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Abstract

We analyze a stabilization technique for advection dominated flow problems. Of particu-
lar interest are coupled parabolic/hyperbolic problems, when the diffusion coefficient is zero in
part of the domain. The unstabilized, computed approximations of these problems are highly
oscillatory, and several techniques have been proposed and analyzed to mitigate the effects of
the subgrid errors that contribute to the oscillatory behavior. In this paper, we modify a time-
relaxation algorithm proposed in [1] and further studied in [10]. Our modification introduces
the relaxation operator as a post-processing step. The operator is not time-dependent, so the
discrete (relaxation) system need only be factored once. We provide convergence analysis for our
algorithm along with numerical results for several model problems.
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1 Introduction

Of interest in this paper is the numerical approximation to u satisfying the general transport equation

ut + ∇ · f(u,∇u) = g(x, t) . (1.1)

Our interest in this problem is motivated by groundwater flow applications. Single phase, porous
media flows can be modeled by the general convection diffusion equation, where the flux function

f(u,∇u) = −k(S(u))
µ

∇u

exhibits different behaviors based on values of k(S(u)). The unknown u denotes the pressure head,
or potential, associated with the fluid. The saturation S is the ratio of the volume of fluid in
the medium relative to the volume of the pore space of the medium. Saturation depends on u,
as increased values of the pressure push fluid into the previously unsaturated pore spaces. The
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permeability k(S(u)) of the fluid is a measure of the ability of the medium to transport fluid and
increases as the medium becomes more saturated. The parameter µ denotes the viscosity of the
fluid.

Curves representing saturation and permeability as a function of pressure head [7] are shown in
Figure 1.1 for three material types: sand, silt, and clay. The plots were constructed using data
generated from the Mualem-van Genuchten pressure-saturation-permeability relationships [20, 23].
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Figure 1.1: Saturation (left) and permeability (right) curves for clay, sand and silt.

These curves differ substantially for different types of media. In the governing equation, the coeffi-
cient for the diffusive component depends directly on k(S(u)), and the coefficient for the advective
component depends, in part, on the derivative of the saturation function with respect to pressure
head. As fluid moves through a sand layer, i.e., as saturation values increase, one can see from
the steepness of the saturation curve that the governing equation becomes advection dominated.
In contrast, the governing equation is more parabolic for flow through clay layers as the values for
permeability are several orders of magnitude larger than those for sand, and the saturation curve is
much less steep.

There are two cases for which the governing equation changes type when considering porous media
flow: (i) the medium is heterogeneous, in which case the governing equation changes type in different
fixed regions in space; (ii) infiltration is occuring in the medium, in which case the governing equation
is hyperbolic ahead of the front, parabolic along the front, and elliptic behind the front.

Characteristic of these physical problems is: (a) an “uncertain” description of the parameters defin-
ing the problem, and (b) sharp transition regions for the flow. Because of the uncertainty in the
description of these problems our interest is focused on stable, low order approximation techniques.

The sharp transition regions in the flow field will typically generate non-physical oscillations in the
the approximation unless some stabilization is added to the approximation algorithm. There are

2



many effective stabilization schemes which have been proposed and used. For examples, the method
of artifical viscosity (AV), the Streamline Upwind Petrov Galerkin (SUPG) method, characteristic
based methods ( modified method of characteristics (MMOC-Galerkin) [11], characteristic mixed
finite element method [2], Eulerian-Lagrangian localized adjoint methods (ELLAM) [24]), the lo-
cally discontinuous Galerkin (LDG) method [6], to mention a few. A more recent approach has
been methods which include a “sub-grid” stabilization term, commonly referred to as variational
multiscale methods (VMS) [15, 16, 17]. The AV and SUPG methods produce a stable approxima-
tion at a cost of reduced asymptotic accuracy of the approximation. Characterstic methods require
the tracking, and integration along flow curves with special attention required near the inflow and
outflow boundaries of the domain. The LDG method are typically inefficient in diffusion-dominated
problems. With the VMS approach stability of the approximation is obtained by adding to the com-
putational modeling equations a term which attempts to model the influence of the unresolved scales
on the computational scales. This typically involves projections onto locally enriched subspaces.

The use of filtering to remove spurious high frequency oscillations in computed approximations
to underresolved flow problems has a long history. (See [5, 21] and references therein.) Spectral
based filtering methods often have difficultities in handling problems on irregular domains. Filtering
methods typically result in the filtered approximation being overly diffused. A fairly recent approach
to counter the addition of excess diffusion from simply filtering the approximation is to combine
filtering with deconvolution, an approximate inverse of the filtering operation. In [1] Adams and
Stolz investigated a combined filter and deconvolution approach for the numerical approximation
of the averaged, time dependent Euler equations. Their approach was very successful in obtaining
accurate approximations. This filter and deconvolution approach has been studied and extended to
Navier-Stokes fluid flow problems by Layton and collaborators [8, 19, 18].

