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Abstract

We study a system composed of a non-linear Stokes flow in one subdomain coupled with a non-
linear porous medium flow in another subdomain. Special attention is paid to the mathematical
consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent
effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case
where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We
recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using
a mortar space approach. We prove a number of properties of the nonlinear interface operator
associated with the reduced problem, which directly yield the existence, uniqueness and regularity
of a variational solution to the system. We further propose and analyze a numerical algorithm
based on mortar finite elements for the interface problem and conforming finite elements for
the subdomain problems. Optimal a priori error estimates are established for the interface and
subdomain problems, and a number of compatibility conditions for the finite element spaces used
are discussed. Numerical simulations are presented to illustrate the algorithm and to compare
two treatments of the defective boundary conditions.

Key words. Generalized non-linear Stokes flow; coupled Stokes and Darcy flow; defective
boundary condition
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1 Introduction

The problem of approximating coupled Stokes–Darcy flow has received considerable attention in
the mathematics community over the past ten years. Many of the applications considered use a
Newtonian fluid in both the Stokes and Darcy regions, where the motivating problem is often a
coupled surface water / groundwater model (see, for instance, [6, 14, 18, 22, 24, 27, 28]). Our
interest in coupled flows arises from filtration applications, which continues to be an active area
of research (see, for instance, [3, 12, 20, 26, 23]). The purpose of the filtration mechanism can be
the removal of particulates [23, 3, 26, 29] or impurities [20], but in all cases the availability of an
accurate and efficient simulation tool would aid in the design and assessment of effective filtration
devices.

∗email: vjervin@clemson.edu , lea@clemson.edu , shuyu@clemson.edu.
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Our particular focus is on the effective removal of debris particles from a molten polymer [29, 10, 5],
which is a non-Newtonian fluid. Earlier work on this filtration problem focused only on the flow in
the porous, or Darcy, region [1, 21, 25, 29, 30], but analysis of the fully coupled problem is essential to
accurately simulate the transport of the suspended particles into the filter. The fully coupled problem
for non-Newtonian Stokes and Darcy flows was initially analyzed in [11]. Motivated by numerical
implementation considerations, we have recast this coupled problem as a matching problem on the
interface between the domains. This approach naturally gives rise to a parallel algorithm for the
subproblems in the Stokes domain Ωf and the Darcy domain Ωp, and it also allows one to combine
existing codes for Stokes and Darcy simulations to solve the coupled problem. Key ideas from
[7, 22, 14, 17] are used in the new formulation.

In the literature, two basic approaches have been used to analyze the coupled problem considered
herein: Stokes–Darcy coupling and Stokes–Laplace coupling. In Stokes–Darcy coupling, the velocity
and pressure are resolved in both the fluid flow and the porous media domains. For the Stokes–
Laplace formulation the velocity and pressure are the unknowns in the fluid flow domain and the
pressure is the only unknown in the porous media domain.

In [7] Discacciati and Quateroni studied the coupled Stokes–Laplace formulation. After show-
ing existence and uniqueness for the coupled problem they reformulated the problem, using the
Steklov-Poincaré operator, as an interface problem for the interfacial pressure. Parallel and se-
rial implementations for the numerical approximation of the interface problem were reported in
[8, 9]. There has been considerable work done on efficient numerical solution algorithms for the
Stokes–Laplace formulation. We refer the reader to [4, 19, 24] and the references therein.

Using a Lagrange multiplier technique Layton, Schieweck, and Yotov [22] (see [28] also) introduced
and studied the Stokes–Darcy coupling approach. Galvis and Sarkis in [14] extended this approach
and showed how the Lagrange multiplier space could be more appropriately defined. In [13] they
investigated efficient preconditioning strategies for the Stokes–Darcy formulation.

Our interest herein is the Stokes–Darcy coupling approach. Denoting by uf , pf , up, pp the velocity
and pressure in the fluid flow domain Ωf and the porous media domain Ωp, respectively, we have
the following boundary conditions holding along the interface Γ:

uf · nf + up · np = 0 , (Conservation of mass) (1.1)

pf − (σfnf ) · nf = pp , (Balance of interfacial pressure) (1.2)

and a boundary condition for the tangential stress in Ωf on Γ. (The boundary condition for the
tangential stress becomes a natural boundary condition for the variational formulation on Ωf .) In
(1.2) σf denotes the extra stress tensor in Ωf . For the coupled problem under consideration, fully
described in Section 2 below, given an interfacial pressure pI , the Stokes and Darcy problems are
independently solvable in Ωf and Ωp, respectively, to yield u∗

f (pI), p
∗
f (pI), u

∗
p(pI), p

∗
p(pI). Thus, we

investigate the problem of determining λ such that

Λ(λ) := u∗
f (λ) · nf + u∗

p(λ) · np = 0 . (1.3)

The matching problem lies on the interface Γ. For the discrete approximation we introduce a
“mortar space” for the representation of the interfacial pressure of Γ [17, 16]. The mortar space
discretization is independent of the partitions of Ωf and Ωp. However a compatibility condition for
the mortar space discretization and the partitions of Ωf and Ωp is required (see Assumptions 4.4,
4.5).
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For the modeling equations describing the fluid flow we consider the case of a shear thinning fluid,
where the fluid’s viscosity is a nonlinear function of the magnitude of the deformation tensor.
Additionally we assume that only flow rates are specified for the inflow and outflow boundaries (i.e.
defective boundary conditions).

The paper is organized as follows. In Section 2 we formally describe the modeling equations and
assumptions on the non-linear functions modeling the fluid’s viscosity. Variational formulations for
the Stokes problem in Ωf , and Darcy problem in Ωp, are given in Section 3 where the interfacial
pressure, pI , is treated as a known quantity for both problems. Existence and uniqueness of the
problems is verified and solutions are shown to depend continuously on pI . The matching problem
of determining pI such that (1.1) is satisfied is then formulated and shown to have a unique solution.
In Section 4 we present the finite element approximation scheme and analysis. The analysis for the
discrete problem follows the same pattern as the continuous problem. First the discrete Stokes and
Darcy problems are separately considered. Existence and uniqueness of the discrete approximations
is verified and error estimates between the continuous solutions and discrete approximations are
derived. The discrete matching problem is then formulated and shown to have a unique solution. A
combined error estimate is then given for the solution between the coupled Stokes–Darcy problem
and its discrete approximation. In Section 5 a numerical example is given for two different treatments
of the defective boundary conditions.

2 Modeling Equations

For convenience, we work with Hilbert spaces instead of general Sobolev spaces for our weak formu-
lations. This requires us to assume that the viscosity is bounded from above. A general formulation
involving the spaces W 1,r(Ωf ) and W

1/r,r′(Γ) can be found in [11]. We would like to mention that
there exists a certain physical limit for the viscosity, so our assumption is actually physically rea-
sonable. The power law, for example, is an approximation of the reality, and the implication from
the power law that the viscosity goes to infinity when the deformation goes to zero is not physically
correct as the power law does not apply to the case of a zero strain tensor.

For convenience of implementation, we use Einstein’s notation in addition to the vector notation.
All repeated subscript indices imply summation over all dimensions except the subscript m for the
tangential vector tmi, where we list the summation of m explicitly.

Let Ω ⊂ Rn, n = 2 or 3, denote the flow domain of interest. Let Ωf ⊂ Ω and Ωp ⊂ Ω be bounded
Lipschitz domains for the non-linear Stokes flow and non-linear Darcy flow, respectively. In this
work, we consider only two subdomains, and assume Ω = Ωf ∪ Ωp ∪ ΓI , where ΓI := ∂Ωf ∩ ∂Ωp,
denoting a smooth interface between the subdomains.
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We first consider the non-linear Stokes flow in Ωf .

∂p

∂xi
− ∂σij

∂xj
= fi, in Ωf , (2.4)

∂ui
∂xi

= 0, in Ωf , (2.5)

σij = 2νf (|Du|) (Du)ij , in Ωf , (2.6)

ui = 0, on Γf,D, (2.7)

σijnj − pni = τB,i, on Γf,N , (2.8)

(αSui + σijnj)tmi = 0, on ΓI , m = 1, · · · , d− 1, (2.9)∫
Γf,k

uinids =

∫
Γf,k

qf,kds = qf,kmeas(Γf,k), k = 1, 2, · · · , Kf . (2.10)

Note that uB and τB denote vector functions on the domain boundary, where ∂Ωf = Γf,D ∪Γf,N ∪
Γf,F ∪ΓI (this is understood as ∂Ωf = Γf,D ∪ Γf,N ∪ Γf,F ∪ ΓI and similar notational simplification

applied to the rest of this paper), Γf,F :=
∪Kf

k=1 Γf,k and Kf is the number of defective boundaries
in the Stokes flow domain. The boundaries Γf,D, Γf,N , Γf,F , and ΓI are pairwise disjoint, and their
definitions are clear from the following modeling equations for Stokes flow. We use D to denote the

symmetric gradient operator. In other words, Du is the deformation tensor (Du)ij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
.

The viscosity νf depends nonlinearly on |Du|. We assume that νf is bounded from above and from
below; that is, there exist νmin > 0 and νmax such that νmin ≤ νf (|Du|) ≤ νmax for all u. We
assume that meas(Γf,N ) > 0 and meas(ΓI) > 0. On ΓI , we impose the Beavers-Joseph-Saffman
(BJS) condition (2.9). On each Γf,k, we impose a defective boundary condition, where the averaged
flow rate per area is imposed; or equivalently, the integral of the flow rate qf,k is specified on Γf,k.
Note that we assume that αS is a scalar for simplicity of presentation, but all results in this paper
can be easily extended to treat a full tensor αS,ij .

The Darcy flow in Ωp is modeled using the equations:

νp (|u|)Rijuj +
∂p

∂xi
= fi, in Ωp, (2.11)

∂ui
∂xi

= 0, in Ωp, (2.12)

uini = 0, on Γp,N , (2.13)

p = pB, on Γp,D, (2.14)∫
Γp,k

uinids =

∫
Γp,k

qp,kds = qp,kmeas(Γp,k), k = 1, 2, · · · , Kp, (2.15)

where ∂Ωp = Γp,N ∪ Γp,D ∪ Γp,F ∪ ΓI . We assume that the permeability tensor K associated with
the porous medium is symmetric positive definite, and we denote its inverse by the flow resistivity
tensor R; that is, R = K−1. We also assume that νp (|u|) is bounded from above by νmax and from
below by νmin > 0. Similar to the Stokes region, we have imposed a defective boundary condition
on the Darcy region boundary Γp,k, with qp,k ∈ R being the imposed averaged flow rate; qp ∈ RKp

may be also viewed as a piecewise constant function defined on Γp,F =
∪Kp

k=1 Γp,k.
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To couple the two flow systems, we impose conservation of mass and balance of the normal forces
across the interface ΓI :

[uini]|ΓI
= 0,

[p− σijninj ]|ΓI
= 0,

where we extend σij by zero to Ωp for notational ease; that is σij |Ωp
= 0. We will use pf := p|Ωf

,

uf := u|Ωf
, ff := f |Ωf

, pp := p|Ωp
, up := u|Ωp

, fp := f |Ωp
to emphasize the corresponding variables

applied to a specific region, although we will simply write p, u and f when the region we refer to is
clear from the context. On the interface ΓI , nf = n∂Ωf

= −np = −n∂Ωp denotes the unit normal
vector pointing from Ωf toward Ωp. When we restrict our attention to the Stokes (or Darcy) region,
we simply write nf (or np) as n.

