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Abstract

In this article we investigate the LBB condition for axisymmetric flow problems. Specifically,
the sufficiency condition for approximating pairs to satisfy the LBB condition established by
Stenberg in the Cartesian coordinate setting is presented for the cylindrical coordinate setting.
For the cylindrical coordinate setting, the Taylor-Hood (k = 2) and conforming Crouzeix-Raviart
elements are shown to be LBB stable. A priori error bounds for approximations to the axisym-
metric Stokes flow problem using Taylor-Hood and Crouzeix-Raviart elements are given. The
computed numerical convergence rates for the error for an axisymmetric Stokes flow problem
support the theoretical results.
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1 Introduction

Accurate numerical simulations of 3-D fluid flow problems is a computationally challenging problem,
involving the approximate solution of large (sparse) systems of linear equations. However, in the case
the domain of the problem is a volume of revolution about a central axis, and the fluid flow is also
invariant with respect to rotation about the central axis, a change of variable from a Cartesian to a
cylindrical coordinate system significantly reduces the computational complexity. Specifically, the
3-D fluid flow problem decouples into a 2-D fluid flow problem and a scalar flow equation. However,
this transformation from the 3-D problem to a 2-D problem results in differential operators with
singularities on the the central axis, requiring the analysis to be done in suitably weighted Sobolev
spaces.

In the approximation of a fluid flow problem based on a weak formulation of the modeling equations,
specifically those modeling Navier-Stokes and Stokes, an important component in the approximation
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algorithm is ensuring that the velocity and pressure approximation spaces, Xh ⊂ X and Qh ⊂ Q,
respectively, satisfy the LBB condition, i.e.

inf
q∈Qh

sup
v∈Xh

b(q , v)

‖q‖Q ‖v‖X
≥ β , (1.1)

for some β ∈ IR+, where in Cartesian coordinates

b(q , v) =

∫
Ω
q∇ · v dx . (1.2)

“Compatible pairs” of velocity and pressure approximation spaces for fluid flow problems in Carte-
sian coordinates are well documented in the literature, see for example [6, 4]. Commonly used
elements include the mini-element, P1isoP2 − P1, and Taylor-Hood pairs. There are a number of
ways of establishing that (1.1) is satisfied for given approximation spaces Xh and Qh [6]. Of particu-
lar interest in this article is the general sufficient condition derived by Stenberg in [9]. Briefly stated,
in [9] Stenberg showed that if the partition of the domain can be classified into a finite number of
macroelements such that for each macroelement, M, the dimension of

NM =

{
q ∈ Qh :

∫
M
q∇ · v dx = 0 , ∀v ∈ {w ∈ Xh : w|∂M = 0}

}
(1.3)

is equal to one, then (1.1) is satisfied.

In the case of axisymmetric flow in cylindrical coordinates one requires a 2-D LBB condition (1.1)
be satisfied. Here however

b(q , v) = ba(q , v) :=

∫
Ω
q∇a · v r dx +

∫
Ω
q vr dx , (1.4)

where ∇a = [∂/∂r , ∂/∂z]T , v = [vr , vz]
T , dx = drdz, and the function spaces (and norms)

for X and Q differ significantly from the Cartesian case. Ruas in [8] showed that (1.1)(1.4) was
satisfied for rectangular based Q2 − discP1 elements, and for P2 + bubble − discP1 on a restricted
triangulation of Ω. In [2] Belhachmi, Bernardi, Deprais showed that (1.1)(1.4) was satisfied on a
regular triangulation of Ω for P1isoP2−P1 elements (which also implied (1.1)(1.4) for Taylor–Hood
P2 − P1 elements).

In this paper we establish that the sufficient condition of Stenberg also applies to (1.1)(1.4). Using
this setting we then show that the LBB condition is satisfied by Taylor–Hood P2 − P1 elements
and the conforming Crouzeix-Raviart P2 + bubble − discP1 elements on a general triangulation of
the domain Ω. For applications where mass conservation is of particular importance using P2 +
bubble− discP1 elements is attractive, as the computed approximations are mass conservative over
each triangle in the partition of Ω.