Motivated by the work of Stolz and Adams in [1] we initially investigated a regular finite element
approximation to (1.1) with the addition of a stabilizing term, which was a function of the ap-
proximate solution and its local (spatial) average. We did not find this approach to be effective
in controlling the development of spurious oscillations in the approximations for the problems we
investigated. Instead, what we found to be effective in computing a stable approximation was a two
step approach where in the first step an intial approximation Wn(·) to u(n∆t, ·) is computed and
then in the second step we filter and deconvolve Wn(·) to remove an spurious oscillations to obtain
Un(·) the approximation to u(n∆t, ·). The deconvolution in the second step is used to improve the
accuracy of the filter quantity.

In our investigation we consider the consider the equation

ut + v · ∇u − ∇ · (α∇u) = f , in Ω , (1.2)

subject to u = 0 , on ∂Ω ,u(x, 0) = u0(x) , in Ω . (1.3)

As v in (1.2) typically denotes a fluid velocity, we assume the incompressibility condition ∇·v = 0,
and ‖v‖∞ = Cv. Additionally, we assume that α ≥ 0 and α ∈ L∞(Ω).

The approximation algorithm is:

Approximation Algorithm:
Given U0 ∈ Xh, for n = 1, 2, . . . , NT
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Step 1. Determine Wn ∈ Xh satisfying(
Wn − Un−1

∆t
, φ

)
+ (vn · ∇Wn , φ) + (α∇Wn , ∇φ) = (fn , φ) , ∀φ ∈ Xh . (1.4)

Step 2. Un ∈ Xh given by
Un = DhGh(W

n) . (1.5)

In (1.5) Gh(·) denotes the discrete filter operator defined in (2.4), and Dh(·) the discrete deconvo-
lution operator defined in (2.5).

For the proposed algorithm the following points are noteworthy.
(i) Ease of implementation, (simple modification of a standard Galerkin approximation).
(ii) Requires no special spatial discretization.
(iii) Gives optimal asymptotic order of convergence for the approximation.

This paper is organized as follows. In Section 2 we present an analysis of the Approximation
Algorithm, establishing computability of the method and a priori error estimates. Three examples
are presented in Section 3. The first example considered models an infiltration problem where the
solution exhibits a moving front propogating through the domain. Ahead of the front the modeling
equation is hyperbolic, along the front parabolic, and behind the front the modeling equation is
elliptic. Example two studies a moving front problem in a two dimensional domain. The third
example, taken from [9] models flow through a heterogeneous medium. In one part of the domain
the diffusion coefficient is equal to zero. Within the domain this problem’s modeling equation
classification changes from parabolic to hyperbolic and hyperbolic back to parabolic.

2 Mathematical Analysis

In this section we show the scheme is numerically stable, and derive asymptotic error estimates. We
begin by defining the notation used and presenting some properties of the differential filter studied
and the deconvolution operator.

2.1 Mathematical Preliminaries

The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and
the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk
p
, respectively. For the semi-norm in

W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 , and ‖ · ‖k denotes the norm

in Hk. For functions v(x, t) defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0
‖v(t, ·)‖mk dt

)1/m

.

Let X := H1
0 (Ω) = {f ∈ H1(Ω) : f |∂Ω = 0}. For our analysis we assume that the solution u ∈ X.

For the discrete approximation, we assume that Ω ⊂ IRd́ (d́ = 2, 3) is a polygonal domain and Th
is a triangulation of Ω made of triangles (in IR2) or tetrahedrals (in IR3). Additionally, we assume
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that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the greatest ball (sphere)
included in K, and h = maxK∈Th

hK . Let Pk(A) denote the space of polynomials on A of degree no
greater than k. Then we define the finite element space Xh as.

Xh :=
{
v ∈ X ∩ C(Ω̄)2 : v|K ∈ Pk(K), ∀K ∈ Th

}
.

Let ∆t be the step size for t so that tn = n∆t, n = 0, 1, 2, . . . , NT , with T := NT∆t, f
n := f(tn),

and dtf
n := f(tn)−f(tn−1)

∆t . We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v|‖m,k :=

(
NT∑
n=0

‖vn‖mk ∆t

)1/m

.

In addition, for u(x, t) ∈ Hk+1 we make use of the following approximation properties:

inf
S∈Xh

‖u(·, t)− S‖r ≤ Chk+1−r‖u(·, t)‖k+1 . (2.1)

There are a number of choices possible for the discrete filter operator Gh and the discrete deconvo-
lution operator Dh [3, 12]. We assume that any such operators satisfy the following.