Throughout the paper, we use C to denote a generic positive constant, and ε to denote a fixed
positive constant that may be chosen arbitrarily small. We assume that the nonlinear functions
νf (|Du|)Du and νp (|u|)u are uniformly continuous with regard to Du and u, respectively; that
is, there exists a constant C > 0 such that

|νf (|T|)T− νf (|S|)S| ≤ C |T− S| , ∀T ∈ Rd×d, ∀S ∈ Rd×d,

|νp (|u|)u− νp (|v|)v| ≤ C |u− v| , ∀u ∈ Rd, ∀v ∈ Rd.

In addition, we assume that νf (|·|) and νp (|·|) are strictly monotone; namely, there exists a constant
C > 0 such that:

(νf (|T|)T− νf (|S|)S) : (T− S) ≥ C(T− S) : (T− S), ∀T ∈ Rd×d, ∀S ∈ Rd×d,

(νp (|u|)u− νp (|v|)v) · (u− v) ≥ C(u− v) · (u− v), ∀u ∈ Rd, ∀v ∈ Rd.

3 Variational Formulations with Mortar Spaces

We first consider the Stokes flow and the Darcy flow problems separately as if they were two
independent processes. This corresponds to the modularity of their code implementation, where it
is desirable to implement and test individual codes for separate Stokes flow and Darcy flow before
numerically coupling them.

The variational formulations for the fully coupled problem is presented and analyzed in [11].

3.1 Stokes flow

We now restrict our attention to the Stokes flow problem, by assuming the interface pressure pI
is given. The equations to be solved include (2.4)-(2.10) together with the balance of the normal
forces across the interface ΓI :

σijninj − p = −pI , on ΓI .

Let Xf =
{
v : v ∈

(
H1(Ωf )

)d
, v|Γf,D

= 0
}
.
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To derive the weak formulation, we multiply (2.4) by a vector function v ∈ Xf , integrate over Ωf

and apply the divergence theorem (Green’s theorem) to obtain

(fi, vi)Ωf
=

∫
Ωf

(
∂p

∂xi
− ∂σij

∂xj

)
vidx

=

∫
Ωf

(
σij(Dv)ij − p

∂vi
∂xi

)
dx−

∫
∂Ωf

(σijnj − pni) vids

=

∫
Ωf

(
2νf (|Du|) (Du)ij (Dv)ij − p

∂vi
∂xi

)
dx−

∫
Γf,N

τB,ivids

−
∫
ΓI

(σijnj − pni) vids−
∫
Γf,F

(σijnj − pni) vids,

Noting that
d−1∑
m=1

tmitmj + ninj = δij ,

we can treat the BJS slip boundary condition as

−
∫
ΓI

(σijnj − pni) vids = −
∫
ΓI

(σijnj − pni) δikvkds

= −
d−1∑
m=1

∫
ΓI

(σijnj − pni) tmitmkvkds−
∫
ΓI

(σijnj − pni)ninkvkds

= −
d−1∑
m=1

∫
ΓI

(σijnjtmi) (vktmk) ds−
∫
ΓI

(σijninj − p) (nkvk) ds

=

d−1∑
m=1

∫
ΓI

αS (uitmi) (vktmk) ds+

∫
ΓI

pInkvkds.

As for the defective boundary conditions on Γf,F , a total flow rate is specified on each of its pieces
Γf,k, but the traction vector on the boundary is not imposed. We follow Ervin et al.’s approach
[11] and use a Lagrange multiplier method for treating the defective boundary conditions on Γf,F

(which for a sufficiently smooth function is equivalent to the condition that the traction vector is a
constant vector normal to the boundary surface). Thus the traction integral over Γf,F is replaced
by

−
∫
Γf,F

(σijnj − pni) vids −→ −
Kf∑
k=1

βf,k

∫
Γf,k

vinids = −
∫
Γf,F

βfvinids, (3.16)

where in the last equality the Lagrange multiplier βf ∈ RKf is to be viewed as a piecewise constant
function on Γf,F , with βfni representing the traction vector on the boundary.
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Combining the above results, we have

(fi, vi)Ωf
=

∫
Ωf

2νf (|Du|) (Du)ij (Dv)ijdx−
∫
Ωf

p
∂vi
∂xi

dx

−
∫
Γf,N

τB,ivids−
∫
Γf,F

βfvinids

+

d−1∑
m=1

∫
ΓI

αS (uitmi) (vktmk) ds+

∫
ΓI

pIvinids.

The averaged flow rates are imposed by

∫
Γf,F

γfuinids =

Kf∑
k=1

∫
Γf,k

γf,kqf,kds =

Kf∑
k=1

γf,kqf,kmeas(Γf,k), (3.17)

where γf is a piecewise constant function on Γf,F . The divergence-free equation (2.5) is weakly
imposed using ∫

Ωf

∂ui
∂xi

q = 0, ∀q ∈ L2(Ωf ).

We now introduce

af (u,v) :=

∫
Ωf

2νf (|Du|) (Du)ij (Dv)ijdx+
d−1∑
m=1

∫
ΓI

αS (uitmi) (vktmk) ds,

bf (v, p) :=

∫
Ωf

∂vi
∂xi

pdx,

bf,B (v, βf ) :=

∫
Γf,F

βfvinids =

Kf∑
k=1

βf,k

∫
Γf,k

vinids,

lf (v) := (fi, vi)Ωf
+ 〈τB,v〉Γf,N

− 〈pI ,v · n〉ΓI
,

where 〈τB,v〉Γf,N
denotes a duality pairing between

(
H− 1

2 (Γf,N )
)d

and
(
H

1
2 (Γf,N )

)d
, and

〈pI ,v · n〉ΓI
a duality pairing between H− 1

2 (ΓI) and H
1
2 (ΓI).

The weak formulation for the Stokes flow is: Given f ∈ X∗
f , τB ∈

(
H− 1

2 (Γf,N )
)d

, qf ∈ RKf , and

pI ∈ H− 1
2 (ΓI), determine (u, p, βf ) ∈ Xf × L2(Ωf )× RKf such that

af (u,v)− bf (v, p)− bf,B (v, βf ) = lf (v) , ∀v ∈ Xf , (3.18)

bf (u, q) + bf,B (u, γf ) = bf,B (qfnf , γf ) , ∀ (q, γf ) ∈ L2(Ωf )× RKf . (3.19)

Again, as remarked above, the term qfnf is to be interpreted for qf a piecewise constant function
on Γf,N .
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We first establish an inf-sup condition before presenting our theorem on the existence, uniqueness
and regularity of a solution. Let

Zf,B :=
{
v ∈ Xf : bf,B (v, βf ) = 0, ∀βf ∈ RKf

}
,

Zf,0 :=
{
v ∈ Xf : v|Γf,F

= 0
}
,

Zf :=
{
v ∈ Xf : bf (v, q) + bf,B (v, βf ) = 0, ∀βf ∈ RKf , ∀q ∈ L2(Ωf )

}
.

Lemma 1. There exists a constant C > 0 such that

inf
βf∈R

Kf , q∈L2(Ωf )

sup
v∈Xf

bf (v, q) + bf,B (v, βf )

‖v‖Xf

(
‖q‖L2(Ωf )

+ |βf |
) ≥ C. (3.20)

Proof. Taking advantage of the fact that RKf is finite-dimensional, we easily conclude

inf
βf∈R

Kf

sup
v∈Xf

bf,B (v, βf )

‖v‖Xf
|βf |

≥ C > 0. (3.21)

That is, for each j = 1, · · · ,Kf , we find a v(j) ∈ Xf such as v(j)
∣∣∪

k 6=j Γf,k
= 0 and

∫
Γf,j

v
(j)
i nids 6=

0. These v(j)’s must exist because Γk,j ’s are pair-wise disjointed. It is then a trivial exercise to
construct a function v as a linear combination of these v(j)’s for a given βf ∈ RKf to achieve
bf,B (v, βf ) ≥ C ‖v‖Xf

|βf |.

It is well known that an inf-sup condition holds for bf (v, q) on Zf,0 × L2(Ωf ). Since Zf,0 ⊂ Zf,B,
we know there exists an inf-sup condition for bf (v, q) on Zf,B × L2(Ωf ). We now recall the fact
that the continuity of the bilinear forms and individual inf-sup conditions imply the combined inf-
sup condition [11] (see also Theorem 18) and conclude the existence of an inf-sup condition for
bf (v, q) + bf,B (v, βf ).

Theorem 1. There exists a unique solution (u, p, βf ) ∈ Xf×L2(Ωf )×RKf satisfying (3.18)-(3.19).
In addition, there exists a constant C > 0 such that

‖u‖Xf
+

√√√√ d−1∑
m=1

‖
√
αSuitmi‖2L2(ΓI)

+ ‖p‖L2(Ωf )
+ |βf |

≤ C

(
‖f‖X∗

f
+ ‖τB‖(

H− 1
2 (Γf,N )

)d + ‖pI‖
H− 1

2 (ΓI)
+ |qf |

)
. (3.22)

Proof. The existence and uniqueness of a solution follows from the continuity and strict monotonicity
of af (·, ·) on Zf × Zf , together with the inf-sup condition (3.20).

From the weak form (3.18), the inf-sup condition (3.20), and the assumption that νf (|Du|) is
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bounded from above, we have

‖p‖L2(Ωf )
+ |βf | ≤ C sup

v∈Xf

bf (v, p) + bf,B (v, βf )

‖v‖Xf

= C sup
v∈Xf

af (u,v)− lf (v)

‖v‖Xf

≤ C

(
‖u‖Xf

+ ‖f‖X∗
f
+ ‖τB‖(

H− 1
2 (Γf,N )

)d + ‖pI‖
H− 1

2 (ΓI)

)
. (3.23)

We choose v = u, q = p, and γf = βf , and add (3.18)-(3.19) together to obtain

af (u,u) = lf (u) + bf,B (qfnf , βf )

= (fi, ui)Ωf
+ 〈τB, u〉Γf,N

− 〈pI ,u · n〉ΓI
+

∫
Γf,F

βfqfds

≤ C ‖u‖Xf

(
‖f‖X∗

f
+ ‖τB‖(

H− 1
2 (Γf,N )

)d + ‖pI‖
H− 1

2 (ΓI)

)
+ C |βf | |qf | .

Due to the assumption that meas(Γf,D) > 0 and uB = 0, we know from Korn’s inequality:

‖u‖Xf
= ‖u‖

(H1(Ωf ))
d ≤ C ‖Du‖

(L2(Ωf ))
d×d ,

which implies the strict positivity of af (u,u):

af (u,u) =

∫
Ωf

2ν (|Du|) (Du)ij (Du)ijdx+

d−1∑
m=1

∫
ΓS

αS (uitmi) (uktmk) ds

≥ 2νmin ‖Du‖2
(L2(Ωf ))

d×d +
d−1∑
m=1

‖
√
αSuitmi‖2L2(ΓI)

≥ C ‖u‖2Xf
+

d−1∑
m=1

‖
√
αSuitmi‖2L2(ΓI)

.

We then have

‖u‖2Xf
+

d−1∑
m=1

‖
√
αSuitmi‖2L2(ΓI)

≤ C

(
‖f‖2X∗

f
+ ‖τB‖2(

H− 1
2 (Γf,N )

)d + ‖pI‖2
H− 1

2 (ΓI)
+ |qf |2

)
+ ε |βf |2 . (3.24)

The theorem follows from (3.23) and (3.24).

Remark: (See [11]) For sufficiently smooth data, f , τB, pI and solution u, p, with

σnf = snnf + sT , where sn = (σnf ) · nf and sT = σnf − snnf ,
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and

〈τB,v〉Γf,N
:=

∫
Γf,N

τB,ivi ds , 〈pI ,v · nf 〉ΓI
:=

∫
ΓI

pIvini ds ,

the unique solution of (3.18)-(3.19) satisfies

−p + sn = −βf,k and sT = 0 on Γf,k, k = 1, 2, . . . ,Kf . (3.25)

Thus the variational form (3.18)-(3.19) corresponds to the boundary value problem (2.4)-(2.10) with
the additional constraint (3.25).