The paper is organized as follows. In the following section we present the axisymmetric Stokes flow
problem, introduce the appropriate function space setting, give the corresponding weak formulation,
and describe the setting for the finite element approximation. Section 3 contains a discussion of
Stenberg’s sufficiency condition for the LBB condition and shows how it extends to the axisymmetric
setting. In Section 4 we use the Stenberg sufficiency condition to show that the Taylor-Hood (k = 2)
and the conforming Crouzeix-Raviart elements are LBB stable. Combining the approximation
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properties derived by Belhachmi, Bernardi, Deprais in [2] with the LBB stability, in Section 5 we
give a priori error bounds for the approximation to the axisymmetric Stokes flow problem computed
using Taylor-Hood and Crouzeix-Raviart elements. A numerical example is given for which the
experimental rates of convergence for the approximation error agree with the theoretically predicted
rates.

2 Mathematical Preliminaries

In this section we give the mathematical framework for the investigation of the LBB condition
(1.1)(1.4). We follow the setting used in [2] for the axisymmetric Stokes problem.

2.1 Problem Description

Let Ω̆ ⊂ IR3 denote a domain symmetric with respect to the z-axis. With respect to cylindrical
coordinates, (r, θ, z), we let Ω denote the half section of Ω̆, Ω := Ω̆ ∩ {(r, 0, z) : r > 0, z ∈ IR}.
For the description of the boundary we let Γ := ∂Ω̆ ∩ ∂Ω, and Γ0 the intersection of Ω̆ and the
z-axis, Γ0 := ∂Ω̆ ∩ {(0, 0, z) : z ∈ IR}. Note that ∂Ω = Γ ∪ Γ0. In addition, we assume that Ω is
a simply connected domain with a polygonal boundary. (See Figure 2.1.)

Ω

Ω Γ

Ω

Γ0

Figure 2.1: Illustration of axisymmetric flow domain.

Consider Stokes equation (in Cartesian coordinates) in Ω̆, subject to homogeneous boundary con-
ditions on ∂Ω̆:

−∇ · η∇ŭ + ∇p̆ = f̆ in Ω̆ , (2.1)

∇ · ŭ = 0 in Ω̆ , (2.2)

ŭ = 0 on ∂Ω̆ , (2.3)

where ŭ =

 ux
uy
uz

 = uxex + uyey + uzez, for ex, ey, ez denoting unit vectors in the x, y and z

directions, respectively.
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Multiplying (2.1) through by a suitable smooth function v̆, v̆|∂Ω̆ = 0, integrating over Ω̆, and

multiplying (2.2) through by a suitable smooth function q and integrating over Ω̆ we obtain∫
Ω̆
η∇ŭ : ∇v̆ dV −

∫
Ω̆
p̆∇ · v̆ dV =

∫
Ω̆

f̆ · v̆ dV (2.4)∫
Ω̆
q̆∇ · ŭ dV = 0 . (2.5)

Expressing ŭ in cylindrical coordinates, ŭ =

 ur
uθ
uz

 = urer + uθeθ + uzez, and assuming that

the flow is axisymmetric, i.e. ŭ(r, θ, z) = u(r, z), f̆(r, θ, z) = f(r, z), p̆(r, θ, z) = p(r, z), ur(0, z) = 0,
uθ(0, z) = 0, equations (2.4)(2.5) transform into∫

Ω
η∇a

[
ur
uz

]
: ∇a

[
vr
vz

]
r dx +

∫
Ω
η ur vr

1

r
dx −

∫
Ω
p∇a ·

[
vr
vz

]
r dx −

∫
Ω
p vr dx

=

∫
Ω

[
fr
fz

]
·
[
vr
vz

]
r dx , (2.6)∫

Ω
η∇a uθ · ∇a vθ r dx +

∫
Ω
η uθ vθ

1

r
dx =

∫
Ω
fθ vθ r dx , (2.7)∫

Ω
q∇a ·

[
ur
uz

]
r dx +

∫
Ω
q ur dx = 0 , (2.8)

where ∇a :=

[
∂/∂r
∂/∂z

]
and dx := dr dz .

Note that the angular flow equation for uθ is decoupled from the flow equations for ur and uz. For

simplicity of our discussion of the LBB condition we will assume uθ = 0, and let u =

[
ur
uz

]
,

v =

[
vr
vz

]
, etc.