Assumption DG1: The discrete filter operator Gh and the discrete deconvolution operator Dh

satisfy:
‖DhGh‖L2→L2 ≤ 1 , and ‖I − DhGh‖L2→L2 ≤ 1 . (2.2)

We investigate the simplest differential filter defined by: ū := G(u) ∈ X, where for a given parameter
δ (referred to as the filter radius)

δ2(∇ū , ∇v) + (ū , v) = (u , v) , ∀v ∈ X . (2.3)

Computationally we implement (2.3) on a finite dimensional subspace of X which gives rise to the
discrete differential filter ūh := Gh(u) ∈ Xh defined as

δ2(∇ūh , ∇v) + (ūh , v) = (u , v) , ∀v ∈ Xh . (2.4)

Having filtered the approximation, to dampen non-physical oscillations in the approximation, we
then apply deconvolution to increase the accuracy of the filtered quantity. Herein we use the van
Cittert family of approximate deconvolution operators.

We denote the N th order van Cittert continuous and discrete deconvolution operators as D and Dh,
repectively, where

Dφ :=
N∑

n=0

(I − G)nφ , and Dhφ :=
N∑

n=0

(I − Gh)
nφ . (2.5)
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Remark: 1. For the deconvolution parameter N = 0, Dh = I, and thus DhGh(u) = Gh(u) = uh
given in (2.4). For N = 1, from (2.5), DhGh(u) = 2uh − uhh, where uhh := Gh(uh).
2. Gh and Dh defined in (2.4) and (2.5), respectively, satisfy (2.2) [22].

The difference between a function and its filtered/deconvolved approximation is given in the next
lemma.

Lemma 1 [18] For smooth φ the discrete approximate deconvolution operator satisfies

‖φ − DhGhφ‖ ≤ C1 δ
2N+2 ‖φ̄‖H2N+2 + C2

(
δhk + hk+1

)(N+1∑
n=1

|Gn(φ)|k+1

)
, (2.6)

where φ̄h := Gh(φ).

The dependence of the |Gn(φ)|k+1 terms in (2.6) upon the filter radius δ, for a general smooth
function φ, is not fully understood. In the case of φ periodic the |Gn(φ)|k+1 are independent of δ.
Also, for φ satisfying homogeneous boundary conditions, with the additional property that ∆jφ = 0
on ∂Ω for 0 ≤ j ≤

[
k+1
2

]
− 1, the |Gn(φ)|k+1 are independent of δ. (See [18].)

Note that for N ≤ 2 and φ satisfying homogeneous boundary conditions, the |Gn(φ)|k+1 terms are
independent of δ.

Below in the analysis we make the following assumption.
Assumption DG2: The |Gn(φ)|k+1 terms in (2.6) are independent of δ, and

‖φ − DhGhφ‖ ≤ C1 δ
2N+2 ‖φ‖H2N+2 + C2

(
δhk + hk+1

)
‖φ‖k+1 , (2.7)

The discrete Gronwall’s lemma plays an important role in the following analysis.

Lemma 2 (Discrete Gronwall’s Lemma) [14] Let ∆t, H, and an, bn, cn, γn (for integers n ≥ 0)
be nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

γn an + ∆t

l∑
n=0

cn + H for l ≥ 0 .

Suppose that ∆t γn < 1, for all n, and set σn = (1−∆t γn)
−1. Then,

al + ∆t
l∑

n=0

bn ≤ exp

(
∆t

l∑
n=0

σn γn

){
∆t

l∑
n=0

cn + H

}
for l ≥ 0 . (2.8)

We begin our analysis by establishing computability of the approximation scheme (1.4),(1.5), and
an a priori bound for the approximation.

Lemma 3 For the approximation scheme (1.4),(1.5) we have thatW l, DhGh(W
l), U l, l = 1, . . . NT

exist at each iteration. In addition, ‖U l‖2 ≤ ‖W l‖2, and (for ∆t < 1):

‖W l‖2 +

l∑
n=1

‖Wn − Un−1‖2 + 2

l∑
n=1

∆t‖α1/2∇Wn‖2 ≤ exp(T )
(
‖|f‖|22,0 + ‖U0‖2

)
. (2.9)
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Additionally,

‖|W‖|2∞,0 ≤ exp(T )
(
‖|f‖|22,0 + ‖U0‖2

)
and ‖|W‖|20,0 ≤ T exp(T )

(
‖|f‖|22,0 + ‖U0‖2

)
. (2.10)

Proof : Equation (1.4) can be equivalently rewritten as

a(Wn , φ) = b(φ) , ∀φ ∈ Xh , (2.11)

where a(ψ, φ) := (ψ , φ) + ∆t(vn · ∇ψ , φ) + ∆t(α∇ψ , ∇φ)
and b(φ) := (Un−1 , φ) + ∆t(fn , φ) .