3.2 The reduced Stokes problem on the interface

We let f ∈ X∗
f , τB ∈

(
H− 1

2 (Γf,N )
)d

, and qF ∈ RKF be fixed given data as before, but we consider

pI ∈ H
1
2 (ΓI) ⊂ L2(ΓI) as a variable input. From Theorem 1, we know that there exists a unique

solution (u, p, βf ) ∈ Xf × L2(Ωf ) × RKF of (3.18)-(3.19) that is a function of pI . We denote the

solution as
(
u∗(pI), p

∗(pI), β
∗
f (pI)

)
. Before studying the relationship between u∗(pI) and pI , we

need a lemma, which we use below in the proof of Theorem 2:

Lemma 2. If meas(Γf,N ) > 0, then there exists a constant C > 0 such that for all λ ∈ H− 1
2 (ΓI):

sup
v∈Xf

〈λ,v · n〉ΓI

‖v‖Xf

≤ C sup
v∈Zf

〈λ,v · n〉ΓI

‖v‖Xf

.

As a result, we have
1

C
‖λ‖

H− 1
2 (ΓI)

≤ sup
v∈Zf

〈λ,v · n〉ΓI

‖v‖Xf

≤ ‖λ‖
H− 1

2 (ΓI)
.

Proof. We first note two inf-sup conditions:

inf
λ∈H− 1

2 (ΓI)

sup
v∈Xf

〈λ,v · n〉ΓI

‖v‖Xf
‖λ‖

H− 1
2 (ΓI)

≥ C > 0, (3.26)

and

inf
βf∈R

Kf

sup
v∈ZΓI

f

bf,B (v, βf )

‖v‖Xf
|βf |

≥ C > 0, (3.27)

where
ZΓI
f :=

{
v ∈ Xf : 〈λ,v · n〉ΓI

= 0, ∀λ ∈ H− 1
2 (ΓI)

}
.

Inequality (3.26) is well known, and (3.27) can be established by taking advantage of the finite
dimensionality of RKf as we did for Lemma 1. Theorem 18 and (3.26)-(3.27) imply

inf
λ∈H− 1

2 (ΓI), βf∈R
Kf

sup
v∈Xf

〈λ,v · n〉ΓI
+ bf,B (v, βf )

‖v‖Xf

(
‖λ‖

H− 1
2 (ΓI)

+ |βf |
) ≥ C > 0. (3.28)

10



As meas(Γf,N ) > 0, we can show the following inf-sup condition by applying an argument similar
to the one used to prove Lemma 1:

inf
q∈L2(Ωf )

sup

v∈Z
bf,B,ΓI
f

bf (v, q)

‖v‖Xf
‖q‖L2(Ωf )

≥ C > 0, (3.29)

where

Z
bf,B ,ΓI

f :=
{
v ∈ Xf : 〈λ,v · n〉ΓI

+ bf,B (v, βf ) = 0, ∀λ ∈ H− 1
2 (ΓI), ∀βf ∈ RKf

}
.

Now Theorem 18 and (3.28)-(3.29) imply

inf
λ∈H− 1

2 (ΓI), q∈L2(Ωf ), βf∈R
Kf

sup
v∈Xf

〈λ,v · n〉ΓI
+ bf (v, q) + bf,B (v, βf )

‖v‖Xf

(
‖λ‖

H− 1
2 (ΓI)

+ ‖q‖L2(Ωf )
+ |βf |

) ≥ C > 0. (3.30)

Applying Theorem 18 again, we see that (3.30) leads to

inf
λ∈H− 1

2 (ΓI)

sup
v∈Zf

〈λ,v · n〉ΓI

‖v‖Xf
‖λ‖

H− 1
2 (ΓI)

≥ C > 0,

or equivalently,

‖λ‖
H− 1

2 (ΓI)
≤ 1

C
sup
v∈Zf

〈λ,v · n〉ΓI

‖v‖Xf

, ∀λ ∈ H− 1
2 (ΓI).

Theorem 2. There exists a constant C > 0 such that for all λ ∈ H− 1
2 (ΓI) and µ ∈ H− 1

2 (ΓI),

‖u∗(λ)− u∗(µ)‖Xf
≤ C ‖λ− µ‖

H− 1
2 (ΓI)

. (3.31)

If meas(Γf,N ) > 0, we further have

1

C
‖λ− µ‖

H− 1
2 (ΓI)

≤ ‖u∗(λ)− u∗(µ)‖Xf
≤ C ‖λ− µ‖

H− 1
2 (ΓI)

. (3.32)

Proof. To show (3.31), we pick u = u∗(λ), v = u∗(µ), p = p∗(λ), and βf = β∗f (λ) in (3.18), and
pick u = u∗(µ), q = p∗(λ), and γf = β∗f (λ) in (3.19), and then add them together to obtain

af (u
∗(λ),u∗(µ)) = lf (u

∗(µ)) + bf,B
(
qfnf , β

∗
f (λ)

)
.

The strict monotonicity of af (·, ·) then implies

1

C
‖u∗(λ)− u∗(µ)‖2Xf

≤ af (u
∗(λ),u∗(λ)− u∗(µ))− af (u

∗(µ),u∗(λ)− u∗(µ))

= −〈(λ− µ), (u∗(λ)− u∗(µ)) · nf 〉ΓI

≤ C ‖u∗(λ)− u∗(µ)‖Xf
‖λ− µ‖

H− 1
2 (ΓI)

,

which yields the desired bound in (3.31).
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To show the first inequality in (3.32), we consider

− af (u
∗(λ),v) + af (u

∗(µ),v) + bf (v, p
∗(λ)− p∗(µ)) + bf,B

(
v, β∗f (λ)− β∗f (µ)

)
= 〈(λ− µ),v · nf 〉ΓI

.

For v ∈ Zf ⊂ Xf , we have

〈(λ− µ),v · nf 〉ΓI
= −af (u∗(λ),v) + af (u

∗(µ),v)

≤ C ‖u∗(λ)− u∗(µ)‖Xf
‖v‖Xf

. (3.33)

Consequently, using Lemma 2 and (3.33)

‖λ− µ‖
H− 1

2 (ΓI)
= sup

q∈H
1
2 (ΓI)

〈(λ− µ), q〉)ΓI

‖q‖
H

1
2 (ΓI)

= sup
v∈Xf

〈(λ− µ),v · nf 〉ΓI

‖v · n‖
H

1
2 (ΓI)

≤ C sup
v∈Zf

〈(λ− µ),v · nf 〉ΓI

‖v · n‖
H

1
2 (ΓI)

≤ C ‖u∗(λ)− u∗(µ)‖Xf
.

If the normal velocity component qI ∈ H
1
2 (ΓI) is given on the interface ΓI , rather than the pressure,

we can solve for the pressure by seeking λ ∈ H− 1
2 (ΓI) such that

Af (λ, µ) = −〈µ, qI〉ΓI
∀µ ∈ H− 1

2 (ΓI), (3.34)

with the form Af (·, ·) defined by

Af (λ, µ) := −〈µ,u∗
f (λ) · nf 〉ΓI

.

We now prove a few properties of Af (·, ·).

Theorem 3. Af (λ, µ) is a nonlinear functional of λ and a linear functional of µ. Af (·, ·) is

continuous on H− 1
2 (ΓI)×H− 1

2 (ΓI). In addition, Af (·, ·) is monotone on H− 1
2 (ΓI)×H− 1

2 (ΓI). If

meas(Γf,N ) > 0, Af (·, ·) is strictly monotone on H− 1
2 (ΓI)×H− 1

2 (ΓI).

Proof. It is clear that Af (λ, µ) is linear in µ. Its continuity follows from Theorem 2. We now show
the strict monotonicity assuming meas(Γf,N ) > 0. From the weak formulation (3.18), we know

Af (λ, µ) = −〈µ,u∗
f (λ) · nf 〉ΓI

= af (u
∗(µ),u∗(λ))− bf (u

∗(λ), p∗(µ))− bf,B
(
u∗(λ), β∗f (µ)

)
− (f ,u∗(λ))Ωf

− 〈τB,u
∗
f (λ)〉Γf,N

= af (u
∗(µ),u∗(λ))− bf,B

(
qfnf , β

∗
f (µ)

)
− (f ,u∗(λ))Ωf

− 〈τB,u
∗
f (λ)〉Γf,N

.

We then obtain

Af (λ, λ− µ)−Af (µ, λ− µ) = Af (λ, λ)−Af (λ, µ)−Af (µ, λ) +Af (µ, µ)

= af (u
∗(λ),u∗(λ)− u∗(µ))− af (u

∗(µ),u∗(λ)− u∗(µ))

≥ C ‖u∗(λ)− u∗(µ)‖2
(H1(Ωf ))

d

≥ C ‖λ− µ‖2
H− 1

2 (ΓI)
,

12



where we used Theorem 2 to obtain the last inequality above. If meas(Γf,N ) = 0, the last inequality
above may fail to hold, and we then have only monotonicity (not strict monotonicity).

Theorem 4. If meas(Γf,N ) > 0, then there is a unique solution λ ∈ H− 1
2 (ΓI) to the reduced problem

(3.34) for any given qI ∈ H
1
2 (ΓI).

Proof. This theorem follows directly from the continuity and the strict monotonicity of Af (·, ·).

3.3 Darcy flow

We next restrict our attention to the Darcy flow problem, assuming that the pressure is specified
on the interface. Specifically, we consider (2.11)-(2.15) together with:

p = pI , on ΓI .

Multiplying (2.11) by a smooth vector function v, with v ·np|Γp,N
= 0, integrate over Ωp and apply

the divergence theorem we obtain

(fi, vi)Ωp
=

∫
Ωp

(
νp(|u|)Rijuj +

∂p

∂xi

)
vidx (3.35)

=

∫
Ωp

νp(|u|)Rijujvidx−
∫
Ωp

p
∂vi
∂xi

dx+

∫
∂Ωp

pvinidx

=

∫
Ωp

νp(|u|)Rijujvidx−
∫
Ωp

p
∂vi
∂xi

dx+

∫
Γp,D

pBvinids

+

∫
Γp,F

pvinids+

∫
ΓI

pIvinids.

In part, to incorporate the specified flow rate constraints into the formulation, for each Γp,k we
replace

∫
Γp,k

pvinids by∫
Γp,k

pvinids −→
∫
Γp,k

βp,kvinids , βp,k ∈ R, k = 1, . . . ,Kp ,

equivalently

∫
Γp,F

pvinids −→
∫
Γp,F

βpvinids , (3.36)

where βp ∈ RKp in (3.36) is interpreted as a piecewise constant function on Γp,F .

The averaged flow rates are imposed by∫
Γp,F

γpuinids =

Kp∑
k=1

∫
Γp,k

γp,kqp,kds =

Kp∑
k=1

γp,kqp,kmeas(Γp,k).

Similar to the previous treatment, the divergence-free equation (2.12) is weakly imposed using∫
Ωp

∂ui
∂xi

q = 0, ∀q ∈ L2(Ωp).
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For u ∈ H(div,Ωp), u · np ∈ H−1/2(∂Ωp). For p ∈ H1/2(ΓI) duality pairing does not define
〈u · np, pI〉ΓI

, as u · np acts on functions in H1/2(∂Ωp). Following the work of Galvis and Sarkis

([14], Lemma 2.1), given Γs ⊂ ∂Ωp, r ∈ H1/2(Γs), let E
1/2
Γs
r ∈ H1/2(∂Ωp) denote the extension of r

to ∂Ωp. Then, for f ∈ H−1/2(∂Ωp), we denote

〈f, r〉Γs := 〈f,E1/2
Γs
r〉∂Ωp .

