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Abstract

In this article a fractional step θ-method is described and studied for the approximation of
time dependent viscoelastic fluid flow equations, using the Johnson-Segalman constitutive model.
The θ-method implementation allows the velocity and pressure approximations to be decoupled
from the stress, reducing the number of unknowns resolved at each step of the method. The con-
stitutive equation is stabilized using a Streamline Upwinded Petrov-Galerkin (SUPG)-method.
A priori error estimates are given for the approximation scheme. Numerical computations sup-
porting the theoretical results and demonstrating the θ-method are also presented.
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1 Introduction

Numerical methods for modeling viscoelastic fluid flow are difficult for a variety of reasons. The
modeling equations (assuming slow flow) represent a “Stokes system” for the conservation of mass
and momentum equations, coupled with a non-linear hyperbolic equation describing the constitu-
tive equation for the stress. The numerical approximation requires the determination of the fluid’s
velocity, pressure and stress (a symmetric tensor). For an accurate approximation a direct approx-
imation technique requires the solution of a very large nonlinear system of equations at each time
step.

The fractional step θ-method [26, 24, 25] decouples the approximation of velocity and pressure from
the approximation of the stress, thereby reducing the size of the algebraic systems which have to
be solved at each sub-step. An added benefit of the θ-method [26] is that the algebraic systems to
be solved at each substep are linear.
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The fractional step θ-method was introduced, and its temporal approximation accuracy studied for
a symmetric, positive definite spatial operator, by Glowinski and Périaux in [12]. The method is
widely used for the accurate approximation of the Navier-Stokes equations (NSE) [27, 28, 15]. In
[16], Kloucek and Rys showed, assuming a unique solution existed, that the θ-method approximation
converged to the solution of the NSE as the spatial and mesh parameters went to zero (h, ∆t → 0+).
The temporal discretization error for the θ-method for the NSE was studied by Müller-Urbaniak in
[19] and shown to be second order. In [7] the θ-method applied to convection-diffusion equations
was shown to be second order in time.

The implementation of the fractional step θ-method in [26] for viscoelasticity differs significantly
from that for the NSE. For the NSE at each sub-step the discretization contains the stabilizing
operator −∆u. For the viscoelasticity problem the middle substep is a pure convection (transport)
problem that requires stabilization in order to control the creation of spurious oscillations in the
numerical approximation. Marchal and Crochet [18] were the first to use streamline upwinding to
stabilize the hyperbolic constitutive equation in viscoelastic flow. A second common approach to
stabilizing the convective transport problem is to use a discontinuous Galerkin (DG) approximation
for the stress [2, 1].

Error analysis of finite element approximations to steady state viscoelastic flow was first done by
Baranger and Sandri in [2] using a DG formulation of the constitutive equation. In [23] Sandri
presented analysis of the steady state problem using a streamline upwind Petrov-Galerkin (SUPG)
method of stabilization. The time-dependent problem was first analyzed by Baranger and Wardi
in [3], using an implict Euler temporal discretization and DG approximation for the hyperbolic
constitutive equation. Ervin and Miles analyzed the problem using an implicit Euler time dis-
cretization and a SUPG discretization for the stress in [10]. Analysis of a modified Euler-SUPG
approximation to the transient viscoelastic flow problem was presented by Bensaada and Esselaoui
in [4]. The temporal accuracy of the approximation schemes studied in [3, 4, 10] are all O(∆t).
Ervin and Heuer proposed a Crank-Nicolson time discretization method [9] which they showed
was O

(
(∆t2)

)
. Their method uses a three level scheme to approximate the nonlinear terms in the

equations. Consequently their approximation algorithm only requires linear systems of equations
be solved.

In this article we analyze a fractional step θ-method for the approximation of viscoelastic fluid flows.
Advantages of the method are threefold: (i) second order accuracy with respect to the temporal
discretization, (ii) only linear systems of equations need to be solved, (iii) the linear systems to
be solved only involve the velocity-pressure or the stress unknowns (resulting in smaller linear
systems).

This paper is organized as follows. In the next section we specify the problem and describe the
fractional step θ-method for the viscoelastic modeling equations. In Section 3 the mathematical
notation used is given. In Section 4 we show computability of the algorithm, and present the a priori
error estimates that support the method. Two numerical examples demonstrating the method are
presented in Section 5.

2 The Mathematical Model and θ-Method Approximation

In this section we present the modeling equations for viscoelastic fluid flow as well as a fractional
step θ-method approximation scheme. Following the description of the θ-method, several definitions

2



used to formulate the problem in an appropriate mathematical setting are given.

2.1 Modeling Equations

The non-dimensional modeling equations for a viscoelastic fluid in a given domain Ω ⊂ Rd́ (d́ = 2, 3)
using a Johnson-Segalman constitutive equation are written as:

σ + λ

(
∂σ

∂t
+ u · ∇σ + ga(σ,∇u)

)
− 2αd(u) = 0 in Ω, (2.1)

Re

(
∂u

∂t
+ u · ∇u

)
+∇p− 2(1− α)∇ · d(u)−∇ · σ = f in Ω, (2.2)

∇ · u = 0 in Ω, (2.3)
u = 0 on ∂Ω, (2.4)

u(0, x) = u0(x) in Ω, (2.5)
σ(0, x) = σ0(x) in Ω. (2.6)

Here (2.1) is the constitutive equation relating the fluids velocity u to the stress σ, and (2.2) and
(2.3) are the conservation of momentum and conservation of mass equations. The fluid pressure is
denoted by p. The Weissenberg number λ is a dimensionless constant defined as the product of a
characteristic strain rate and the relaxation time of the fluid [5]. Re denotes the fluids Reynolds
number, f are the body forces acting on the fluid, and α ∈ (0, 1) denotes the fraction of the total
viscosity that is viscoelastic.

The term ga and deformation tensor d(u) are defined as:

ga(σ,∇u) :=
1− a

2

(
σ∇u + (∇u)T σ

)
− 1 + a

2

(
∇uσ + σ (∇u)T

)

and
d(u) =

1
2

(
∇u + (∇u)T

)
.

The gradient of u is defined such that (∇u)i,j = ∂ui/∂xj . For the remainder of the paper slow
or inertialess flow is assumed, allowing the term u · ∇u in (2.2) to be ignored. Note that when
the parameter a = 1 in ga(σ,∇u) an Oldroyd B constitutive model is obtained. For existence and
uniqueness of solutions to (2.1)-(2.6) see [22, 13, 11].