Noting that for ψ 6= 0,

a(ψ,ψ) = ‖ψ‖2 + ∆t

∫
Ω
vn · ∇(

1

2
ψ2) dA + ∆t ‖α1/2∇ψ‖2

= ‖ψ‖2 − 1

2
∆t

∫
Ω
ψ2∇ · vn dA + ∆t ‖α1/2∇ψ‖2

= ‖ψ‖2 + ∆t ‖α1/2∇ψ‖2 ( using ∇ · vn = 0 )

> 0 ,

and that (1.4) represents a (square) linear system of equations, positivity of a(ψ,ψ) implies existence
and uniqueness of Wn satisfying (1.4).

The existence and uniqueness of DhGh(W
n) and Un follows directly from the Riesz representation

theorem and the definition of Dh.

With the choice φ =Wn in (1.4) and using (Un−1,Wn) = 1/2‖Wn‖2 + 1/2‖Un−1‖2 − 1/2‖Wn−
Un−1‖2, we have that

1

∆t
‖Wn‖2 − 1

∆t
‖Un−1‖2 +

1

∆t
‖Wn − Un−1‖2 + 2‖α1/2∇Wn‖2 ≤ ‖fn‖2 + ‖Wn‖2 ,

i.e.

‖Wn‖2 − ‖Un−1‖2 + ‖Wn − Un−1‖2 + 2∆t‖α1/2∇Wn‖2 ≤ ∆t‖Wn‖2 + ∆t‖fn‖2 . (2.12)

From (1.5) we have
‖Un‖ = ‖DhGh(W

n)‖ ≤ ‖Wn‖ , (2.13)

as ‖DhGh‖ ≤ 1. Using (2.13) with n→ n− 1, and summing from n = 1 to l we obtain

‖W l‖2 +

l∑
n=1

‖Wn − Un−1‖2 + 2

l∑
n=1

∆t‖α1/2∇Wn‖2 ≤
l∑

n=1

∆t‖Wn‖2 +

l∑
n=1

∆t‖fn‖2 + ‖U0‖2

(2.14)
from which (2.9) follows via the discrete Gronwall lemma (2.8).

The estimates in (2.10) follow immediately from (2.9) and the definition of the norms.

Remark: Lemma 3 establishes the uniform boundedness of ‖W l‖, ‖U l‖ and
∑l

n=1∆t‖α1/2∇Wn‖2.
From a physical point of view the filtering step in Step 2 of the algorithm serves to dampen any
high frequency oscillations generated in Wn.
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Theorem 1 For u ∈ L∞(0, T ;Hk+1(Ω)) ∩ L2(0, T ;H2N+2(Ω)), ut ∈ L2(0, T ;Hk+1(Ω)), utt ∈
L2(0, T ;L2(Ω)), satisfying (1.2),(1.3), and Un, Wn given by (1.4)-(1.5) we have that for ∆t < 1

‖|u − U |‖∞,0 + ‖|u − W |‖∞,0 +

(
∆t

NT∑
n=1

‖α1/2∇(un − Wn)‖2
)1/2

≤ C
(
hk+1‖|u|‖∞,k+1 + hk ‖|u|‖2,k+1 + hk+1‖ut‖2,k+1 + ∆t ‖utt‖2,0 + (∆t)−1 hk+1 ‖|u|‖2,k+1

+ (∆t)−1
(
δ2N+2‖|u|‖2,2N+2 + (δ hk + hk+1)‖|u|‖2,k+1

))
. (2.15)

Proof : We have that the true solution un := u(n∆t, x) satisfies(
un − un−1

∆t
, φ

)
+ (vn · ∇un , φ) + (α∇un , ∇φ) = (fn , φ)−

(
unt − un − un−1

∆t
, φ

)
, ∀φ ∈ Xh .

(2.16)
With εn := un −Wn, en := un − Un, subtracting (1.4) from (2.16) we have(

εn − en−1

∆t
, φ

)
+ (vn · ∇εn , φ) + (α∇εn , ∇φ) = −

(
unt − un − un−1

∆t
, φ

)
, ∀φ ∈ Xh .