Also, as given in [14], for f ∈ H−1/2(∂Ωp), f |Γs = 0 is defined as

〈f,E1/2
00,Γs

w〉∂Ωp = 0 , for all w ∈ H
1/2
00 (Γs) ,

where E
1/2
00,Γs

w denotes the extension by 0 of w to ∂Ωp\Γs.

We now introduce
Xp =

{
v : v ∈ H(div,Ωp), v · n|Γp,N

= 0
}
,

ap (u,v) :=

∫
Ωp

ν(|u|)Rijujvidx,

bp (v, p) :=

∫
Ωp

∂vi
∂xi

pdx,

bp,B (v, βp) := −〈v · np, βp〉Γp,F
,

lp (v) := (fi, vi)Ωp − 〈v · np, pB〉Γp,D
− 〈v · np, pI〉ΓI

.

The weak formulation for the Darcy flow is: Given f ∈ X∗
p, pB ∈ H

1
2 (Γp,D), qp ∈ RKp , and

pI ∈ H
1
2 (ΓI), determine (u, p, βp) ∈ Xp × L2(Ωp)× RKp such that

ap (u,v)− bp (v, p)− bp,B (v, βp) = lp (v) , ∀v ∈ Xp, (3.37)

bp (u, q) + bp,B (u, γp) = bp,B (qpnp, γp) , ∀ (q, γp) ∈ L2(Ωp)× RKp . (3.38)

Before presenting our results, we introduce

Zp,B :=
{
v ∈ Xp : bf,B (v, βp) = 0, ∀βp ∈ RKp

}
,

Zp,0 :=
{
v ∈ Xp : v · n|Γp,F

= 0
}
,

Zp :=
{
v ∈ Xp : bp (v, q) + bp,B (v, βp) = 0, ∀βp ∈ RKp , ∀q ∈ L2(Ωf )

}
.

Lemma 3. There exists a constant C > 0 such that

inf
βp∈RKp , q∈L2(Ωf )

sup
v∈Xp

bp (v, q) + bp,B (v, βp)

‖v‖Xp

(
‖q‖L2(Ωf )

+ |βp|
) ≥ C. (3.39)

Proof. Similar to our previous arguments, we can utilize the finite dimensionality of RKp to obtain
the following inf-sup condition:

inf
βp∈RKp

sup
v∈Xp

bp,B (v, βp)

‖v‖Xp
|βp|

≥ C > 0.
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It is well known that an inf-sup condition holds for bp (v, q) on Zp,0 × L2(Ωp). Since Zp,0 ⊂ Zp,B,
we know there exists an inf-sup condition for bp (v, q) on Zp,B × L2(Ωp). Theorem 18 then implies
the existence of an inf-sup condition for bp (v, q) + bp,B (v, βp).

Theorem 5. There exists a unique solution (u, p, βp) ∈ Xp×L2(Ωp)×RKp satisfying (3.37)-(3.38).
In addition, there exists a constant C > 0 such that

‖u‖Xp
+ ‖p‖L2(Ωp)

+ |βp| ≤ C

(
‖f‖X∗

p
+ ‖pB‖

H
1
2 (Γp,D)

+ ‖pI‖
H

1
2 (ΓI)

+ |qp|
)
. (3.40)

Proof. The existence and uniqueness of the solution follows from the continuity and strict mono-
tonicity of ap (·, ·) on Zp × Zp and the inf-sup condition (3.39).

From the weak formulation (3.37), the inf-sup condition (3.39) and the assumption that νp(|u|) and
R are both bounded from above, we have

‖p‖L2(Ωp)
+ |βp| ≤ C sup

v∈Xp

bp (v, p) + bp,B (v, βp)

‖v‖Xp

= C sup
v∈Xp

ap (u,v)− lp (v)

‖v‖Xp

≤ C

(
‖u‖Xp

+ ‖f‖X∗
p
+ ‖pB‖

H
1
2 (Γp,D)

+ ‖pI‖
H

1
2 (ΓI)

)
. (3.41)

We pick q = ∇ · u and γp = 0 in (3.38) to obtain

‖∇ · u‖2L2(Ωp)
= bp (u,∇ · u) = 0,

which implies that
‖u‖Xp

= ‖u‖H(div,Ωp)
= ‖u‖

(L2(Ωp))
d .

To see the regularity inequality, we pick v = u, q = p, and γp = βp, and add (3.37)-(3.38) together
to obtain

ap (u,u) = lp (u) + bp,B (qpnp, βp)

= (fi, ui)Ωp − 〈u · np, pB〉Γp,D
− 〈u · np, pI〉ΓI

− 〈qpnp, βp〉Γp,F

≤ C

(
‖f‖2X∗

p
+ ‖pB‖2

H
1
2 (Γp,D)

+ ‖pI‖2
H

1
2 (ΓI)

+ |qp|2
)
+ ε
(
‖u‖2Xp

+ |βp|2
)
. (3.42)

From the assumptions that the viscosity νp(|u|) is bounded from below and thatR is strictly positive
definite, we have

ap (u,u) =

∫
Ωp

νp(|u|)Rijujvidx ≥ C ‖u‖
(L2(Ωp))

d . (3.43)

Now the theorem follows from (3.41)-(3.43).

Remark: (See [11]) For sufficiently smooth data, f , pB, pI and solution u, p the unique solution of
(3.37)-(3.38) satisfies

p = −βp,k on Γp,k, k = 1, 2, . . . ,Kp . (3.44)

Thus the variational form (3.37)-(3.38) corresponds to the boundary value problem (2.11)-(2.15)
with the additional constraint (3.44).
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3.4 The reduced Darcy problem on the interface

Let f ∈ X∗
p, pB ∈ H

1
2 (Γp,D), and qp ∈ RKp be fixed given data as before. For each pI ∈ H

1
2 (ΓI) ⊂

H− 1
2 (ΓI), we have a unique solution

(
u∗(pI), p

∗(pI), β
∗
p(pI)

)
∈ Xp × L2(Ωp) × RKp that satisfies

(3.37)-(3.38).

Theorem 6. There exists a constant C > 0such that

‖u∗(λ)− u∗(µ)‖Xp
≤ C ‖λ− µ‖

H
1
2 (ΓI)

. (3.45)

If meas(Γp,D) > 0, we further have

1

C
‖λ− µ‖

H
1
2 (ΓI)

≤ ‖u∗(λ)− u∗(µ)‖Xp
≤ C ‖λ− µ‖

H
1
2 (ΓI)

. (3.46)

Proof. To show the first inequality in (3.46), we consider

− ap (u
∗(λ),v) + ap (u

∗(µ),v) + bp (v, p
∗(λ)− p∗(µ)) + bp,B

(
v, β∗p(λ)− β∗p(µ)

)
= 〈v · np, (λ− µ)〉ΓI

.

For v ∈ Zp ⊂ Xp,

C ‖u∗(λ)− u∗(µ)‖Xp
‖v‖Xp

= C ‖u∗(λ)− u∗(µ)‖
(L2(Ωp))

d ‖v‖(L2(Ωp))
d

≥ −ap (u∗(λ),v) + ap (u
∗(µ),v)

= 〈v · np, (λ− µ)〉ΓI
.

Thus, (with the assumption that meas(Γp,D) > 0) employing a result analogous to Lemma 2 for Xp

and Zp, we have

‖λ− µ‖
H

1
2 (ΓI)

= sup

q∈H− 1
2 (ΓI)

〈q, (λ− µ)〉ΓI

‖q‖
H− 1

2 (ΓI)

≤ C sup
v∈Xp

〈v · np, (λ− µ)〉ΓI

‖v · n‖
H− 1

2 (∂Ωp)

≤ C sup
v∈Zp

〈v · np, (λ− µ)〉ΓI

‖v · n‖
H− 1

2 (ΓI)

≤ C ‖u∗(λ)− u∗(µ)‖Xp
.

Similar to the proof for Theorem 2, (3.45) and the second inequality in (3.46) can be shown by
using the weak formulation (3.37)-(3.38) and the strict monotonicity of ap(·, ·). One difference here
is that we need to use the fact that the Darcy velocity is divergence free.

If pI is an unknown but the normal component of Darcy velocity qI ∈ H
1
2 (ΓI) is given instead, we

can solve for the pressure on ΓI by seeking λ ∈ H
1
2 (ΓI) such that

Ap (λ, µ) = −
∫
ΓI

qIµds, ∀µ ∈ H
1
2 (ΓI), (3.47)
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with the form Ap (·, ·) defined by

Ap (λ, µ) := −〈u∗
p(λ) · np, µ〉ΓI

.

We now prove a few properties of Ap (·, ·).

Theorem 7. Ap (λ, µ) is a nonlinear functional of λ and a linear functional of µ. Ap(·, ·) is contin-
uous on H

1
2 (ΓI)×H

1
2 (ΓI). Moreover, Ap(·, ·) is monotone on H

1
2 (ΓI)×H

1
2 (ΓI). If meas(Γp,D) > 0,

Ap(·, ·) is strictly monotone on H
1
2 (ΓI)×H

1
2 (ΓI).

Remark. Unlike the space on ΓI for Stokes flow, λ and µ here need to be defined in H
1
2 (ΓI), not

H− 1
2 (ΓI).

Proof. The continuity follows from Theorem 6. To see the strict monotonicity under the assumption
of meas(Γp,D) > 0, we note

Ap (λ, λ− µ)−Ap (µ, λ− µ) = ap (u
∗(λ),u∗(λ)− u∗(µ))− ap (u

∗(µ),u∗(λ)− u∗(µ))

≥ C ‖u∗(λ)− u∗(µ)‖2
(L2(Ωp))

d

= C ‖u∗(λ)− u∗(µ)‖2H(div,Ωp)

≥ C ‖λ− µ‖2
H

1
2 (ΓI)

,

where we have used Theorem 6 for the last inequality above. The rest of this theorem follows
similarly as that in Theorem 3.

Theorem 8. If meas(Γp,D) > 0, then there is a unique solution λ ∈ H
1
2 (ΓI) to the reduced problem

(3.47) for any given qI ∈ H− 1
2 (ΓI).

Proof. This theorem follows directly from the continuity and the strict monotonicity of the form
Ap (·, ·).

3.5 Coupled system

For convenience, in the following analysis we assume that meas(Γp,D) > 0, which as we will see, gives
the uniqueness of the pressure solution. We will remark later on the modification of the analysis for
the case of meas(Γf,N ) = meas(Γp,D) = 0.

We couple the fluid flow through the two regions using continuity of the flux on ΓI . We define

A (λ, µ) := Af (λ, µ) +Ap (λ, µ) .

From the continuity of the normal velocity

[u · n]|ΓI
= (uf · nf + up · np)|ΓI

= 0,

we know that the coupled system can be formulated as: Determine λ ∈ H
1
2 (ΓI) such that

A (λ, µ) = 0, ∀µ ∈ H
1
2 (ΓI). (3.48)

We now list a few properties of A (·, ·).
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Theorem 9. A (λ, µ) is a nonlinear functional of λ and a linear functional of µ. Under the as-

sumption that meas(Γp,D) > 0, A(·, ·) is continuous and strictly monotone on H
1
2 (ΓI)×H

1
2 (ΓI).