2.2 Function Spaces and Weak Formulation

Let Θ denote a domain in IR2. For any real α and 1 ≤ p < ∞, the space αL
p(Θ) is defined as the

set of measurable functions w such that

‖w‖
αLp(Θ) =

(∫
Θ
|w|p rα dx

)1/p

<∞ ,

where r = r(x) is the radial coordinate of x, i.e. the distance of a point x in Θ from the symmetry
axis. The subspace 1L

2
0(Θ) of 1L

2(Θ) denotes the functions q with weighted integral equal to zero:∫
Θ
q r dx = 0 .
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We define the weighted Sobolev space 1W
l,p(Θ) as the space of functions in 1L

p(Θ) such that their
partial derivatives of order less that or equal to l belong to 1L

p(Θ). Associated with 1W
l,p(Θ) is

the semi-norm | · |
1W l,p(Θ) and norm ‖ · ‖

1W l,p(Θ) defined by

|w|
1W l,p(Θ) =

(
l∑

k=0

‖∂kr ∂l−kz w‖p
1Lp(Θ)

)1/p

, ‖w‖
1W l,p(Θ) =

(
l∑

k=0

|w|p
1Wk,p(Θ)

)1/p

.

When p = 2, we denote 1W
l,2(Θ) as 1H

l(Θ). Also used in the analysis is the space 1V
1(Θ), a subset

of 1H
l(Θ), given by

1V
1(Θ) =

{
w ∈ 1H

1(Θ) : w ∈ −1L
2(Θ)

}
,

with norm ‖w‖
1V 1(Θ) =

(
|w|2

1H1(Θ) + ‖w‖2
−1L2(Θ)

)1/2
.

It can be proven that all functions in 1V
1(Ω) have a null trace on Γ0, [2, 7].

In order to incorporate the homogeneous boundary condition for the velocity on Γ, let

1H
1
♦(Ω) =

{
w ∈ 1H

1(Ω) : w = 0 on Γ
}
, and 1V

1
♦ (Ω) =

{
w ∈ 1V

1(Ω) : w = 0 on Γ
}
.

For convenience of notation, let X := 1V
1
♦ (Ω) × 1H

1
♦(Ω) and for v = [vr, vz]

T , ‖v‖X(Θ) =(
‖vr‖2

1V 1(Θ) + |vz|2
1H1(Θ)

)1/2
, and Q := 1L

2
0(Ω) with ‖ · ‖Q = ‖ · ‖

1L2(Ω). When Θ = Ω, we write

‖v‖X := ‖v‖X(Θ). With X we associate the innerproduct

〈v, w〉X =

∫
Ω

(
∇av : ∇aw +

vr
r

wr
r

)
r dx . (2.9)

Using as the pivot space
(

1L
2(Ω)

)2
with innerproduct 〈f , g〉 :=

∫
Ω f ·g r dx , let X∗ denote the dual

space of X, i.e. X∗ is the completion of
(

1L
2(Ω)

)2
with respect to the norm

‖f‖X∗ = supg∈X
〈f , g〉
‖g‖X

.

For Θ a domain in IRn, n = 2, 3, we use the standard definitions for L2(Θ), L2
0(Θ), Hk(Θ), and

Hk
0 (Θ) (see [1]).

The weak axisymmetric formulation for the Stokes equations can be stated as: Given f ∈ X∗,
determine (u, p) ∈ (X ×Q) satisfying

a(u, v) − ba(p, v) = 〈f ,v〉X∗,X ∀v ∈ X , (2.10)

ba(q, u) = 0 , ∀q ∈ Q , (2.11)

where

a(u, v) :=

∫
Ω
η∇au : ∇av r dx +

∫
Ω
η ur vr

1

r
dx , (2.12)

ba(q, v) :=

∫
Ω
q∇a · v r dx +

∫
Ω
q vr dx , (2.13)
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and 〈·, ·〉X∗,X denotes the duality pairing between X and X∗.

For the discussion of existence and uniqueness of (2.10)(2.11) see [3, 2]. In particular we note that
there exists β > 0 such that

inf
q∈Q

sup
v∈X

ba(q, v)

‖q‖Q ‖v‖X
≥ β . (2.14)

2.3 Finite Element Approximation Setting

In this section we describe, as in [2], the setting for the finite element approximation to (2.10)(2.11).