(2.17)
Let Sn ∈ Xh. Additionally, define Λn := un−Sn, Fn := Sn−Wn and En := Sn−Un. Noting that
εn = Λn + Fn, en = Λn + En, with the choice φ = Fn (2.17) becomes(

Fn − En−1

∆t
, Fn

)
+ (vn · ∇Fn , Fn) + (α∇Fn , ∇Fn) =

−
(
Λn − Λn−1

∆t
, Fn

)
− (vn · ∇Λn , Fn) − (α∇Λn , ∇Fn)

−
(
unt − un − un−1

∆t
, Fn

)
. (2.18)

We need a second equation for Fn and En. As Wn and Un are connected through the filter and
deconvolve equation (1.5), we use that equation. The true solution u(·, tn) = un satisfies

un = DhGhu
n + (I −DhGh)u

n . (2.19)

Subtracting (1.5) from (2.19) yields

en = DhGhε
n + (I −DhGh)u

n (2.20)

i.e. En = DhGhF
n − (I −DhGh)Λ

n + (I −DhGh)u
n . (2.21)

Substituting (2.21) (with n replaced by n− 1) into (2.18) and rearranging yields(
Fn − DhGhF

n−1

∆t
, Fn

)
+ (vn · ∇Fn , Fn) + (α∇Fn , ∇Fn)

= −
(
Λn − Λn−1

∆t
, Fn

)
− (vn · ∇Λn , Fn) − (α∇Λn , ∇Fn)

−
(
unt − un − un−1

∆t
, Fn

)
−
(
(I −DhGh)Λ

n−1

∆t
, Fn

)
+

(
(I −DhGh)u

n−1

∆t
, Fn

)
, (2.22)
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i.e., using ∇ · vn = 0 ,

‖Fn‖2 − ‖DhGhF
n−1‖2 + 2∆t‖α1/2∇Fn‖2 ≤ −2

(
(Λn − Λn−1) , Fn

)
− 2∆t (vn · ∇Λn , Fn)

− 2∆t (α∇Λn , ∇Fn)− 2∆t

(
unt − un − un−1

∆t
, Fn

)
− 2

(
(I −DhGh)Λ

n−1 , Fn
)

+ 2
(
(I −DhGh)u

n−1, Fn
)
. (2.23)

Next we investigate the terms on the right hand side of (2.23).

(
(Λn − Λn−1) , Fn

)
=

1

5
∆t ‖Fn‖2 +

5

4

1

∆t
‖Λn − Λn−1‖2

≤ 1

5
∆t ‖Fn‖2 +

5

4

∫
Ω

(∫ n∆t

(n−1)∆t
|Λt|2 dt

)
dΩ

=
1

5
∆t ‖Fn‖2 +

5

4

∫ n∆t

(n−1)∆t
‖Λt‖2 dt . (2.24)

Using the boundness of v,

2∆t (vn · ∇Λn , Fn) ≤ 1

5
∆t ‖Fn‖2 + 5∆t ‖vn · ∇Λn‖2

≤ 1

5
∆t ‖Fn‖2 + 5Cv ∆t ‖∇Λn‖2 . (2.25)

2∆t (α∇Λn , ∇Fn) ≤ ∆t‖α1/2∇Fn‖2 + ∆t‖∇Λn‖2 . (2.26)

2∆t

(
unt − un − un−1

∆t
, Fn

)
≤ 1

5
∆t ‖Fn‖2 + 5∆t ‖unt − un − un−1

∆t
‖2

≤ 1

5
∆t ‖Fn‖2 + 5∆t∆t

∫ n∆t

(n−1)∆t

∫
Ω
|utt|2 dΩ dt

=
1

5
∆t ‖Fn‖2 + 5(∆t)2

∫ n∆t

(n−1)∆t
‖utt‖2 dt . (2.27)

Using ‖(I −DhGh)‖ ≤ 1,

− 2
(
(I −DhGh)Λ

n−1 , Fn
)
≤ 1

5
∆t ‖Fn‖2 + 5(∆t)−1 ‖(I −DhGh)Λ

n−1‖2

≤ 1

5
∆t ‖Fn‖2 + 5(∆t)−1 ‖Λn−1‖2 . (2.28)

Similarly,

2
(
(I −DhGh)u

n−1, Fn
)

≤ 1

5
∆t ‖Fn‖2 + 5(∆t)−1 ‖(I −DhGh)u

n−1‖2 . (2.29)
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Combining estimates (2.24)-(2.29) with equation (2.23), summing from n = 1 to n = l, and using
‖DhGh‖ ≤ 1, ‖F 0‖ = 0, we obtain

‖F l‖2 +∆t
l∑

n=1

‖α1/2∇Fn‖2 ≤ ∆t
l∑

n=1

‖Fn‖2 + 5Cv∆t
l∑

n=1

‖∇Λn‖2

+
5

4

l∑
n=1

∫ n∆t

(n−1)∆t
‖Λt‖2 dt + 5(∆t)2

l∑
n=1

∫ n∆t

(n−1)∆t
‖utt‖2 dt + 5(∆t)−1

l∑
n=1

‖Λn−1‖2

+ 5(∆t)−1
l∑

n=1

‖(I −DhGh)u
n‖2 . (2.30)

The terms on the RHS can be further simplified using (2.1), (2.7).