2.2 θ-method

In order to implement a fractional step θ-method for the viscoelastic flow equations, an additive
decomposition is used for equations (2.1) and (2.2). Here we introduce a splitting parameter
ω ∈ (0, 1), and define:

Constitutive equation:

1Gσ := ωσ, (2.7)

2Gσ := (1− ω)σ + λ (u · ∇σ + ga(σ,∇u))− 2αd(u). (2.8)
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Conservation of Momentum:

1Fu := −2(1− α)∇ · d(u)−∇ · σ − f , (2.9)

2Fu := 0. (2.10)

Let ∆t denote the temporal increment between times tn and tn+1, and for c ∈ {θ, ω, a, α} let
c̃ := 1− c. Also, let f (n) := f(·, n∆t).

The θ-method approximation for viscoelasticity may then be described as follows. (See also [26, 24]).

θ-Method Algorithm for Viscoelasticity

Step 1a: (Update the stress.)

λ
σ(n+θ) − σ(n)

θ∆t
+ 1Gσ

(n+θ) = −2Gσ
(n).

Step 1b: (Solve for velocity and pressure.)

Re
u(n+θ) − u(n)

θ∆t
+∇p(n+θ) + 1Fu

(n+θ) = −2Fu
(n),

∇ · u(n+θ) = 0.

Step 2a: (Update the velocity and pressure.)

Re
u(n+θ̃) − u(n+θ)

(1− 2θ)∆t
+∇p(n+θ̃) + 2Fu

(n+θ̃) = −1Fu
(n+θ),

∇ · u(n+θ̃) = 0.

Step 2b: (Solve for the stress.)

λ
σ(n+θ̃) − σ(n+θ)

(1− 2θ)∆t
+ 2Gσ

(n+θ̃) = −1Gσ
(n+θ).

Step 3a and Step 3b: In order to complete the temporal advancement to time tn+1,
Step 1a, and Step 1b are repeated with (n) and (n + θ) replaced by

(
n + θ̃

)
and (n + 1)

respectively.

Note: Due to the chosen decomposition of the constitutive and conservation of momentum equa-
tions, (2.7)-(2.10), the approximation of the nonlinear system (2.1)-(2.6) using the θ-method only
requires linear systems of equations to be solved at each step in the process.

3 Mathematical Notation

The L2(Ω) inner product and norm are denoted by (·, ·), and ‖u‖ respectively. The Sobolev W k
p (Ω)

norms are denoted by ‖·‖W k
p
. We use Hk to represent the Sobolev space W k

2 , and ‖·‖k to denote
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the norm in Hk. Function spaces used in the analysis are:

X := H1
0 (Ω) :=

{
u ∈ H1(Ω) : u = 0 on ∂Ω

}
,

S :=
{

σ = (σij) : σij = σji;σij ∈ L2(Ω); 1 ≤ i, j ≤ d́
}

∩{
σ = (σij) : u · ∇σ ∈ L2(Ω), ∀u ∈ X

}
,

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}
,

Z :=
{
v ∈ X :

∫

Ω
q(∇ · v) dx = 0, ∀ q ∈ Q

}
.

Recall that the spaces X and Q satisfy the inf-sup condition

inf
q∈Q

sup
v∈X

(q,∇ · v)
‖q‖ ‖v‖1

≥ β > 0. (3.1)

A variational formulation of (2.1)-(2.3), found by multiplication of the modeling equations by test
functions and integrating over Ω, is: Find (u, σ, p) : (0, T ] → X × S ×Q such that

λ

(
∂σ

∂t
, τ

)
+ (σ, τ )− 2α (d(u), τ ) + λ (u · ∇σ + ga(σ,∇u), τ ) = 0, ∀ τ ∈ S, (3.2)

Re

(
∂u

∂t
,v

)
− (p,∇ · v) + 2(1− α) (d(u),d(v)) + (σ,d(v)) = (f ,v) , ∀ v ∈ X, (3.3)

(∇ · u, q) = 0, ∀ q ∈ Q, (3.4)
u(0, x) = u0(x), (3.5)
σ(0, x) = σ0(x). (3.6)

As the velocity and pressure spaces X and Q satisfy the inf-sup condition (3.1), an equivalent
variational formulation to (3.2)-(3.4) is given by: Find (u, σ) : (0, T ] → Z × S such that

λ

(
∂σ

∂t
, τ

)
+ (σ, τ )− 2α (d(u), τ ) + λ (u · ∇σ + ga(σ,∇u), τ ) = 0, ∀ τ ∈ S, (3.7)

Re

(
∂u

∂t
,v

)
+ 2(1− α) (d(u),d(v)) + (σ,d(v)) = (f ,v) , ∀ v ∈ Z, (3.8)

u(0, x) = u0(x), (3.9)
σ(0, x) = σ0(x). (3.10)

To describe the finite element framework let Th be a triangulation of the discretized domain Ω ⊂ Rd́.
Then

Ω̄ = ∪K, K ∈ Th.

We assume that there exist constants c1 and c2 such that

c1h ≤ hK ≤ c2ρK ,

where hk is the diameter of triangle K, ρK is the diameter of the greatest ball (sphere) included in
K, and h = maxk∈Th

hK . Let Pk(A) denote the space of polynomials on A of degree no greater
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than k and C(Ω̄)d́ the space of vector valued functions with d́ components which are continuous on
Ω̄. Then the associated finite element spaces are defined by:

Xh :=
{
v ∈ X ∩ C(Ω̄)d́ : v

∣∣
K
∈ Pk(K)∀K ∈ Th

}
,

Sh :=
{

τ ∈ S ∩ C(Ω̄)d́×d́ : τ
∣∣
K
∈ Pm(K)∀K ∈ Th

}
,

Qh :=
{
q ∈ Q ∩ C(Ω̄) : q

∣∣
K
∈ Pq(K)∀K ∈ Th

}
,

Zh := {v ∈ Xh : (q,∇ · v) = 0 ∀ q ∈ Qh} .