Proof. It is clear that A (λ, µ) is linear in µ. Continuity follows from the continuity of its parts:∣∣∣A (λ, µ)−A
(
λ̂, µ

)∣∣∣ ≤ ∣∣∣Af (λ, µ)−Af

(
λ̂, µ

)∣∣∣+ ∣∣∣Ap (λ, µ)−Ap

(
λ̂, µ

)∣∣∣
≤ C

∥∥∥λ− λ̂
∥∥∥
H− 1

2 (ΓI)
‖µ‖

H− 1
2 (ΓI)

+ C
∥∥∥λ− λ̂

∥∥∥
H

1
2 (ΓI)

‖µ‖
H

1
2 (ΓI)

≤ C
∥∥∥λ− λ̂

∥∥∥
H

1
2 (ΓI)

‖µ‖
H

1
2 (ΓI)

,

and

|A (λ, µ)−A (λ, µ̂)| ≤ |Af (λ, µ)−Af (λ, µ̂)|+ |Ap (λ, µ)−Ap (λ, µ̂)|
≤ C ‖λ‖

H
1
2 (ΓI)

‖µ− µ̂‖
H

1
2 (ΓI)

.

The strict monotonicity also follows from the individual monotonicities. That is, Af (λ, λ− µ) −
Af (µ, λ− µ) ≥ 0 and Ap (λ, λ− µ)−Ap (µ, λ− µ) ≥ C ‖λ− µ‖2

H
1
2 (ΓI)

together imply A (λ, λ− µ)−

A (µ, λ− µ) ≥ C ‖λ− µ‖2
H

1
2 (ΓI)

.

Theorem 10. We assume that meas(Γp,D) > 0. For any given qI ∈ H
1
2 (ΓI), there is a unique

solution λ ∈ H
1
2 (ΓI) to the reduced problem (3.48).

Proof. This theorem follows directly from the continuity and the strict monotonicity of the form
A (·, ·).

Theorem 11. We assume that meas(Γp,D) > 0. Let pI = λ be the solution to the reduced interface
problem (3.48), and u∗

f (pI), p
∗
f (pI), β

∗
f (pI), u

∗
p(pI), p

∗
p(pI), and β

∗
p(pI) be the subdomain solutions

to (3.18)-(3.19), and (3.37)-(3.38). We have the following regularity result:

‖pI‖
H

1
2 (ΓI)

+
∥∥u∗

f (pI)
∥∥
Xf

+
∥∥u∗

p(pI)
∥∥
Xp

+ ‖p∗(pI)‖L2(Ω) +
∣∣β∗f (pI)∣∣+ ∣∣β∗p(pI)∣∣

≤ C

(
‖ff‖X∗

f
+ ‖fp‖X∗

p
+ ‖τB‖(

H− 1
2 (Γf,N )

)d + ‖pB‖
H

1
2 (Γp,D)

+ |qf |+ |qp|

)
.

Proof. From the weak formulation (3.48), we have

A (pI , pI) = 0.

Using this together with the continuity and strict monotonicity of the form A (·, ·), we conclude

‖pI‖2
H

1
2 (ΓI)

= ‖pI − 0‖2
H

1
2 (ΓI)

≤ C (A (pI , pI − 0)−A (0, pI − 0))

= −CA (0, pI)

= −C〈u∗
f (0) · nf , pI〉ΓI

− C〈u∗
p(0) · np, pI〉ΓI

≤ ε ‖pI‖2
H

1
2 (ΓI)

+ C
∥∥u∗

f (0) · nf

∥∥2
H

1
2 (ΓI)

+ C
∥∥u∗

p(0) · np

∥∥2
H− 1

2 (ΓI)

≤ ε ‖pI‖2
H

1
2 (ΓI)

+ C
∥∥u∗

f (0)
∥∥2
Xf

+ C
∥∥u∗

p(0)
∥∥2
Xp
.

18



Consequently, we have
‖pI‖

H
1
2 (ΓI)

≤ C
∥∥u∗

f (0)
∥∥
Xf

+ C
∥∥u∗

p(0)
∥∥
Xp
.

Theorems 1 and 5 imply

∥∥u∗
f (0)

∥∥
Xf

≤ C

(
‖ff‖X∗

f
+ ‖τB‖(

H− 1
2 (Γf,N )

)d + |qf |

)

and ∥∥u∗
p(0)

∥∥
Xp

≤ C

(
‖fp‖X∗

p
+ ‖pB‖

H
1
2 (Γp,D)

+ |qp|
)
.

This Theorem follows by another application of Theorems 1 and 5.

Remark. If meas(Γf,N ) = meas(Γp,D) = 0, the pressure solutions in the two stand-alone subdomain
problems are still unique. But the pressure solution to the interface problem (3.48) is no longer
unique; instead it is unique up to an additive constant. As a result, the two subdomain pressure
solutions to the coupled system are unique up to an additive constant. In particular, we see that
Af (·, ·) and Ap(·, ·), and consequently A(·, ·), lose their strict monotonicity, which leads to the non-
uniqueness of solutions. To see that the pressure solution actually exists uniquely up to an additive
constant under meas(Γf,N ) = meas(Γp,D) = 0, we replace the original spaces for pf , pp and pI

by L2(Ωf )/R, L2(Ωp)/R, and H
1
2 (ΓI)/R, respectively. With the new spaces, one can show that

Af (·, ·) and Ap(·, ·), and consequently A(·, ·), recover their strict monotonicity under meas(Γf,N ) =
meas(Γp,D) = 0. All other theorems above then follow under the modified pressure spaces.

4 Finite Element Approximations

We discretize the coupled nonlinear Stokes-Darcy system (3.48), (3.18)-(3.19), and (3.37)-(3.38)
with finite element approximations. We use conforming approximating spaces:

Xf,h ⊂ Xf , Mf,h ⊂ L2(Ωf ), Xp,h ⊂ Xp, Mp,h ⊂ L2(Ωp), Lh ⊂ H
1
2 (ΓI).

Here Xf,h and Mf,h denote velocity and pressure spaces typically used for Stokes fluid flow approx-
imations, for example, the Taylor-Hood spaces. Xp,h and Mp,h denote typical velocity and pressure
spaces in mixed finite element methods for Darcy flow, such as the Raviart-Thomas spaces. In this
section, we again assume that meas(Γp,D) > 0 for the uniqueness of the pressure solution. We first
list a few assumptions on our finite element spaces.

Assumption 1. We assume that there exists an inf-sup condition for the Stokes flow approximation:

inf
βf∈R

Kf , qh∈Mf,h

sup
vh∈Xf,h

bf (vh, qh) + bf,B (vh, βf )

‖vh‖Xf

(
‖qh‖L2(Ωf )

+ |βf |
) ≥ C > 0. (4.49)

Remark. The above condition holds for the Taylor-Hood spaces on a quasi-uniform mesh of triangles
or tetrahedra (see [2, 11]).

19



Assumption 2. We assume that there exists an inf-sup condition for the Darcy flow approximation:

inf
βp∈RKp , qh∈Mp,h

sup
vh∈Xp,h

bp (vh, qh) + bp,B (vh, βp)

‖vh‖Xp

(
‖qh‖L2(Ωp)

+ |βp|
) ≥ C > 0. (4.50)

Remark. The above assumption holds for the Raviart-Thomas spaces on a quasi-uniform mesh of
triangles or tetrahedra (see [2, 11]).

Assumption 3. (Compatibility condition of the mixed spaces for Darcy flow) We assume
that there exists a “swapped” inf-sup condition for the Darcy flow approximation:

inf
vh∈Xp,h

sup
qh∈Mp,h

bp (vh, qh)

‖∇ · vh‖L2(Ωp)
‖qh‖L2(Ωp)

≥ C > 0. (4.51)

Remark. The above assumption holds whenever ∇ ·Xp,h ⊂ Mp,h, which is satisfied by commonly
used mixed finite element spaces (for example, the Raviart-Thomas spaces).

Analogous to the analysis for the continuous problems, we define two null spaces:

Zf,h :=
{
vh ∈ Xf,h : bf (vh, qh) + bf,B (vh, γf ) = 0, ∀γf ∈ RKf , ∀qh ∈Mf,h

}
,

Zp,h :=
{
vh ∈ Xp,h : bp (vh, qh) + bp,B (vh, γp) = 0, ∀γp ∈ RKp , ∀qh ∈Mp,h

}
,

and introduce two affine sets:

ZA
f,h :=

{
vh ∈ Xf,h : bf (vh, qh) + bf,B (vh, γf ) = bf,B (qfnf , γf ) , ∀γf ∈ RKf , ∀qh ∈Mf,h

}
,

ZA
p,h :=

{
vh ∈ Xp,h : bp (vh, qh) + bp,B (vh, γp) = bf,B (qpnp, γp) , ∀γp ∈ RKp , ∀qh ∈Mp,h

}
.

Assumption 4. (Mortar compatibility condition for Stokes flow) We assume that there
exists an inf-sup condition between the mortar space and the Stokes flow approximation spaces:

inf
λh∈Lh

sup
vh∈Zf,h

〈vh · nf , λh〉ΓI

‖vh‖Xf
‖λh‖

H− 1
2 (ΓI)

≥ C. (4.52)

Assumption 5. (Mortar compatibility condition for Darcy flow) We assume that there
exists an inf-sup condition between the mortar space and the Darcy flow approximation spaces:

inf
λh∈Lh

sup
vh∈Zp,h

〈vh · np, λh〉ΓI

‖vh‖Xp
‖λh‖

H
1
2 (ΓI)

≥ C. (4.53)

Remark. Roughly speaking, (4.52) specifies that the normal-velocity component restriction of Zf,h

on ΓI should be at least as dense as the mortar space Lh. Similarly, (4.53) specifies that the normal-
velocity component restriction of Zp,h on ΓI should be at least as dense as the mortar space Lh. We
remark that it is sufficient but not necessary to require both mortar compatibility conditions (4.52)
and (4.53) for the existence and uniqueness of a solution to the coupled system; either one of the
two conditions is sufficient. We assume both compatibility conditions here for convenience.

Following from the above inf-sup assumptions and Theorem 18, we have the combined compatibility
conditions:
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Lemma 4. There exist a constant C > 0 such that

inf
λh∈Lh, qh∈Mf,h, βf∈R

Kf

sup
vh∈Xf,h

〈λh,vh · nf 〉ΓI
+ bf (vh, qh) + bf,B (vh, βf )

‖vh‖Xf

(
‖λh‖

H− 1
2 (ΓI)

+ ‖qh‖L2(Ωf )
+ |βf |

) ≥ C > 0, (4.54)

inf
λh∈Lh, qh∈Mp,h, βp∈RKp

sup
vh∈Xp,h

〈vh · np, λh〉ΓI
+ bp (vh, qh) + bp,B (vh, βp)

‖vh‖Xp

(
‖λh‖

H
1
2 (ΓI)

+ ‖qh‖L2(Ωp)
+ |βp|

) ≥ C > 0. (4.55)

4.1 Stokes flow approximation

We first restrict out attention to the finite element discretization of Stokes flow, assuming that
pI,h ∈ Lh ⊂ H

1
2 (ΓI) ⊂ H− 1

2 (ΓI) is given. Define

lf,h (v) := (fi, vi)Ωf
+

∫
Γf,N

τB,ivids−
∫
ΓI

pI,hvinids.