5Cv∆t

l∑
n=1

‖∇Λn‖2 ≤ C h2k ∆t

l∑
n=1

‖un‖2k+1 = C h2k ‖|u|‖22,k+1 . (2.31)

5

4

l∑
n=1

∫ n∆t

(n−1)∆t
‖Λt‖2 dt ≤ C h2k+2‖ut‖22,k+1 . (2.32)

5(∆t)2
l∑

n=1

∫ n∆t

(n−1)∆t
‖utt‖2 dt ≤ 5(∆t)2‖utt‖22,0 . (2.33)

5(∆t)−1
l∑

n=1

‖Λn−1‖2 ≤ C (∆t)−2 h2k+2∆t

l∑
n=1

‖un−1‖2k+1 ≤ C (∆t)−2 h2k+2 ‖|u|‖22,k+1 . (2.34)

5(∆t)−1
l∑

n=1

‖(I −DhGh)u
n‖2 ≤ C (∆t)−2∆t

l∑
n=1

(
δ4N+4‖un‖22N+2 + (δ2 h2k + h2k+2)‖un‖2k+1

)
= C (∆t)−2

(
δ4N+4‖|u|‖22,2N+2 + (δ2 h2k + h2k+2)‖|u|‖22,k+1

)
. (2.35)

Using the bounds (2.31)–(2.35), together with Gronwall’s Lemma, for ∆t < 1 from (2.30) we obtain

‖F l‖2 +∆t

l∑
n=1

‖α1/2∇Fn‖2

≤ C exp(T )
(
h2k ‖|u|‖22,k+1 + h2k+2‖ut‖22,k+1 + (∆t)2‖utt‖22,0 + (∆t)−2 h2k+2 ‖|u|‖22,k+1

+ (∆t)−2
(
δ4N+4‖|u|‖22,2N+2 + (δ2 h2k + h2k+2)‖|u|‖22,k+1

))
. (2.36)

With the triangle inequality and (2.36) we obtain the estimate for (u−W ) given in (2.15).
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Note that from (2.21), and ‖DhGh‖ ≤ 1,

‖En‖ ≤ ‖Fn‖ + ‖Λn‖ + ‖(I −DhGh)u
n‖ . (2.37)

This estimate, combined with the triangle inequality and (2.36), then gives the bound for (u − U)
in (2.15).

In the case of a continuous, piecewise linear finite element approximation we obtain the following.

Corollary 1 For u and satisfying the hypothesis of Theorem 1, with k = 1, δ = h, N = 1, we have
that for ∆t < 1

‖|u−U |‖∞,0 + ‖|u−W |‖∞,0 +

(
∆t

NT∑
n=1

‖α1/2∇(un − Wn)‖2
)1/2

≤ C
(
(∆t) + h1 + (∆t)−1h2

)
.

(2.38)

3 Numerical Results

We numerically investigate the Approximation Algorithm using three examples. Two of the exam-
ples exhibit a moving front propagating through a domain; the first (Example 1) is in one spatial
dimension, the second (Example 2) is in two spatial dimensions. The third example uses a flux
function u − αux, where α = 1 in the parabolic part of the domain and 0 in the hyperbolic part.
This problem was studied in [9], where the authors used local discontinuous Galerkin methods to
resolve the interface.

The Approximation Algorithm does not require that the stabilized approximation in Step 2 be
computed on the same grid as the approximation in Step 1.

There are two modifications of the Approximation Algorithm that we have found to be compu-
tationally useful. The first is to filter the approximation Wn to obtain Un on a refined grid, or
equivalently, in an enriched approximation space Xh/2. This has the effect of reducing the spatial
width of large transition in the approximation. The second modification is to let Un be a (convex)
linear combination of the extrapolated approximation (using Un−1 and Un−2) plus the filtered ap-
proximation. The extrapolated approximation is used instead of Wn to avoid the introduction of
spurious oscillations into the approximation. These modification may be summarized as:
Step 2mod. Un ∈ Xh satisfies

Ũn = Rh/2→hDh/2Gh/2(W
n) , (3.1)

Un = (1 − χ)(2Un−1 − Un−2) + χŨn . (3.2)

where Rh/2→h denotes a restriction operator from Xh/2 to Xh.