Analogically to the continuous spaces assume that Xh and Qh satisfy the discrete inf-sup condition:

inf
q∈Qh

sup
v∈Xh

(q,∇ · v)
‖q‖ ‖v‖1

≥ β > 0. (3.11)

Let U and S denote the L2 projections of u and σ onto Zh and Sh, respectively, and define:

Λ(n) = u(n) − U (n), E(n) = U (n) − u
(n)
h ,

Γ(n) = σ(n) − S(n), F (n) = S(n) − σ
(n)
h ,

e
(n)
u = u(n) − u

(n)
h , e

(n)
σ = σ(n) − σ

(n)
h .

We define the discrete temporal operator

dtf
(n+1) :=

f(tn+1)− f(tn)
∆t

.

When v(x, t) is defined on the entire time interval (0, T ),

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k , ‖v‖0,k :=
(∫ T

0
‖v(·, t)‖2

k dt

)1/2

, ‖v‖(t) := ‖v(·, t)‖ .

The following discrete norms are used:

|||v|||∞,k := max
1≤n≤N

∥∥∥v(n)
∥∥∥

k
, |||v|||0,k :=

(
N∑

n=1

∆t
∥∥∥v(n)

∥∥∥
2

k

) 1
2

.

4 Analysis

In this section we investigate the numerical approximation method corresponding to (3.7)-(3.10)
First the discrete variational formulation of the θ-method is given. Then computability of the
algorithm is shown and a priori error estimates given.

4.1 Discrete Variational Approximation

To stabilize the constitutive equation a streamline upwind Petrov-Galerkin (SUPG) discretization
is used to control spurious oscillations in the approximation. This is implemented by testing all
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terms in the constitutive equation (except the discretized temporal derivative) against modified
test elements of the form τ

(n)
δ where

τ
(n)
δ := τ + δu

(n)
h · ∇τ . (4.1)

Note that if δ is set to zero the standard Galerkin method is obtained. The variational formulations
for the steps in the θ-method approximation are as follows.

Step 1a: Find σ
(n+θ)
h ∈ Sh such that

λ

θ∆t

(
σ

(n+θ)
h , τ

)
+ω

(
σ

(n+θ)
h , τ

(n)
δ

)
=

λ

θ∆t

(
σ

(n)
h , τ

)
−(1−ω)

(
σ

(n)
h , τ

(n)
δ

)
−λ

(
u

(n)
h · ∇σ

(n)
h , τ

(n)
δ

)

− λ
(
ga(σn

h,∇u
(n)
h ), τ (n)

δ

)
+ 2α

(
d(u(n)

h ), τ (n)
δ

)
, ∀ τ ∈ Sh. (4.2)

Step 1b: Find u
(n+θ)
h ∈ Zh such that

Re

θ∆t

(
u

(n+θ)
h ,v

)
+ 2(1− α)

(
d(u(n+θ)

h ),d(v)
)

=
Re

θ∆t

(
u

(n)
h ,v

)
+

(
f (n+θ),v

)
−

(
σ

(n+θ)
h ,d(v)

)
, ∀ v ∈ Zh. (4.3)

Step 2a: Find u
(n+θ̃)
h ∈ Zh such that

Re

(1− 2θ)∆t

(
u

(n+θ̃)
h ,v

)
=

Re

(1− 2θ)∆t

(
u

(n+θ)
h ,v

)

− 2(1− α)
(
d(u(n+θ)

h ),d(v)
)

+
(
f (n+θ),v

)
−

(
σ

(n+θ)
h ,d(v)

)
, ∀ v ∈ Zh. (4.4)

Step 2b: Find σ
(n+θ̃)
h ∈ Sh such that

λ

(1− 2θ)∆t

(
σ

(n+θ̃)
h , τ

)
+ (1− ω)

(
σ

(n+θ̃)
h , τ

(n+θ̃)
δ

)
+ λ

(
u

(n+θ̃)
h · ∇σ

(n+θ̃)
h , τ

(n+θ̃)
δ

)

+ λ

(
ga(σ

(n+θ̃)
h ,∇u

(n+θ̃)
h ), τ (n+θ̃)

δ

)
− 2α

(
d(u(n+θ̃)

h ), τ (n+θ̃)
δ

)

=
λ

(1− 2θ)∆t

(
σ

(n+θ)
h , τ

)
− ω

(
σ

(n+θ)
h , τ

(n+θ̃)
δ

)
, ∀ τ ∈ Sh. (4.5)

Step 3a: Find σ
(n+1)
h ∈ Sh such that

λ

θ∆t

(
σ

(n+1)
h , τ

)
+ ω

(
σ

(n+1)
h , τ

(n+θ̃)
δ

)
=

λ

θ∆t

(
σ

(n+θ̃)
h , τ

)
− (1− ω)

(
σ

(n+θ̃)
h , τ

(n+θ̃)
δ

)

− λ

(
u

(n+θ̃)
h · ∇σ

(n+θ̃)
h ,−τ

(n+θ̃)
δ

)
λ

(
ga(σ

(n+θ̃)
h ,∇− u

(n+θ̃)
h ), τ (n+θ̃)

δ

)

+ 2α

(
−d(u(n+θ̃)

h ), τ (n+θ̃)
δ

)
, ∀ τ− ∈ Sh. (4.6)
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Step 3b: Find u
(n+1)
h ∈ Zh such that

Re

θ∆t

(
u

(n+1)
h ,v

)
+ 2(1− α)

(
d(u(n+1)

h ),d(v)
)

=
Re

θ∆t

(
u

(n+θ̃)
h ,v

)
+

(
f (n+1),v

)
−

(
σ

(n+1)
h ,d(v)

)
, ∀ v ∈ Zh. (4.7)

4.2 Existence and Uniqueness

Before error estimates are presented the computability of the θ-method is shown. This is accom-
plished by proving that the associated coefficient matrices used in each step of the algorithm are
invertible.

The following induction hypothesis is used: There exists a constant K such that for n = 1, . . . , N

∥∥∥u
(n)
h

∥∥∥
∞

,

∥∥∥∥u
(n+θ̃)
h

∥∥∥∥
∞
≤ K. (IH1)

The justification of (IH1) is established below.

Lemma 1 (Step 1a) Assume (IH1) is true. For δ ≤ Ch and ∆t sufficiently small there exists a
unique solution σ

(n+θ)
h ∈ Sh satisfying (4.2).