The weak formulation is: Given f ∈ X∗
f , τN ∈

(
H− 1

2 (Γf,N )
)d

, qf ∈ RKF , and pI,h ∈ Lh, determine

(uh, ph, βf,h) ∈ Xf,h ×Mf,h × RKf such that

af (uh,vh)− bf (vh, ph)− bf,B (vh, βf,h) = lf,h (vh) , ∀vh ∈ Xf,h, (4.56)

bf (uh, qh) + bf,B (uh, γf ) = bf,B (qfnf , γf , ) , ∀ (qh, γf ) ∈Mf,h × RKf . (4.57)

Theorem 12. There exists a unique solution (uh, ph, βf,h) ∈ Xf,h ×Mf,h × RKf satisfying (4.56)-
(4.57). In addition, there exists a constant C > 0 such that

‖u− uh‖Xf
+ ‖p− ph‖L2(Ωf )

+ |βf − βf,h|

≤ C

(
inf

ûh∈Xf,h

‖u− ûh‖Xf
+ inf

p̂h∈Mf,h

‖p− p̂h‖L2(Ωf )

)
+ C ‖pI,h − pI‖

H− 1
2 (ΓI)

. (4.58)

Proof. The existence and uniqueness of the solution follows from the continuity and strict mono-
tonicity of af (·, ·) on Zf,h × Zf,h, together with the discrete inf-sup condition (4.49).

Subtracting (3.18)-(3.19) from (4.56)-(4.57), respectively, we obtain the following error equations:

af (uh,vh) = af (u,vh) + bf (vh, ph − p) + bf,B (vh, βf,h − βf )

+ lf,h (vh)− lf (vh) , ∀vh ∈ Xf,h, (4.59)

bf (uh − u, qh) + bf,B (uh − u, γf ) = 0, ∀ (qh, γf ) ∈Mf,h × RKf . (4.60)

We note that the right-hand side of (4.59) contains the error propagated from the interface approx-
imation:

lf,h (vh)− lf (vh) = −〈(pI,h − pI),vh · n〉ΓI
. (4.61)

We pick ûh ∈ ZA
f,h ⊂ Xf,h, p̂h ∈Mf,h, β̂f,h ∈ RKf , and note that

bf (uh − ûh, p̂h − ph) + bf,B

(
uh − ûh, β̂f,h − βf,h

)
= 0. (4.62)

21



With vh = uh − ûh ∈ Zf,h ⊂ Xf,h, using (4.59), (4.61) and (4.62), we obtain

af (uh,uh − ûh)− af (ûh,uh − ûh) = af (u,uh − ûh)− af (ûh,uh − ûh) + bf (uh − ûh, p̂h − p)

+ bf,B

(
uh − ûh, β̂f,h − βf

)
− 〈(pI,h − pI), (uh − ûh) · n〉ΓI

≤ ε ‖uh − ûh‖2Xf
+ C ‖u− ûh‖2Xf

+ C ‖p− p̂h‖2L2(Ωf )

+ C
∣∣∣βf − β̂f,h

∣∣∣2 + C ‖pI,h − pI‖2
H− 1

2 (ΓI)
.

Because of the strict monotonicity, we have

af (uh,uh − ûh)− af (ûh,uh − ûh) ≥ C ‖uh − ûh‖2Xf
.

Since ûh, p̂h, and β̂f,h can be arbitrarily chosen from their corresponding spaces, we have

‖uh − ûh‖Xf
≤ C

(
inf

ûh∈ZA
f,h

‖u− ûh‖Xf
+ inf

p̂h∈Mf,h

‖p− p̂h‖L2(Ωf )
+ inf

β̂f,h∈R
Kf

∣∣∣βf − β̂f,h

∣∣∣)
+ C ‖pI,h − pI‖

H− 1
2 (ΓI)

= C

(
inf

ûh∈ZA
f,h

‖u− ûh‖Xf
+ inf

p̂h∈Mf,h

‖p− p̂h‖L2(Ωf )

)
+ C ‖pI,h − pI‖

H− 1
2 (ΓI)

. (4.63)

We proceed to lift ûh from ZA
f,h to Xf,h in the above estimate. From the inf-sup condition (4.49),

we know that there exists an operator Πh : Xf → Xf,h such that

bf (u−Πhu, qh) + bf,B (u−Πhu, γf ) = 0, ∀ (qh, γf ) ∈Mf,h × RKf

and
‖Πhu‖Xf

≤ C ‖u‖Xf
.

For any given ũh ∈ Xf,h, we now define ûh := ũh −Πh (ũh − u). Using (4.60) and that fact that u
satisfies (3.19), we easily verify that ûh ∈ ZA

f,h. We then have

‖u− ûh‖Xf
≤ ‖u− ũh‖Xf

+ ‖ũh − ûh‖Xf

= ‖u− ũh‖Xf
+ ‖Πh (ũh − u)‖Xf

≤ (1 + C) ‖u− ũh‖Xf
,

which implies
inf

ûh∈ZA
f,h

‖u− ûh‖Xf
≤ (1 + C) inf

ũh∈Xf,h

‖u− ũh‖Xf
. (4.64)

The triangle inequality together with (4.63) and (4.64) yield

‖u− uh‖Xf
≤ C

(
inf

ûh∈Xf,h

‖u− ûh‖Xf
+ inf

p̂h∈Mf,h

‖p− p̂h‖L2(Ωf )

)
+ C ‖pI,h − pI‖

H− 1
2 (ΓI)

. (4.65)
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To get the error estimate for ph and βf,h, we use the inf-sup condition (4.49) and the error equation

(4.59). Picking p̂h ∈Mf,h and β̂f,h ∈ RKf , we have

‖ph − p̂h‖L2(Ωf )
+
∣∣∣βf,h − β̂f,h

∣∣∣ ≤ C sup
vh∈Xf,h

bf (vh, ph − p̂h) + bf,B

(
vh, βf,h − β̂f,h

)
‖vh‖Xf

≤ C sup
vh∈Xf,h

bf (vh, ph − p) + bf,B (vh, βf,h − βf )

‖vh‖Xf

+ C sup
vh∈Xf,h

bf (vh, p− p̂h) + bf,B

(
vh, βf − β̂f,h

)
‖vh‖Xf

= C sup
vh∈Xf,h

af (uh,vh)− af (u,vh) + 〈(pI,h − pI),vh · n〉ΓI

‖vh‖Xf

+ C sup
vh∈Xf,h

bf (vh, p− p̂h) + bf,B

(
vh, βf − β̂f,h

)
‖vh‖Xf

≤ C ‖u− uh‖Xf
+ C ‖pI,h − pI‖

H− 1
2 (ΓI)

+ C ‖p− p̂h‖L2(Ωf )
+ C

∣∣∣βf − β̂f,h

∣∣∣ ,
implying

‖p− ph‖L2(Ωp)
+ |βf − βf,h| ≤ C ‖u− uh‖Xf

+ C inf
p̂h∈Mf,h

‖p− p̂h‖L2(Ωf )

+ C inf
β̂f,h∈R

Kf

∣∣∣βf − β̂f,h

∣∣∣+ C ‖pI,h − pI‖
H− 1

2 (ΓI)

= C ‖u− uh‖Xf
+ C inf

p̂h∈Mf,h

‖p− p̂h‖L2(Ωf )
+ C ‖pI,h − pI‖

H− 1
2 (ΓI)

.

(4.66)

The estimate (4.58) follows from (4.65) and (4.66).

4.2 Darcy flow approximation

We now consider the finite element discretization for the Darcy flow, assuming that pI,h ∈ Lh ⊂
H

1
2 (ΓI) is given. We define

lp,h (v) := (fi, vi)Ωp − 〈vh · np, pB〉Γp,D
− 〈vh · np, pI,h〉ΓI

.

The weak formulation is: Given f ∈ X∗
p, pB ∈ H

1
2 (Γp,D), qp ∈ RKp , and pI,h ∈ Lh, determine

(uh, ph, βp,h) ∈ Xp,h ×Mp,h × RKp such that

ap (uh,vh)− bp (vh, ph)− bp,B (vh, βp,h) = lp,h (vh) , ∀vh ∈ Xp,h, (4.67)

bp (uh, qh) + bp,B (uh, γp) = bp,B (qpnp, γp) , ∀ (qh, γp) ∈Mp,h × RKp . (4.68)
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Theorem 13. There exists a unique solution (uh, ph, βp,h) ∈ Xp,h ×Mp,h × RKp satisfying (4.67)-
(4.68). In addition, there exists a constant C > 0 such that

‖u− uh‖Xp
+ ‖p− ph‖L2(Ωp)

+ |βp − βp,h|

≤ C

(
inf

ûh∈Xp,h

‖u− ûh‖Xp
+ inf

p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)

)
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

. (4.69)

Proof. The existence and uniqueness of the solution follows from the continuity and strict mono-
tonicity of ap (·, ·) on Zp,h × Zp,h, together with the discrete inf-sup condition (4.50).

Subtracting (3.37)-(3.38) from (4.67)-(4.68), respectively, we obtain the error equations:

ap (uh,vh)− ap (u,vh)− bp (vh, ph − p)− bp,B (vh, βp,h − βp)

= −〈vh · np, (pI,h − pI)〉ΓI
, ∀vh ∈ Xp,h, (4.70)

bp (uh − u, qh) + bp,B (uh − u, γp) = 0, ∀ (qh, γp) ∈Mp,h × RKp . (4.71)

We now take ûh ∈ ZA
p,h ⊂ Xp,h, p̂h ∈ Mp,h, β̂p,h ∈ RKp , and set vh = uh − ûh ∈ Zp,h ⊂ Xp,h in

(4.70) to obtain

ap (uh,uh − ûh)− ap (ûh,uh − ûh) = ap (u,uh − ûh)− ap (ûh,uh − ûh) + bp (uh − ûh, p̂h − p)

+ bp,B

(
uh − ûh, β̂p,h − βp

)
− 〈(uh − ûh) · np, (pI,h − pI)〉ΓI

≤ ε ‖uh − ûh‖2Xp
+ C ‖u− ûh‖2(L2(Ωp))

d + C ‖p− p̂h‖2L2(Ωp)

+ C
∣∣∣βp − β̂p,h

∣∣∣2 + C ‖pI,h − pI‖2
H

1
2 (ΓI)

.

Due to the strict monotonicity of ap (·, ·), we have

ap (uh,uh − ûh)− ap (ûh,uh − ûh) ≥ C ‖uh − ûh‖2(L2(Ωp))
d .