For the three examples considered below we construct a continuous piecewise linear approximation
to the solution, i.e. k = 1, use δ = h for the filter radius, N = 1 for the deconvolution operator, and
χ = 0.9 in (3.2).
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3.1 Example 1

This example models the propogation of a moving front through a domain. The modeling equation
is

ut + (v u − b ux)x = 0 , −1 < x < 3 , t > 0 . (3.3)

The true solution is u(x, t) = a − c tanh(c(x − at)/(2b)), where in (3.3) v = u/2 and a, b, c are
constants. The initial condition and boundary conditions are chosen to match the true solutions.

For the simulations presented in Figures 3.1, 3.2 the values used for a, b, and c are 1.0, 0.01 and 1.0,
respectively.

The true solution is shown on the left in Figure 3.1, and the unstabilized solution is shown on the
right. The unstabilized approximation was computed on a grid with mesh spacing h = 1/8 using a
time step size of ∆t = 1/16. The profiles are shown at times T = 0, 1, 1.5, and 2.

The unstabilized solution exhibits large oscillations along the front. Notice that the smoothing
operators resolve the oscillations, but when simply using Step 2, this resolution occurs at the
expense of having the transition region spread over a larger portion of the domain. The overshoot
and undershoot are well resolved when using Step 2mod, where the filtering and deconvolution is
performed on a finer mesh, h = 1/16.
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Figure 3.1: True solution (left), unstabilized solution (right).

3.2 Example 2

Next we consider the propogation of a moving front in two spatial dimensions. The modeling
equation studied is

ut + v · ∇u − µ∆u = 0 , (x, y) ∈ (0, 1)× (0, 1) , t > 0 . (3.4)
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Figure 3.2: Stabilized approximation using Step 2 (left) and Step 2mod (right).

We have as a true solution to (3.4) u(x, y, t) = w(x, t)w(y, t) (from [4]), where v = [w(x, t) w(y, t)]T ,
and

w(x, t) =
0.1A(x, t) + 0.5B(x, t) + C(x, t)

A(x, t) + B(x, t) + C(x, t)
, with A(x, t) = e−0.05(x−0.05+4.95t)/µ ,

B(x, t) = e−0.25(x−0.05+0.75t)/µ , C(x, t) = e−0.5(x−0.375)/µ .

For the simulations presented below we use µ = 10−2.25. We impose Dirichlet boundary conditions,
and the initial condition, chosen to match the true solution.

The true solution and the unstabilized approximation are shown in Figure 3.3 for time T = 0.6. As
in the one-dimensional example, the computed solution exhibits nonphysical oscillations along the
front. The solution is computed using the FreeFem [13] environment on an unstructured mesh with
15 nodal points along each of the boundary edges, resulting in a total of 298 nodal points, and using
∆t = 0.01.
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Figure 3.3: True solution (left), unstabilized solution (right)

The stabilized approximations are shown in Figure 3.4. Again the nonphysical oscillations are
controlled by the filtering and deconvolution step, with Step 2mod resulting in a sharper transition
region.
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Figure 3.4: Stabilized approximation using Step 2 (left) and Step 2mod (right).

Presented in Table 3.1 are the errors associated with the approximation using Step 2. The exper-
imental convergence rate is in good agreement with the predicted convergence rate from Corollary
2.38 of 1.

m NT ‖|u− U |‖2,2 Cvg. rate ‖|∇(u−W )|‖2,2 Cvg. rate

20 80 9.0925E-002 0.85 1.5696E-001 0.38
25 100 7.5161E-002 0.88 1.4419E-001 0.34
30 120 6.4029E-002 1.00 1.3554E-001 0.47
35 140 5.4914E-002 1.08 1.2604E-001 0.54
40 160 4.7563E-002 1.16 1.1725E-001 0.62
45 180 4.1510E-002 1.28 1.0902E-001 0.74

Table 3.1: Experimental convergence rates for the approximations of Example 2 using Step 2.

3.3 Example 3

In this example, taken from [9], we investigate the approximation of u(x, t) satisfying

ut + (u − αux)x = f(x) , 0 < x < 2, t > 0 , (3.5)

where α = 1 on (0, 1) ∪ (1.5, 2) and α = 0 on (1, 1.5).

The equation is parabolic on [0, 1), hyperbolic on [1, 1.5), and parabolic again on [1.5, 2]. We use as
the solution to (3.5)

u(x, t) =


− sin(x− 1) + exp(x− 1) + t(x− 1)2, 0 ≤ x < 1
(x− 1)2(t+ 1) + 1, 1 ≤ x < 1.5
1 + (x− 1.5)

(
x2 + (0.25t− 3.5)x+ (2.75− 0.625t)

)
, 1.5 ≤ x ≤ 2

,

which is discontinuous at x = 1.5, the hyperbolic-parabolic interface. The flux, (u − αux), is
continuous through the domain. For the boundary condition at x = 0 we specify the flux. At the
outflow boundary condition x = 2 we use ux = 0, which model a far field boundary.
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The unstabilized approximation exhibits highly oscillatory behavior, Figure 3.5, whereas both of the
stabilized approximations (corresponding to using Step 2 and Step 2mod) remove these spurous
oscillations, Figure 3.6.
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Figure 3.5: True solution (left), unstabilized approximation (right).