We assume that Ω is a convex polygonal domain and (Th)h denotes a family of uniformly regular
triangulations of Ω satisfying:

(i) The domain Ω is the union of the triangles of Th.

(ii) Tk ∩ Tj is a side, a node, or empty for all triangles Tk, Tj , k 6= j, in Th.

(iii) There exists a constant σ, independent of h, such that for all T ∈ Th its diameter hT is smaller
that h and T contains a circle of radius σ hT .

Additionally we assume that each triangle T in Th has at least one vertex inside Ω (i.e. not on
Γ ∩ Γ0).

The properties that Ω is convex and the triangulations uniformly regular are used in the proof of
Lemma 2.

Let Pk(T ) denote the set of restriction to T of polynomials of degree less than or equal to k. For
the velocity approximation space we consider

Xh = {w ∈ (C0(Ω))2 : w|Γ = 0 , wr|Γ0 = 0 ,w|T ∈ (Pk(T ))2, ∀T ∈ Th} ⊂ X . (2.15)

For the pressure space,

Qh = {q ∈ C0(Ω) :

∫
Ω
q r dx = 0 , q|T ∈ Pk−1(T ), ∀T ∈ Th} ⊂ Q . (2.16)

The approximation pair (Xh, Qh) given by (2.15)(2.16) with k = 2 represent the Taylor-Hood P2−P1

pair.

For T ∈ Th, let (λ1(x, y), λ2(x, y), λ3(x, y)) denote the normalized (i.e. λ1+λ2+λ3 = 1) barycentric
coordinates of (x, y) ∈ T . Introduce the bubble function on T ,

bT (x, y) := 27λ1(x, y)λ2(x, y)λ3(x, y), and BT := span{bT }. (2.17)

The approximation pair

Xh = {w ∈ (C0(Ω))2 : w|Γ = 0 , wr|Γ0 = 0 ,w|T ∈ (P2(T )⊕BT )2, ∀T ∈ Th} ⊂ X , (2.18)

Qh = {q :

∫
Ω
q r dx = 0 , q|T ∈ P1(T ), ∀T ∈ Th} ⊂ Q , (2.19)
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correspond to the conforming Crouzeix-Raviart mixed finite element pair.

In Section 4 we show that the pairs (2.15)(2.16),for k = 2, and (2.18)(2.19) are both LBB stable.

Below, all constants C,C1, C2, . . . used are independent of h. However their values may change from
line to line.

3 Mathematical Preliminaries

In [9] Stenberg established a sufficient condition on the family of partitions (Th)h and the approxi-
mation spaces Xh, and Qh, for the LBB condition (1.1)(1.2) to be satisfied. For the axisymmetric
flow formulation we have a different operator b(·, ·) and different velocity and pressure spaces.

The proof of the Stenberg sufficiency condition in [9] follows easily from two lemmas, generalized
as Lemma 1 and Lemma 2 below. The proof of Lemma 1 follows as in [9]. However, because of the
singular operators and different norms arising in the axisymmetric formulation, the proof of Lemma
2 is considerably more complicated. As in [9], the proof of the sufficiency condition follows from
Lemmas 1 and 2.

We discuss the case for a triangulation of the domain Ω. The results can be extended to a partition
of the domain into regular quadrilateral elements.

3.1 Stenberg sufficient condition

A macroelement M is said to be equivalent to a reference macroelement M̂ if there is a mapping
FM : M̂ →M satisfying the conditions:

(i) FM is continuous and one-to-one.

(ii) FM (M̂) = M .

(iii) If M̂ = ∪mj=1T̂j , where T̂j , j = 1, 2, . . . ,m, are the triangles in M̂ , then Tj = FM (T̂j),
j = 1, 2, . . . ,m, are the triangles in M .

(iv) FM |
T̂j

= FTj ◦ F
−1

T̂j
, j = 1, 2, . . . ,m, where F

T̂j
and FTj are the affine mappings from the

reference triangle with vertices (0, 0), (1, 0) and (0, 1) onto T̂j and Tj , respectively.

The family of macroelements equivalent with M̂ is denoted E
M̂

.