Since the ûh, p̂h, and β̂p,h can be arbitrarily chosen from their corresponding spaces, we have

‖u− uh‖(L2(Ωp))
d ≤ inf

ûh∈ZA
p,h

(
‖u− ûh‖(L2(Ωp))

d + ‖ûh − uh‖(L2(Ωp))
d

)
≤ C

(
inf

ûh∈ZA
p,h

‖u− ûh‖(L2(Ωp))
d + inf

p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)
+ inf

β̂p,h∈RKp

∣∣∣βp − β̂p,h

∣∣∣)
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

+ ε inf
ûh∈ZA

p,h

‖uh − ûh‖Xp

≤ C

(
inf

ûh∈ZA
p,h

‖u− ûh‖Xp
+ inf

p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)

)
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

+ ε ‖u− uh‖Xp
. (4.72)

Now we use the swapped inf-sup condition (4.51) and 4.68 to obtain

‖∇ · uh‖L2(Ωp)
≤ C sup

qh∈Mp,h

bp (uh, qh)

‖qh‖L2(Ωp)

= 0,
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which then implies
‖∇ · (uh − u)‖L2(Ωp)

= 0. (4.73)

As a consequence of (4.72) and (4.73), we have

‖u− uh‖Xp
≤ C

(
inf

ûh∈ZA
p,h

‖u− ûh‖Xp
+ inf

p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)

)
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

. (4.74)

Using the inf-sup condition (4.50) and the fact that u satisfies (3.38), we now lift ûh from ZA
p,h to

Xp,h by applying an argument similar to the one we have used before for lifting the velocity in the
Stokes flow region to obtain:

inf
ûh∈ZA

p,h

‖u− ûh‖Xp
≤ C inf

ũh∈Xp,h

‖u− ũh‖Xp
. (4.75)

Now (4.74) and (4.75) yield

‖u− uh‖Xp
≤ C

(
inf

ûh∈Xp,h

‖u− ûh‖Xp
+ inf

p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)

)
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

. (4.76)

To get the error estimate for ph and βp,h, we use the inf-sup condition (4.50) and the error equation

(4.70) by picking p̂h ∈Mp,h and β̂p,h ∈ RKp similar to what we have done for Stokes flow:

‖ph − p̂h‖L2(Ωp)
+
∣∣∣βp,h − β̂p,h

∣∣∣ ≤ C sup
vh∈Xp,h

bp (vh, ph − p̂h) + bp,B

(
vh, βp,h − β̂p,h

)
‖vh‖Xp

≤ C sup
vh∈Xp,h

bp (vh, ph − p) + bp,B (vh, βp,h − βp)

‖vh‖Xp

+ C sup
vh∈Xp,h

bp (vh, p− p̂h) + bp,B

(
vh, βp − β̂p,h

)
‖vh‖Xp

= C sup
vh∈Xp,h

ap (uh,vh)− ap (u,vh) + 〈vh · np, (pI,h − pI)〉ΓI

‖vh‖Xp

+ C sup
vh∈Xp,h

bp (vh, p− p̂h) + bp,B

(
vh, βp − β̂p,h

)
‖vh‖Xp

≤ C ‖u− uh‖Xp
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

+ C ‖p− p̂h‖L2(Ωf )
+ C

∣∣∣βp − β̂p,h

∣∣∣ ,
implying

‖p− ph‖L2(Ωp)
+ |βp − βp,h| ≤ C ‖u− uh‖Xp

+ C inf
p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)

+ C inf
β̂p,h∈RKp

∣∣∣βp − β̂p,h

∣∣∣+ C ‖pI,h − pI‖
H

1
2 (ΓI)

= C ‖u− uh‖Xp
+ C inf

p̂h∈Mp,h

‖p− p̂h‖L2(Ωp)
+ C ‖pI,h − pI‖

H
1
2 (ΓI)

.

(4.77)

The estimate (4.69) follows from (4.76) and (4.77).
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4.3 Discretization on the interface

For each pI,h ∈ Lh ⊂ H
1
2 (ΓI) ⊂ H− 1

2 (ΓI), we have a unique finite element solution(
u∗
f,h(pI,h), p

∗
f,h(pI,h), β

∗
f,h(pI,h)

)
∈ Xf,h × Mf,h × RKf satisfying (4.56)-(4.57), and a unique fi-

nite element solution
(
u∗
p,h(pI,h), p

∗
p,h(pI,h), β

∗
p,h(pI,h)

)
∈ Xp,h×Mp,h×RKp satisfying (4.67)-(4.68).

We now define

Af,h (λh, µh) := −〈µh,u∗
f,h(λh) · nf 〉ΓI

,

Ap,h (λh, µh) := −〈u∗
p,h(λh) · np, µh〉ΓI

,

Ah (λh, µh) := Af,h (λh, µh) +Ap,h (λh, µh) .

The discretized interface problem for the coupled system can be formulated as: Determine λh ∈
Lh ⊂ H

1
2 (ΓI) such that

Ah (λh, µh) = 0, ∀µ ∈ Lh. (4.78)

Theorem 14. There exists a constant C such that

1

C
‖λh − µh‖

H− 1
2 (ΓI)

≤
∥∥u∗

f,h(λh)− u∗
f,h(µh)

∥∥
Xf

≤ C ‖λh − µh‖
H− 1

2 (ΓI)
, (4.79)

1

C
‖λh − µh‖

H
1
2 (ΓI)

≤
∥∥u∗

p,h(λh)− u∗
p,h(µh)

∥∥
Xp

≤ C ‖λh − µh‖
H

1
2 (ΓI)

. (4.80)

Proof. (4.79) and (4.80) can be shown similarly as we did for Theorems 2 and 6, except that we
now need to replace the continuous inf-sup conditions by their discrete counterparts, i.e. the mortar
compatibility conditions (4.52) and (4.53) for the lower bounds. We point out that the proof for
the upper bound part of (4.80) uses the property that uh is divergence free in the Darcy region.

We now prove a few properties of Ah (·, ·).

Theorem 15. Ah (λh, µh) is a nonlinear functional of λh and a linear functional of µh. Ah (·, ·) is
continuous and strictly monotone on Lh × Lh.

Proof. It is clear that Ah (λ, µ) is linear in µ. To see the continuity, we apply Theorem 14:∣∣∣Ah (λh, µh)−Ah

(
λ̂h, µh

)∣∣∣ ≤ ∣∣∣Af,h (λh, µh)−Af,h

(
λ̂h, µh

)∣∣∣+ ∣∣∣Ap,h (λh, µh)−Ap,h

(
λ̂h, µh

)∣∣∣
≤ C

∥∥∥u∗
f,h(λh)− u∗

f,h(λ̂h)
∥∥∥
Xf

‖µh‖
H− 1

2 (ΓI)

+ C
∥∥∥u∗

p,h(λh)− u∗
p,h(λ̂h)

∥∥∥
Xp

‖µh‖
H

1
2 (ΓI)

≤ C
∥∥∥λh − λ̂h

∥∥∥
H− 1

2 (ΓI)
‖µh‖

H− 1
2 (ΓI)

+ C
∥∥∥λh − λ̂h

∥∥∥
H

1
2 (ΓI)

‖µh‖
H

1
2 (ΓI)

≤ C
∥∥∥λh − λ̂h

∥∥∥
H

1
2 (ΓI)

‖µh‖
H

1
2 (ΓI)

,
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and

|Ah (λh, µh)−Ah (λh, µ̂h)| ≤ |Af,h (λh, µh)−Af,h (λh, µ̂h)|+ |Ap,h (λh, µh)−Ap,h (λh, µ̂h)|
≤ C ‖λh‖

H
1
2 (ΓI)

‖µh − µ̂h‖
H

1
2 (ΓI)

.

Like its continuous counterpart in Theorem 3, we have the following strict monotonicity

Af,h (λh, λh − µh)−Af,h (µh, λh − µh) = af
(
u∗
f,h(λh),u

∗
f,h(λh)− u∗

f,h(µh)
)

− af
(
u∗
f,h(µh),u

∗
f,h(λh)− u∗

f,h(µh)
)

≥ C
∥∥u∗

f,h(λh)− u∗
f,h(µh)

∥∥2
Xf

≥ C ‖λh − µh‖2
H− 1

2 (ΓI)
.

Similarly, we have

Ap,h (λh, λh − µh)−Ap,h (µh, λh − µh) ≥ C ‖λh − µh‖2
H

1
2 (ΓI)

.

The strict monotonicity of Ah (·, ·) then follows directly from these two inequalities.

Theorem 16. For any given qI ∈ H
1
2 (ΓI), there is a unique solution λh ∈ Lh to the reduced problem

(4.78).

Proof. This theorem directly follow from the continuity and the strict monotonicity of the form
Ah (·, ·).

Theorem 17. Let pI,h = λh be the solution to the discretized interface problem (4.78). Let
(uf,h, pf,h, βf,h) and (up,h, pp,h, βp,h) be the subdomain solutions to (4.56)-(4.57) and (4.67)-(4.68)
supplied with pI,h. Then, there exists a constant C such that

‖pI − pI,h‖
H

1
2 (ΓI)

+
(
‖uf − uf,h‖Xf

+ ‖pf − pf,h‖L2(Ωf )
+ |βf − βf,h|

)
+
(
‖up − up,h‖Xp

+ ‖pp − pp,h‖L2(Ωp)
+ |βp − βp,h|

)
≤ C inf

p̂I,h∈Lh

‖pI − p̂I,h‖
H

1
2 (ΓI)

+ C

(
inf

ûh∈Xf,h

‖uf − ûh‖Xf
+ inf

p̂h∈Mf,h

‖pf − p̂h‖L2(Ωf )

)
+ C

(
inf

ûh∈Xp,h

‖up − ûh‖Xp
+ inf

p̂h∈Mp,h

‖pp − p̂h‖L2(Ωp)

)
.

Proof. Let p̂I,h ∈ Lh. From the weak formulation (3.48) and its finite dimensional counterpart
(4.78), we have

A (pI , pI,h − p̂I,h) = 0,

Ah (pI,h, pI,h − p̂I,h) = 0.

These two orthogonality conditions together with the strict monotonicity of A(·, ·) yield
1

C
‖pI,h − p̂I,h‖2

H
1
2 (ΓI)

≤ A (pI,h, pI,h − p̂I,h)−A (p̂I,h, pI,h − p̂I,h)

= A (pI,h, pI,h − p̂I,h)−Ah (pI,h, pI,h − p̂I,h)

+A (pI , pI,h − p̂I,h)−A (p̂I,h, pI,h − p̂I,h) . (4.81)
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The first two terms on the right-hand side of (4.81) contain the error propagated from the two
subdomains and can be bounded using Theorems 12 and 13:

A (pI,h, pI,h − p̂I,h)−Ah (pI,h, pI,h − p̂I,h)

= −〈(pI,h − p̂I,h), (u
∗
f (pI,h)− u∗

f,h(pI,h)) · nf 〉ΓI
− 〈(u∗

p(pI,h)− u∗
p,h(pI,h)) · np, (pI,h − p̂I,h)〉ΓI

≤ C
∥∥u∗

f (pI,h)− u∗
f,h(pI,h)

∥∥
Xf

‖pI,h − p̂I,h‖
H− 1

2 (ΓI)
+ C

∥∥u∗
p(pI,h)− u∗

p,h(pI,h)
∥∥
Xp

‖pI,h − p̂I,h‖
H

1
2 (ΓI)

≤ C

(
inf

ûh∈Xf,h

‖uf − ûh‖Xf
+ inf

p̂h∈Mf,h

‖pf − p̂h‖L2(Ωf )

)
‖pI,h − p̂I,h‖

H− 1
2 (ΓI)

+ C

(
inf

ûh∈Xp,h

‖up − ûh‖Xp
+ inf

p̂h∈Mp,h

‖pp − p̂h‖L2(Ωp)

)
‖pI,h − p̂I,h‖

H
1
2 (ΓI)

≤ ε ‖pI,h − p̂I,h‖2
H

1
2 (ΓI)

+ C

(
inf

ûh∈Xf,h

‖uf − ûh‖2Xf
+ inf

p̂h∈Mf,h

‖pf − p̂h‖2L2(Ωf )

)
+ C

(
inf

ûh∈Xp,h

‖up − ûh‖2Xp
+ inf

p̂h∈Mp,h

‖pp − p̂h‖2L2(Ωp)

)
.

The last two terms in (4.81) contain the error from the interface discretization:

A (pI , pI,h − p̂I,h)−A (p̂I,h, pI,h − p̂I,h)

= −〈(pI,h − p̂I,h), (u
∗
f (pI)− u∗

f (pI,h)) · nf 〉ΓI
− 〈(u∗

p(pI)− u∗
p(pI,h)) · np, (pI,h − p̂I,h)〉ΓI

≤ C
∥∥u∗

f (pI)− u∗
f (p̂I,h)

∥∥
Xf

‖pI,h − p̂I,h‖
H− 1

2 (ΓI)
+ C

∥∥u∗
p(pI)− u∗

p(p̂I,h)
∥∥
Xp

‖pI,h − p̂I,h‖
H

1
2 (ΓI)

≤ C ‖pI − p̂I,h‖
H− 1

2 (ΓI)
‖pI,h − p̂I,h‖

H− 1
2 (ΓI)

+ C ‖pI − p̂I,h‖
H

1
2 (ΓI)

‖pI,h − p̂I,h‖
H

1
2 (ΓI)

≤ C ‖pI − p̂I,h‖2
H

1
2 (ΓI)

+ ε ‖pI,h − p̂I,h‖2
H

1
2 (ΓI)

.