The approximation computed using Step 1 and Step 2 is computed on a grid with h = 1
32 and

∆t = 1
128 . The approximation computed using Step 2mod, shown on the right in Figure 3.6, uses

in the second step a grid with h = 1
64 .
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Figure 3.6: Stabilized approximation using Step 2 (left) and Step 2mod (right)

4 Conclusions

In this paper we have investigated a filter-deconvolution stabilization method for advection domi-
nated flow problems. The stabilization is a post-processing step applied to the approximation after
each time step. As such, it can be easily incorporated into existing approximation procedures. Sta-
bility of the algorithm and optimal convergence rates have been shown. Numerical experiments are
given which demonstrate the effectiveness of the algorithm.

Future work will investigate the use of other filter and deconvolution operators. In particular, for
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fluid flow applications the Stokes filter [18] is very attractive as it preserves incompressibility of the
velocity field.

References

[1] N. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing, J.
Comput. Phys., 178 (2002), pp. 391–426.

[2] T. Arbogast and M. Wheeler, A characteristics-mixed finite element method for advection-
dominated transport problems, SIAM J. Numer. Anal., 32 (1995), pp. 404–424.

[3] L. Berselli, T. Iliescu, and W. Layton, Large Eddy Simulation, Springer, Berlin, 2004.

[4] M. Berzins, Temporal error control for convection-dominated equations in two space dimen-
sions, SIAM J. Sci. Comput., 16 (1995), pp. 558–580.

[5] J. Boyd, Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral
and spectral element methods: Preserving boundary conditions and interpretation of the filter
as a diffusion, J. Comput. Phys., 143 (1998), pp. 283–288.

[6] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440–2463.

[7] G. de Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic
Press, Orlando Florida, 1986.

[8] A. Dunca and Y. Epshteyn, On the Stolz-Adams deconvolution model for the large-eddy
simulation of turbulent flows, SIAM J. Math. Anal., 37 (2006), pp. 1890–1902.

[9] A. Ern and J. Proft, Multi-algorithmic methods for coupled hyperbolic-parabolic problems,
Int. J. Numer. Anal. Model., 3 (2006), pp. 94–114.

[10] V. Ervin, W. Layton, and M. Neda, Numerical analysis of a higher order time relaxation
model of fluids, Int. J. Numer. Anal. Model., 4 (2007), pp. 648–670.

[11] R. Ewing, T. Russell, and M. Wheeler, Convergence analysis of an approximation of
miscible displacement in porous media by mixed finite elements and a modified method of char-
acteristics, Comput. Methods Appl. Mech. Engrg., 47 (1984), pp. 73–92.

[12] M. Germano, Differential filters of elliptic type, Phys. Fluids, 29 (1986), pp. 1757–1758.

[13] F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuka, FreeFem++.
http://www.freefem.org/ff++, 2005.

[14] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–
Stokes problem. Part IV: Error analysis for second-order time discretization, SIAM J. Numer.
Anal., 2 (1990), pp. 353–384.

[15] T. Hughes, L. Mazzei, and K. Jansen, Large eddy simulation and the variational multiscale
method, Comput. Vis. Sci., 3 (2000), pp. 47–59.

16



[16] V. John, S. Kaya, and W. Layton, A two-level variational multiscale method for convection-
dominated convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 195 (2006),
pp. 4594–4603.

[17] P. Knobloch and G. Lube, Local projection stabilization for advection–diffusion–reaction
problems: One-level vs. two-level approach, Appl. Numer. Math., 59 (2009), pp. 2891–2907.

[18] W. Layton, C. Manica, M. Neda, and L. Rebholz, Numerical analysis and computational
testing of a high-order Leray-deconvolution turbulence model, Num. Meth. Part. Diff. Eq., 24
(2008), pp. 555–582.

[19] W. Layton and M. Neda, Truncation of scales by time relaxation, J. Math. Anal. Appl., 325
(2007), pp. 788–807.

[20] Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media,
Water Resour. Res., 12 (1976), pp. 513–522.

[21] J. Mullen and P. Fischer, Filtering techniques for complex geometry fluid flows, Comm.
Numer. Methods Engrg., 15 (1999), pp. 9–18.

[22] I. Stanculescu, Existence theory of abstract approximate deconvolution models of turbulence,
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