Proof: Equation (4.2) can be equivalently written as

A1

(
σ

(n+θ)
h , τ

)
=

λ

θ∆t

(
σ

(n)
h , τ

)
−

(
(1− ω)σ(n)

h , τ
(n)
δ

)

− λ
((

u
(n)
h · ∇σ

(n)
h + ga(σn

h,∇u
(n)
h )

)
, τ

(n)
δ

)
+ 2α

(
d(u(n)

h ), τ (n)
δ

)
, ∀ τ ∈ Sh, (4.8)

where
A1

(
σ

(n+θ)
h , τ

)
:=

λ

θ∆t

(
σ

(n+θ)
h , τ

)
+ ω

(
σ

(n+θ)
h , τ

(n)
δ

)
.

Here (4.8) represents a square linear system of equations Ax = b. With the choice τ = σ
(n+θ)
h ,

examining the individual terms in A1 we see that

λ

θ∆t

(
σ

(n+θ)
h ,σ

(n+θ)
h

)
=

λ

θ∆t

∥∥∥σ
(n+θ)
h

∥∥∥
2
,

ω
(
σ

(n+θ)
h ,σ

(n+θ)
h

)
= ω

∥∥∥σ
(n+θ)
h

∥∥∥
2
,

and

ωδ
(
σ

(n+θ)
h ,u

(n)
h · ∇σ

(n+θ)
h

)
=

ωδ

2

(
u

(n)
h ,∇

(
σ

(n+θ)
h , σ

(n+θ)
h

))

≤ ωδ

2

∥∥∥u
(n)
h

∥∥∥
∞

Ch−1
∥∥∥σ

(n+θ)
h

∥∥∥
2

≤ ωδKCh−1

2

∥∥∥σ
(n+θ)
h

∥∥∥
2
.
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Provided δ ≤ Ch, and ∆t ≤ (2λ)/(θωKC) then A1

(
σ

(n+θ)
h , σ

(n+θ)
h

)
> 0, and thus the ker (A1) =

{0}. It then follows that (4.2) has a unique solution.

Lemma 2 (Step 1b) There exists a unique solution u
(n+θ)
h ∈ Zh satisfying (4.3).

Proof: Equation (4.3) can be equivalently written as

A2

(
u

(n+θ)
h ,v

)
=

Re

θ∆t

(
u

(n)
h ,v

)
+

(
f (n+θ),v

)
−

(
σ

(n+θ)
h ,d(v)

)
, ∀ v ∈ Zh,

where
A2

(
u

(n+θ)
h ,v

)
:=

Re

θ∆t

(
u

(n+θ)
h ,v

)
+ 2(1− α)

(
d(u(n+θ)

h ),d(v)
)

.

Note that choosing v = u
(n+θ)
h

A2

(
u

(n+θ)
h , u

(n+θ)
h

)
=

Re

θ∆t

(
u

(n+θ)
h ,u

(n+θ)
h

)
+ 2(1− α)

(
d(u(n+θ)

h ),d(u(n+θ)
h )

)
> 0.

and existence and uniqueness of a solution to (4.3) has been shown.

Lemma 3 (Step 2a) There exists a unique solution u
(n+θ̃)
h ∈ Zh satisfying (4.4).

Proof: First write equation (4.4) as

A3

(
u

(n+θ̃)
h ,v

)
=

Re

(1− 2θ)∆t

(
u

(n+θ)
h ,v

)
− 2(1− α)

(
d(u(n+θ)

h ),d(v)
)

+
(
f (n+θ),v

)
−

(
σ

(n+θ)
h ,d(v)

)
,

where

A3

(
u

(n+θ̃)
h ,v

)
:=

Re

(1− 2θ)∆t

(
u

(n+θ̃)
h ,v

)
.

For the choice of v = u(n+θ̃), the system A3

(
u

(n+θ̃)
h ,u

(n+θ̃)
h

)
> 0, and the proof is complete.

Lemma 4 (Step 2b) Assume (IH1) is true. For δ ≤ Ch and ∆t sufficiently small there exists a

unique solution σ
(n+θ̃)
h ∈ Sh satisfying (4.5).

Proof: Write (4.5) as

A4

(
σ

(n+θ̃)
h , τ

)
=

λ

(1− 2θ)∆t

(
σ

(n+θ)
h , τ

)
− ω

(
σ

(n+θ)
h , τ

(n+θ̃)
δ

)
+ 2α

(
d(u(n+θ̃)

h ), τ (n+θ̃)
δ

)
,

with

A4

(
σ

(n+θ̃)
h , τ

)
:=

λ

(1− 2θ)∆t

(
σ

(n+θ̃)
h , τ

)
+ (1− ω)

(
σ

(n+θ̃)
h , τ

(n+θ̃)
δ

)

+ λ

(
u

(n+θ̃)
h · ∇σ

(n+θ̃)
h , τ

(n+θ̃)
δ

)
+ λ

(
ga(σ

(n+θ̃)
h ,∇u

(n+θ̃)
h ), τ (n+θ̃)

δ

)
.
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Estimating the terms in A4

(
σ

(n+θ̃)
h , σ

(n+θ̃)
h

)
yields

λ

(1− 2θ)∆t

(
σ

(n+θ̃)
h ,σ

(n+θ̃)
h

)
=

λ

(1− 2θ)∆t

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

,

(1− ω)
(

σ
(n+θ̃)
h ,σ

(n+θ̃)
h

)
= (1− ω)

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

,

(1− ω)
(

σ
(n+θ̃)
h , δu

(n+θ̃)
h · ∇σ

(n+θ̃)
h

)
≤ ε0δ

∥∥∥∥u
(n+θ̃)
h · ∇σ

(n+θ̃)
h

∥∥∥∥
2

+
(1− ω)2 δ

4ε0

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

,

λ

(
u

(n+θ̃)
h · ∇σ

(n+θ̃)
h , σ

(n+θ̃)
h

)
≤

λ

∥∥∥∥u
(n+θ̃)
h

∥∥∥∥
∞

Ch−1

2

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

≤ λKCh−1

2

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

,

λ

(
u

(n+θ̃)
h · ∇σ

(n+θ̃)
h , δu

(n+θ̃)
h · ∇σ

(n+θ̃)
h

)
= λδ

∥∥∥∥u
(n+θ̃)
h · ∇σ

(n+θ̃)
h

∥∥∥∥
2

,

λ

(
ga(σ

(n+θ̃)
h ,∇u

(n+θ̃)
h ), σ(n+θ̃)

