 on Γ \ Γtop and uΓ = [1 0]T on Γtop,
where Γtop is the portion of the boundary satisfying 0 ≤ x1 ≤ 1 and x2 = 1. Computations were
performed for a power law fluid with ν0 = 1.0 and selected values of r. Figures 5.1, 5.2, and 5.3
show plots of the streamlines computed for h = 1/32 for r = 2, r = 1.5, and r = 1.1, respectively.
As the power r in the constitutive law is decreased, we see a movement of the central vortex toward
the top of the cavity, corresponding to an increase in viscosity.
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h ‖φ− φh‖0,r rate ‖divψ − divψh‖0,r′ rate ‖u− uh‖0,r rate
1 2.5481 0.8014 37.3797

r = 3/2 1/2 1.2633 1.01 0.4459 0.85 19.6284 0.93
µ = 1 1/4 0.6218 1.02 0.2426 0.88 9.8677 0.99

α = 11/3 1/8 0.3080 1.01 0.1299 0.90 4.9294 1.00
1/16 0.1534 1.01 0.0687 0.92 2.4623 1.00

1 1.3341 0.2556 10.5023
r = 3/2 1/2 0.6899 0.95 0.1824 0.49 5.3111 0.98
µ = 1/2 1/4 0.3405 1.02 0.1294 0.49 2.6503 1.00
α = 8/3 1/8 0.1677 1.02 0.0917 0.50 1.3223 1.00

1/16 0.0832 1.01 0.0648 0.50 0.6605 1.00
1 2.6967 1.3410 4721.1800

r = 5/4 1/2 1.3109 1.04 0.7234 0.89 2553.9800 0.89
µ = 1 1/4 0.6325 1.05 0.3833 0.92 1285.9000 0.99

α = 37/5 1/8 0.3094 1.03 0.2007 0.93 635.6200 1.02
1/16 0.1533 1.01 0.1042 0.95 315.0940 1.01

1 1.4671 0.1661 363.2130
r = 5/4 1/2 0.7461 0.98 0.1176 0.50 191.1110 0.93
µ = 1/2 1/4 0.3604 1.05 0.0832 0.50 94.7585 1.01
α = 27/5 1/8 0.1746 1.05 0.0588 0.50 46.8215 1.02

1/16 0.0860 1.02 0.0416 0.50 23.2479 1.01

Table 5.1: Approximation errors and rates of convergence for Example 1.
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Figure 5.1: Streamlines for r = 2.0, driven cavity
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