This theorem follows by first noting the fact that p̂I,h can be chosen arbitrarily from Lh and then
applying a triangle inequality and Theorems 12 and 13.

5 Numerical Examples

We consider a coupled Stokes-Darcy system on the domain [0, 2] × [0, 1], representing a two-
dimensional version of an industrial filtering application where a non-Newtonian fluid passes through
a filter to remove unwanted particulates. Here the flow of the fluid through the channel [0, 1]× [0, 1]
is coupled with its flow in the porous medium [1, 2]× [0, 1]. We impose a defective boundary condi-
tion on the left boundary by specifying an inflow flux of one, and we impose a defective boundary
condition on the right boundary of an outflow flux of one. Along the top and bottom boundaries,
we impose a no-slip boundary condition for the Stokes flow and a no-flow boundary condition for
the Darcy flow. We assume a Cross model for the fluid viscosity νf in the Stokes region and another
Cross model for the effective viscosity νp in the Darcy region:

νf (|Du|) = νf,∞ +
νf,0 − νf,∞

1 +Kf |Du|2−rf
,

νp (|u|) = νp,∞ +
νp,0 − νp,∞

1 +Kp |u|2−rp
,
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where |·| is the Euclidean norm in Rd or the Frobenius norm in Rd×d. In our numerical examples
below, we set Kf = Kp = 1, νf,∞ = νp,∞ = 1, νf,0 = νp,0 = 10, rf = rp = 1. We note that a
fluid with rf , rp ∈ [1, 2) possesses a shear thinning property, and rf = rp = 2 corresponds to the
special case of a Newtonian fluid. On the interface {1} × [0, 1] of the two subdomains, we impose
the Beavers-Joseph-Saffman slip condition with αS = 1, in addition to the conservation of mass and
normal forces across this interface. The permeability of the porous medium is set to be the identity
matrix in R2×2.

For the numerical discretization, we use a 20×10 uniform rectangular mesh. The Taylor-Hood space
of Q2-Q1 is used for the Stokes flow; that is, velocity is approximated by a continuous piecewise
biquadratic polynomial and pressure is approximated by a continuous piecewise bilinear polynomial.
The Darcy flow is approximated by the RT1 space (i.e. velocity is approximated by a piecewise
biquadratic polynomial with certain normal-component continuities and pressure is approximated by
a piecewise bilinear polynomial). The mortar finite element space on the interface is the continuous
linear polynomial space. Since the pressure is unique only up to an additive constant in this problem,
we impose one additional constraint to enforce a zero average of the pressure on the outflow boundary
{2}× [0, 1]. (We have also ran numerical simulations on a mesh containing 400 triangles, using P2-P1

Taylor-Hood for Stokes, RT1 for Darcy, and continuous P1 for the mortar space on ΓI . The results
with triangular meshes (not shown) are almost identical to the results presented here.)

The approximating system of coupled equations has two features to note. Firstly, the equations are
non-linear and secondly, the coupled system can be recast as an interface problem. Depending upon
the order in which these features are implemented gives rise to two approximating algorithms.

Algorithm 1
• In the outer loop solve the (non-linear) interface problem.
• In the inner loop solve a (decoupled) non-linear problem on each subdomain.

Algorithm 2
• In the outer loop solve the (coupled) non-linear problem.
• In the inner loop solve the linear interface problem.

We plan to investigate the performance of the two algorithms in a forthcoming paper. For the
computations presented herein we use a modification of Algorithm 2. As the total degrees of
freedom is small, for the inner loop we simply use a sparse direct solver.

Figure 5.1 displays the simulation results obtained using the defective boundary condition treatment
described in this paper. (See theRemark following Theorem 1.) Physically this boundary condition
(BCI) corresponds to an inflow that is connected to a large reservior of water. Note that in Figure
5.1 that the fluid velocity near the inflow corners is not parallel to the top and bottom boundaries.

We have also considered the physical circumstance where the inflow boundary is attached to another
same-sized channel supplying the fluid. For this case (BCII) we supplement the specified flow rate
constraint with the condition that, at the inflow, the tangential component of the velocity is zero.
Equation (3.16) is replaced by∫

Γf,F

(σijnj − pnj)vids =

∫
Γf,F

βfvinids+

d−1∑
m=1

∫
Γf,F

χf,mvitm,ids.
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Equation (3.17) remains unchanged, and we add the constraint:

d−1∑
m=1

∫
Γf,F

ψf,muitm,ids = 0.

Here the Lagrange multiplier βf ∈ RKf = R represents the normal component of the traction vector

(a constant function on Γf,F = {0} × [0, 1]). The function χf ∈
(
H− 1

2 (Γf,F )
)d−1

= H− 1
2 (Γf,F )

(for d = 2) is an arbitrary function so that the tangential component of the traction vector is

unconstrained; but the function ψf ∈
(
H− 1

2 (Γf,F )
)d−1

= H− 1
2 (Γf,F ) serves to weakly enforce

a zero tangential component of the velocity. In the finite element approximation, we discretize
H− 1

2 (Γf,F ) by a continuous piecewise quadratic polynomial function.

Results using BCII are presented in Figure 5.2. Note that at the inflow the veolicty is parallel to
the top and bottom boundaries.
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Figure 5.1: Polymeric fluid flowing from a channel into a porous medium: simulation results using
the defective boundary condition treatment I. Top left: pressure contour together with velocity
arrows; Top right: velocity magnitude contour with streamlines; Bottom left: velocity magnitude
contour with velocity arrows; Bottom right: viscosity contour.

6 Conclusions

We have analyzed a multiphysics coupling strategy for nonlinear Stokes and Darcy flows which
allows for separate resolution of the flows in each domain. The strategy is easily parallelized and
enables use of existing Stokes and Darcy flow codes.
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Figure 5.2: Polymeric fluid flowing from a channel into a porous medium: simulation results using
the defective boundary condition treatment II. Top left: pressure contour together with velocity
arrows; Top right: velocity magnitude contour with streamlines; Bottom left: velocity magnitude
contour with velocity arrows; Bottom right: viscosity contour.

The domains are coupled through conservation of mass and balance of normal forces along the
interface, along with a condition on the tangential component of stress in the Stokes region. This
has been the standard practice for coupling of Newtonian fluids, and we have extended these results
to handle the non-Newtonian case where viscosities are velocity dependent. We have shown existence
and uniqueness of the variational solution and have presented numerical results to demonstrate the
method.

We can see the effects of the no-slip and zero transmissibility boundary conditions in the Stokes and
Darcy regions, respectively. The viscosity is relatively large around the central axis of the Stokes
region due to the small strain rate and decreases as the strain rate increases towards the boundary.
In comparison, the viscosity in the Darcy region has much less variation due to the (almost) uniform
velocity profile.

We have also presented two realizations of the defective boundary conditions that match the physical
scenarios we wish to model. The first treatment (BCI) corresponds to an inflow boundary that is
connected to a large reservoir of fluid, while the second treatment (BCII) corresponds to a case
where the inflow boundary is attached to another same-sized channel supplying the fluid. The results
show the differences in the pressure, velocity, and viscosity profiles for each of these situations. As
expected, the velocity streamlines and viscosity contours show the viscosity effects at the inflow for
BCI. The pressure and velocity of the fluid are clearly affected by the change in momentum between
BCI and BCII.

These results, combined with earlier analyses of coupled Stokes-Darcy problems, will allow for
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simulation of variety of filtration processes. Future work will incorporate coupled transport and
reaction equations across the flow domain to more completely capture problems of interest.

Appendix

A On Inf-Sup Conditions

Theorem 18. Let V,Q1, Q2 be Hilbert spaces; b1(·, ·) : V × Q1 −→ R, b2(·, ·) : V × Q2 −→ R be
continuous bilinear functionals; and Z1 := {v ∈ V | b1(v, q) = 0, ∀q ∈ Q1} be a null space. Let Ck,
k = 1, 2, 12, be positive constants. Then the inf-sup conditions (A.1) and (A.2) are equivalent to the
combined inf-sup condition (A.3).

sup
v∈V, ‖v‖V =1

b1(v, q1) ≥ C1‖q1‖Q1 , ∀q1 ∈ Q1, (A.1)

sup
v∈Z1, ‖v‖V =1

b2(v, q2) ≥ C2‖q2‖Q2 , ∀q2 ∈ Q2, (A.2)

sup
v∈V, ‖v‖V =1

(b1(v, q1) + b2(v, q2)) ≥ C12 (‖q1‖Q1 + ‖q2‖Q2) , ∀(q1, q2) ∈ Q1 ×Q2. (A.3)

Remark. This theorem can be extended to the case of multiple bilinear functionals bk(·, ·) : V ×
Qk −→ R, k = 1, 2, 3, · · ·K.

Proof. The implication of (A.3) from (A.1) and (A.2) was been shown in [11]. It is trivial to show
that (A.3) implies (A.1). We now assume that (A.3) and (A.1) hold, and we show (A.2) below.

Without loss of generality, we assume that Z1 is a proper subspace of V ; that is, Z⊥
1 is a nontrivial

space that contains nonzero functions. Given a function v ∈ V , we let PZ1v be the orthogonal
projection of v onto Z1 and we define PZ⊥

1
v := v − PZ1v ∈ Z⊥

1 . We remark that PZ1 is well defined
as Z1 is a closed subspace of the Hilbert space V . In addition, we know that there exists a constant
CZ1 = 1 such that

‖PZ1v‖V ≤ CZ1‖v‖V .

Given a function q2 ∈ Q2, we look for a solution q1 ∈ Q1 such that

b1(v1, q1) = −b2(v1, q2), ∀v1 ∈ Z⊥
1 . (A.4)

We denote the solution q1 by ΠQ1q2. We note that b1(·, ·) is a continuous bilinear form; the right-
hand side in (A.4) is a continuous linear functional for a fixed q2; b1(·, ·) satisfies the inf-sup condition
(A.1) and supq1∈Q1

b1(v1, q1) > 0 for any nonzero element v1 ∈ Z⊥
1 . Consequently, the generalized

Lax-Milgram theorem is applicable, which implies that the solution to (A.4) indeed exists and is
unique.
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The properties of PZ1 and ΠQ1 , together with (A.3), yield the desired result:

sup
v1∈Z1, ‖v1‖V =1

b2(v1, q2) ≥ sup
v∈V, ‖PZ1

v‖V =1
b2(PZ1v, q2)

=
‖v‖V

‖PZ1v‖V
sup

v∈V, ‖v‖V =1
b2(PZ1v, q2)

≥ 1

CZ1

sup
v∈V, ‖v‖V =1

b2(PZ1v, q2)

=
1

CZ1

sup
v∈V, ‖v‖V =1

(b1(PZ1v,ΠQ1q2) + b2(PZ1v, q2))

=
1

CZ1

sup
v∈V, ‖v‖V =1

(
b1(PZ1v + PZ⊥

1
v,ΠQ1q2) + b2(PZ1v + PZ⊥

1
v, q2)

)
=

1

CZ1

sup
v∈V, ‖v‖V =1

(b1(v,ΠQ1q2) + b2(v, q2))

≥ C12

CZ1

(‖ΠQ1q2‖Q1 + ‖q2‖Q2)

≥ C12

CZ1

‖q2‖Q2 .

Remark. The equivalence of the combined inf-sup condition to the individual inf-sup conditions
shown in Theorem 18 is similar to recent work of Gatica and Sayas [15].
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