h

)
≤ 4λ

∥∥∥∥σ
(n+θ̃)
h ∇u

(n+θ̃)
h

∥∥∥∥
∥∥∥∥σ

(n+θ̃)
h

∥∥∥∥

≤ 4d́1/2λ

∥∥∥∥∇u
(n+θ̃)
h

∥∥∥∥
∞

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

≤ 4d́1/2λCh−1

∥∥∥∥u
(n+θ̃)
h

∥∥∥∥
∞

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

≤ 4d́1/2λCh−1K

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

,

(
λga(σ

(n+θ̃)
h ,∇u

(n+θ̃)
h ), δu(n+θ̃)

h · ∇σ
(n+θ̃)
h

)
≤ 4λ

∥∥∥∥σ
(n+θ̃)
h ∇u

(n+θ̃)
h

∥∥∥∥
∥∥∥∥δu

(n+θ̃)
h · ∇σ

(n+θ̃)
h

∥∥∥∥

≤ 4d́1/2λ

∥∥∥∥∇u
(n+θ̃)
h

∥∥∥∥
∞

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
∥∥∥∥δu

(n+θ̃)
h · ∇σ

(n+θ̃)
h

∥∥∥∥

≤ 4d́λC2h−2K2δ

ε1

∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

+ λε1δ

∥∥∥∥u
(n+θ̃)
h · ∇σ

(n+θ̃)
h

∥∥∥∥
2

.

Thus,

A4(σ
(n+θ̃)
h , σ

(n+θ̃)
h ) ≥

(
λ

(1− 2θ)∆t
+ (1− ω)− (1− ω)2 δ

4ε0

−λKCh−1

(
1
2

+ 4d́1/2 +
4d́KCh−1δ

ε1

))∥∥∥∥σ
(n+θ̃)
h

∥∥∥∥
2

+δ (λ− ε0 − λε1)
∥∥∥∥u

(n+θ̃)
h · ∇σ

(n+θ̃)
h

∥∥∥∥
2

.
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Choosing ε0 = λ
3 , ε1 = 1

3 , δ ≤ Ch−1, and ∆t ≤ Ch−1 establishes A4(σ
(n+θ̃)
h , σ

(n+θ̃)
h ) > 0. Hence, a

unique solution exists for (4.2).

The unique solvability of (4.6) and (4.7) of the algorithm follows exactly as (4.2) and (4.3).

4.3 Error Estimates

In this section supporting analysis for the θ-method described in Section 2 is given. The θ-method
decouples the stress updates from the velocity-pressure updates. Though the modeling system is
nonlinear, the updates for the stress and velocity-pressure only require linear systems of equations
to be solved. Motivated by this decoupling (as a first step toward an analysis of the fully discretized
system) we investigate separately the stress and velocity-pressure approximations. First a θ-method
for the constitutive equation given by (4.2), (4.5), and (4.6) is investigated assuming the velocity
and pressure are known. Then a θ-method for the Stokes-like problem given by (4.3), (4.4), and
(4.7) is analyzed assuming the stress is known. A priori error estimates for each scheme are given
in Theorems 4.1 and 4.2, and a discussion of the proofs is given below. (Detailed proofs are given
in [8].)

It is convenient to define the following notation:

ũh := discrete approximation using true σ,

σ̃h := discrete approximation using true u, and p.

Theorem 4.1 (Assuming u and p are known) For sufficiently smooth solutions σ, u, p such
that

‖u‖∞ , ‖ut‖∞ , ‖utt‖∞ , ‖∇u‖∞ , ‖(∇u)t‖∞ , and ‖(∇u)tt‖∞ ≤ M, ∀ t ∈ [0, T ],

∆t ≤ Ch2, the fractional step θ-method approximation, σ̃h given by Step 1a, Step 2b, and Step 3a
converges to σ on the interval (0, T ] as ∆t, h → 0, and satisfies the error estimates:

|‖σ − σ̃h‖|∞,0 ≤ Fσ(∆t, h, δ), (4.9)

|‖σ − σ̃h‖|0,0 ≤ Fσ(∆t, h, δ), (4.10)

and

|‖u · ∇(σ − σ̃h)‖|θ̃ :=

(
N∑

n=1

∆t

∥∥∥∥u(n+θ̃) · ∇
(

σ(n+θ̃) − σ̃
(n+θ̃)
h

)∥∥∥∥
2
) 1

2

≤ Fσ(∆t, h, δ), (4.11)

where

Fσ(∆t, h, δ) := C(∆t)2
(
‖σttt‖0,0 + ‖σtt‖0,1 + ‖σt‖0,1 + ‖σ‖0,1

+ ‖σtt‖0,0 + ‖σt‖0,0 + ‖σ‖0,0 + CT

)

+ C(∆t)δ
(
‖σ‖0,1 + ‖σt‖0,1 + ‖σ‖0,0 + ‖σt‖0,0 + CT

)

+ C
(
hm+1 + hm + δhm

) |‖σ‖|0,m+1

+ Chm+1 ‖σt‖0,m+1 + Cδ |‖σt‖|0,0 + Chm+1 |‖σ‖|∞,0 . (4.12)
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Theorem 4.2 (Assuming σ is known) For a sufficiently smooth solutions u, σ, p such that
‖σ‖∞ ≤ M, ∀ t ∈ [0, T ], and ∆t ≤ Ch2, the fractional step θ-method approximation, ũh given by
Step 1b, Step 2a, and Step 3b converges to u on the interval (0, T ] as ∆t, h → 0, and satisfies the
error estimates:

|‖u− ũh‖|∞,0 ≤ Fu(∆t, h, δ), (4.13)

and
|‖u− ũh‖|0,1 ≤ Fu(∆t, h, δ), (4.14)

where

Fu(∆t, h, δ) := Chk+1 ‖ut‖0,k+1 + Chk |‖u‖|0,k+1 + Chq+1 |‖p‖|0,q+1

+ C(∆t)2 ‖uttt‖0,0 + C(∆t)2 ‖utt‖0,1 + C(∆t)2 ‖ftt‖0,0

+ C(∆t)2CT + Chk |‖u‖|∞,k+1 . (4.15)

Outline of the proof. In [6], and [7] the analysis for a fractional step θ-method for the convection
diffusion equation was presented. The proof of Theorems 4.1 and 4.2 are done in an analogous
manner to the proof presented in [7]. Here we present an outline of the proof for Theorem 4.1, and
note that the proof of Theorem 4.2 is accomplished in a similar manner.

Step 1. When obtaining a priori error estimates for the time dependent approximation schemes it
is useful to examine a unit stride, i.e. the terms analyzed are distance ∆t apart. For the θ-method
this is accomplished by considering linear combinations of the approximation methods steps. In

order to obtain unit strides from σ̃
(n)
h to σ̃

(n+1)
h , σ̃

(n−θ)
h to σ̃

(n+θ̃)
h , and σ̃

(n+θ−1)
h to σ̃

(n+θ)
h the

following linear combinations are formed:

θ∆t(4.2) + (1− 2θ)∆t(4.5) + θ∆t(4.6), (4.16)
θ∆t(4.2) + (1− 2θ)∆t(4.5) + θ∆t ((4.6) with n → n− 1) , (4.17)
θ∆t(4.2) + (1− 2θ)∆t ((4.5) with n → n− 1) + θ∆t ((4.6) with n → n− 1) . (4.18)

Step 2. Evaluate (3.7) at the midpoint of each unit stride and subtract equations (4.16)-(4.18).
Rearrange terms to obtain the equations:

((
σ(n+1) − σ̃

(n+1)
h

)
−

(
σ(n) − σ̃

(n)
h

)
, τ

)
+ ∆tB1pos

((
σ(n+1) − σ̃

(n+1)
h

)
, τ

)

= ∆tB1rem

(
∆t,σ,u, σ̃

(n+1)
h , σ̃

(n+θ̃)
h , σ̃

(n+θ)
h , σ̃

(n)
h , τ

)
, (4.19)

((
σ(n+θ̃) − σ̃

(n+θ̃)
h

)
−

(
σ(n−θ) − σ̃

(n−θ)
h

)
, τ

)
+ ∆tB2pos

((
σ(n+θ̃) − σ̃

(n+θ̃)
h

)
, τ

)

= ∆tB2rem

(
∆t,σ, u, σ̃

(n+θ̃)
h , σ̃

(n+θ)
h , σ̃

(n−θ)
h , σ̃

(n)
h , τ

)
, (4.20)
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((
σ(n+θ) − σ̃

(n+θ)
h

)
−

(
σ(n+θ−1) − σ̃

(n+θ−1)
h

)
, τ

)
+ ∆tB3pos

((
σ(n+θ) − σ̃

(n+θ)
h

)
, τ

)

= ∆tB3rem

(
∆t, σ, u, σ̃

(n+θ−1)
h , σ̃

(n+θ)
h , σ̃

(n−θ)
h , σ̃

(n)
h , τ

)
, (4.21)

where B1pos , B2pos , and B3pos denote the positive part of the operators.

Step 3. Use σ(n) − σ̃
(n)
h = Γ̃

(n)
+ F̃

(n)
, and choose τ = F̃

(n)
, in (4.19) to obtain an expression of

the form
∥∥∥F (n+1)

∥∥∥
2
−

∥∥∥F (n)
∥∥∥

2
+ ∆tB1pos

(
F̃

(n+1)
, F̃

(n+1)
)
≤ ∆tB̃1rem

(
∆t, σ, u, Γ̃, F̃

)
. (4.22)

Assuming that F (0) = 0, (4.22) is then summed from n = 0 to n = l − 1 so that the expression
telescopes to

∥∥∥F l
∥∥∥

2
+ ∆t

l−1∑

n=0

B1pos

(
F̃

(n+1)
, F̃

(n+1)
)

= ∆tR1

(
∆t, σ, u, Γ̃, F̃

)
. (4.23)

A similar approach is taken with (4.20) and (4.21) where τ is chosen to be F (n+θ̃) and F (n+θ),

respectively, giving equations for
∥∥∥F (l−θ)

∥∥∥
2
, and

∥∥∥F (l−1+θ)
∥∥∥

2
. These three equations are then added

together to form a single equation.

Step 4. Suitable inequalities/estimates are then applied to the terms in the equation.

Step 5. Gronwall’s lemma is applied to get an estimate for
∥∥∥F̃

l−1+θ
∥∥∥

2
+

∥∥∥F̃
l−θ

∥∥∥
2
+

∥∥∥F̃
l
∥∥∥

2
, and then

using the triangle inequality we obtain the error estimate for
∥∥∥σ(l) − σ̃

(l)
h

∥∥∥ +
∥∥∥σ(l−θ) − σ̃

(l−θ)
h

∥∥∥ +∥∥∥σ(l−1+θ) − σ̃
(l−1+θ)
h

∥∥∥.

In Section 5 the numerical results presented use continuous, piecewise linear approximations for σ,
and p, and a continuous, piecewise quadratic approximation for u. With these approximations we
have the following estimates:

Corollary 1 For Sh the space of continuous, piecewise linear functions, ∆t ≤ Ch2, and σ, u, p
sufficiently smooth, the approximation σ̃h satisfies the error estimate:

|‖u · ∇ (σ − σ̃h)‖|θ̃ ≤ C
(
(∆t)2 + ∆tδ + hδ + h + δ

)
. (4.24)

Corollary 2 For Xh the space of continuous, piecewise quadratic functions, and Qh the space of
continuous, piecewise linear functions, ∆t ≤ Ch2, and σ,u, p sufficiently smooth, the approximation
ũh satisfies the error estimate:

|‖u− ũh‖|0,1 ≤ C
(
(∆t)2 + h2

)
. (4.25)
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Justification of (IH1) for ũh.

Assume that (IH1) holds for n = 1, 2, . . . , l − 1. Then using inverse estimates, interpolation prop-
erties, and (4.15)

∥∥∥ul
h

∥∥∥
∞

≤
∥∥∥ul

h − ul
∥∥∥
∞

+
∥∥∥ul

∥∥∥
∞

≤
∥∥∥El

∥∥∥
∞

+
∥∥∥Λl

∥∥∥
∞

+ M

≤ Ch
−d́
2

∥∥∥El
∥∥∥ + Ch

−d́
2

∥∥∥Λl
∥∥∥ + M

≤ C
(
hk− d́

2 + hq− d́
2
+1 + (∆t)2h

−d́
2 + hk− d́

2
+1

)
+ M. (4.26)

Setting k ≥ d́
2 , and q ≥ d́

2 − 1 and choosing h, and ∆t such that

hk− d́
2 , hq− d́

2
+1 ≤ 1

C
, and ∆t2 ≤ h

d́
2

C
, (4.27)

we have ∥∥∥ul
h

∥∥∥
∞
≤ M + 4.

Similarly it follows that
∥∥∥∥u

(n+θ̃)
h

∥∥∥∥
∞
≤ M + 4.

5 Numerical Results

In this section we present numerical results for the θ-method on two test problems. The first
example uses a known analytical solution to verify numerical convergence rates (Cvge. Rate) of
the θ-method. In the second example, we considered a prototypal problem of viscoelastic flow, flow
through a 4:1 planar contraction. In both examples finite element computations were carried out
using the FreeFem++ integrated development environment [14]. Continuous piecewise quadratic
elements were used for modeling the velocity, and continuous piecewise linear elements were used
for the pressure and stress. The constitutive equation was stabilized using a SUPG discretization
with a parameter δ.

For the (optimal) value of θ = 1 − √
2/2 ≈ 0.29289 the local temporal discretization errors are

O((∆t)2). The influence of the value for θ on the numerical approximations is illustrated in Figure
5.1. for computations performed on Example 1 (described below). All the other computations
reported in this paper were obtained using θ = 1 − √

2/2. The constitutive equation splitting
parameter ω was set to 1/2 in all computations.

5.1 Example 1

In order to investigate the predicted convergence rates we consider fluid flow across a unit square
with a known solution.
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Figure 5.1: Optimal θ value

Let Ω = (0, 1)× (0, 1), Re = 1, α = 1/2, λ = 2, and a = 1. For the true solution we use

u =

(
e(x+y− 1

2
t)(x2 − x)(y2 − y)

−e(x+y−t)(x2 − x)(y2 − y)

)
, (5.1)

p = cos(2πx)(y2 − y), (5.2)
σ = 2αd(u). (5.3)

Remark: A right-hand-side function is added to (2.1) and f in (2.2) is calculated using (5.1)-(5.3).

For this example three sequences of computations were performed:

(i) approximation of σ̃h, assuming u and p (Theorem 4.1),

(ii) approximation of ũh and p̃h, assuming σ (Theorem 4.2),

(iii) approximation of uh, ph and σh.

5.1.1 Approximating σ̃h with u and p known

We first consider the approximation of the stress σ̃h assuming the velocity and pressure functions
are known. This is analogous to implementing Step 1a, Step 2b, and Step 3a of the θ-method.
From Corollary 1 we have predicted asymptotic convergence rate

|‖u · ∇ (σ − σ̃h)‖|θ̃ ≤ C
(
(∆t)2 + ∆tδ + hδ + h + δ

)
,

which is consistent with the numerical convergence rates presented in Table 5.1. Note Table 5.1
shows the effect of the upwinding parameter δ on |‖σ − σ̃h‖|0,0.

For the proof of Theorem 4.1 we required the restriction ∆t ≤ Ch2. The numerical computations
were performed with ∆t ∼ h. It is an open question if the restriction ∆t ≤ Ch2 is a necessary
condition for (4.12).
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Table 5.1: Approximation errors and experimental convergence rates at T = 2

δ ↓ (∆t, h) →
(
1,
√

2
2

) (
1
2 ,
√

2
4

) (
1
4 ,
√

2
8

) (
1
8 ,
√

2
16

) (
1
16 ,

√
2

32

)

0 |‖σ − σ̃h‖|0,0 2.1235e-1 6.6773e-2 1.9191e-2 5.0437e-3 1.2830e-3
Cvge. Rate - 1.7 1.8 1.9 2.0

|‖u · ∇(σ − σ̃h)‖|θ̃ 1.1544e-1 6.1759e-2 2.9979e-2 1.5185e-2 7.6944e-3
Cvge. Rate - 0.9 1.0 1.0 1.0

h√
2

|‖σ − σ̃h‖|0,0 2.0070e-1 8.4563e-2 3.7449e-2 1.6980e-2 8.0428e-3
Cvge. Rate - 1.2 1.2 1.1 1.1

|‖u · ∇(σ − σ̃h)‖|θ̃ 1.0263e-1 6.4336e-2 3.2570e-2 1.6325e-2 8.2071e-3
Cvge. Rate - 0.7 1.0 1.0 1.0(

h√
2

) 3
2 |‖σ − σ̃h‖|0,0 2.0174e-1 7.3678e-2 2.3575e-2 6.9629e-3 2.0645e-3

Cvge. Rate - 1.5 1.6 1.8 1.8
|‖u · ∇(σ − σ̃h)‖|θ̃ 1.0447e-1 6.2239e-2 3.0497e-2 1.5304e-2 7.7199e-3

Cvge. Rate - 0.7 1.0 1.0 1.0(
h√
2

)2
|‖σ − σ̃h‖|20,0 2.0346e-1 6.9501e-2 2.0245e-2 5.3281e-3 1.3546e-3
Cvge. Rate - 1.5 1.8 1.9 2.0

|‖u · ∇(σ − σ̃h)‖|θ̃ 1.0664e-1 6.1737e-2 3.0104e-2 1.5203e-2 7.6968e-3
Cvge. Rate - 0.8 1.0 1.0 1.0

5.1.2 Approximating ũh and p̃h with known σ

Numerical results for the approximation of velocity, ũh, and pressure, p̃h for a known stress, σ, are
presented in Table 5.2. These results correspond to the analysis of step 1b, step 2a, and step 3b as
stated in Theorem 4.2.

The numerical convergence rates observed are consistent with those predicted in Corollary 2 where

|‖u− ũh‖|0,1 ≤ O
(
(∆t)2 + h2

)
.

Similar to the case in the previous subsection we make note that the proof of Theorem 4.2 required
the restriction ∆t ≤ Ch2. Here the numerical computations were performed with ∆t ∼ h.

5.1.3 Full θ-method approximation for viscoelasticity

Table 5.3 contains the results for the approximation of u and σ using the θ-method described in
Step 1a - Step 3b. The numerical convergence rates are consistent with our expectations based on
Theorems 4.1 and 4.2, i.e.

|‖u− uh‖|0,1 + |‖σ − σh‖|0,0 + |‖u · ∇(σ − σh)‖|θ̃ ∼ O
(
(∆t)2 + (∆t) δ + δ + h

)
.
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Table 5.2: Approximation errors and experimental convergence rates at T = 2

(∆t, h) →
(

1
2 ,
√

2
4

) (
1
4 ,
√

2
8

) (
1
8 ,
√

2
16

) (
1
16 ,

√
2

32

) (
1
32 ,

√
2

64

) (
1
64 ,

√
2

128

)

|‖u− ũh‖|0,1 4.4196e-2 1.1485e-2 2.9707e-3 7.5759e-4 1.9142e-4 4.8129e-5
Cvge. Rate - 1.9 2.0 2.0 2.0 2.0
|‖u− ũh‖|∞,0 1.4734e-3 1.7996e-4 2.5014e-5 4.1759e-6 8.5692e-7 2.1636e-7
Cvge. Rate - 3.0 2.8 2.6 2.3 2.0
|‖p− p̃h‖|0,0 1.0859e-1 6.6842e-3 1.5033e-3 3.9097e-4 1.2086e-4 4.7884e-5
Cvge. Rate - 4.0 2.2 1.9 1.7 1.3
|‖p− p̃h‖|∞,0 8.4003e-2 4.9703e-3 1.1343e-3 3.2878e-4 1.2797e-4 6.0659e-5
Cvge. Rate - 4.1 2.1 1.8 1.4 1.1

Table 5.3: Approximation errors and experimental convergence rates at T = 2

δ ↓ (∆t, h) →
(

1
2 ,
√

2
4

) (
1
4 ,
√

2
8

) (
1
8 ,
√

2
16

) (
1
16 ,

√
2

32

) (
1
32 ,

√
2

64

)

0 |‖u− uh‖|0,1 4.7608e-2 1.2323e-2 3.2034e-3 8.3187e-4 2.1793e-4
Cvge. Rate - 1.9 1.9 1.9 1.9
|‖σ − σh‖|0,0 6.5569e-2 1.9248e-2 5.0845e-3 1.3000e-3 3.2981e-4
Cvge. Rate - 1.8 1.9 2.0 2.0

|‖u · ∇(σ − σh)‖|θ̃ 6.1217e-2 2.9982e-2 1.5191e-2 7.6984e-3 3.8800e-3
Cvge. Rate - 1.0 1.0 1.0 1.0

h√
2

|‖u− uh‖|0,1 5.0150e-2 1.6193e-2 6.4636e-3 2.9147e-3 1.3989e-3
Cvge. Rate - 1.6 1.3 1.1 1.1
|‖σ − σh‖|0,0 8.1922e-2 3.5905e-2 1.5791e-2 7.3743e-3 3.5789e-3
Cvge. Rate - 1.2 1.2 1.1 1.0

|‖u · ∇(σ − σh)‖|θ̃ 6.4087e-2 3.2589e-2 1.6309e-2 8.2007e-3 4.1180e-4
Cvge. Rate - 1.0 1.0 1.0 1.0(

h√
2

) 3
2 |‖u− uh‖|0,1 4.8620e-2 1.3135e-2 3.6334e-3 1.0192e-3 2.9513e-4

Cvge. Rate - 1.9 1.9 1.8 1.8
|‖σ − σh‖|0,0 7.1941e-2 2.3392e-2 6.8309e-3 1.9976e-3 6.0598e-4
Cvge. Rate - 1.6 1.8 1.8 1.7

|‖u · ∇(σ − σh)‖|θ̃ 6.1860e-2 3.0510e-2 1.5305e-2 7.7221e-3 3.8851e-3
Cvge. Rate - 1.0 1.0 1.0 1.0(

h√
2

)2
|‖u− uh‖|0,1 4.8022e-2 1.2507e-2 3.2644e-3 8.4818e-4 2.2193e-4
Cvge. Rate - 1.9 1.9 1.9 1.9
|‖σ − σh‖|0,0 6.8104e-2 2.0308e-2 5.3614e-3 1.3680e-3 3.4645e-4
Cvge. Rate - 1.7 1.9 2.0 2.0

|‖u · ∇(σ − σh)‖|θ̃ 6.1279e-2 3.0111e-2 1.5208e-2 7.7004e-3 3.8803e-3
Cvge. Rate - 1.0 1.0 1.0 1.0
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5.2 Example 2

For a second example the numerical approximation of viscoelastic flow through a planar 4:1 con-
traction channel is presented. This has been a long standing benchmark problem for viscoelastic
flow [17, 20, 21]. A diagram of the flow geometry is given in Figure 5.2. It is assumed that the chan-
nel lengths are sufficiently long for fully developed Poiseuille flow at both the inflow and outflow
boundaries. In the computations the value of L in Figure 5.2 is set at 1/4.

16L

16L

4L

L

Figure 5.2: Plot of 4:1 contraction domain geometry.

The flow at t = 0 is assumed to be stationary and then slowly increased for t > 0 using A(t) = 1−e−t.
The boundary conditions at the inflow of the channel are defined by

u = A(t)
(

1
32

(
1− y2

)
0

)
, (5.4)

and

σ11 =
λA(t)2y2α(1 + a)

D(t)
, σ12 =

−16αA(t)y
D(t)

, and σ22 =
λA(t)2y2α(a− 1)

D(t)
, (5.5)

where
D(t) = 256 + A(t)2y2λ2(1 + a)(1− a).

The outflow boundary condition is

u = A(t)
(

2
(

1
16 − y2

)
0

)
. (5.6)

No slip boundary conditions were imposed for the velocity on the solid walls of the contraction,
and a symmetry condition was imposed along the bottom of the computational domain. The
computations were performed on a uniformly refined version of the mesh shown in Figure 5.3 with
∆xmin = 0.0625 and ∆ymin = 0.015625.

840
0

1

Figure 5.3: Sample Contraction Mesh

The computations were done using the full θ-method approximation given by (4.2) - (4.7) for an
Oldroyd B fluid (a = 1), with λ = 2 and Re = 1. The value of α was set to 8/9, which is commonly
used in the literature [20]. The discrete time step and upwinding parameter were set to ∆t = 1/32
and δ = (2/∆ymin)2. Figures 5.4 and 5.5 show streamlines for the fluid at times t = 1/8, 1/2, 1, and
4 superimposed on a contour plot showing the magnitude of velocity. Note that, consistent with
expectations, as the velocity is increased, a vortex appears in the upper corner of the domain and
grows with the magnitude of the velocity.
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(a) t = 0.125
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(b) t = 0.5

Figure 5.4: Streamlines and magnitude contours for u
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(a) t = 1
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(b) t = 4

Figure 5.5: Streamline and magnitude contours for u
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