For a macroelement M define the spaces Xh,M , Qh,M and Nh,M as

Xh,M = {w ∈ (C0(Ω))2 : w|Γ = 0 , wr|Γ0 = 0 ,w|Ω\M = 0, w|T ∈ (Pk(T ))2, ∀T ∈M} ⊂ X ,(3.1)

Qh,M = {q :

∫
Ω
q r dx = 0 , q|T ∈ Pl(T ), ∀T ∈M} ⊂ 1L

2
0(M) , (3.2)

Nh,M = {q ∈ Qh,M : ba(q , w) = 0 , ∀w ∈ Xh,M} . (3.3)

Theorem 1 [9] [Stenberg Sufficiency Condition] If

7



(i) there exists a finite set of classes E
M̂i
, i = 1, . . . , n, n ≥ 1, such that for each M ∈ E

M̂i
, i =

1, . . . , n, the space NM is one dimensional consisting of functions which are constant on M ,

(ii) for each Th ∈ (Th)h, the triangles can be grouped together to form macroelements Mj , j =
1, . . . ,m, such that the so obtained macroelement partitioning of Ω, Mh satisfies that Mj

belongs to some E
M̂i

, for all Mj ∈Mh,

then (1.1)(1.2) is satisfied.

In the case linear elements are used for the velocity approximation there is one additional constraint
on Th.

(iii) If γ is the common part of two macroelements in (ii) then γ is connected and contains at least
two edges of triangles in Th.

Remark: The stated theorem trivially extends to the case where the velocity approximating space
is enriched with bubble functions, i.e. w|T ∈ (Pk(T )⊕Bk(T ))2, where Bk(T ) = {v ∈ (Pk+1(T ))2 :
v = λ1λ2λ3w , w ∈ (Pk−2(T ))2}.

The following two lemmas are analogues of the key lemmas used by Stenberg in [9].

Let Πh denote the projection, with respect to the innerproduct 〈q, p〉 :=
∫

Ω q p r dx, from Qh onto
the space

QCh := {q ∈ Q : q|M is constant ∀M ∈Mh} . (3.4)

Lemma 1 [See [9], Lemma 3.2] Under the conditions of Theorem 1, there is a constant C > 0 such
that for all qh ∈ Qh there is a vh ∈ Xh satisfying

ba(qh , vh) =

∫
Ω
qh∇a · vh r dx +

∫
Ω
qh vh r dx

=

∫
Ω

(I − Πh)qh∇a · vh dx +

∫
Ω

(I − Πh)qh vh r dx

≥ C‖(I − Πh)qh‖2Q , (3.5)

and ‖vh‖X ≤ ‖(I − Πh)qh‖Q . (3.6)

Proof : The proof of this lemma follows as that of Lemma 3.2 in [9].

Lemma 2 [[9], Lemma 3.3] Under the conditions of Theorem 1, there is a constant C > 0 such
that for all qh ∈ Qh there is a vh ∈ Xh satisfying

ba(qh , vh) =

∫
Ω
qh∇a · vh r dx +

∫
Ω
qh vh r dx = ‖Πhqh‖2Q , (3.7)

and ‖vh‖X ≤ C ‖Πhqh‖Q . (3.8)

The proof of Lemma 2 involves three steps. First, for qh ∈ Qh given, the identification of v ∈ X
satisfying ba(qh, v) = Πhqh, and ‖v‖X ≤ C‖Πhqh‖Q. Step 2 is the construction of an approxi-
mation vh ∈ Xh of v such that ba(qh, vh) = ba(qh, v). The third step involves establishing that
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‖vh‖X ≤ C‖v‖X . Because of the norms involved, it is this step that differs significantly from [9].
To do step 3 we follow the approach from Ruas in [8].

Steps 1 and 2 in proof of Lemma 2
Let q0

h ∈ Qh be given. As Πhq
0
h ∈ Qh from (2.14) we have that there exists a v0 ∈ X satisfying

∇a · v0 +
1

r
v0
r = Πhq

0
h , and ‖v0‖X ≤

1

β
‖Πhq

0
h‖Q . (3.9)

Let Ph : X → Xh denote the orthogonal projection defined by 〈·, ·〉X . Let ai, i = 1, . . . , ne denote
a labeling of the triangle edges in the triangulation Th, with ni and τ i a unit normal and tangent
vector to ai, respectively.

Assume that we have a Lagrangian basis for Xh, and that along each edge, ai, the nodes are located
at the endpoints and the Gaussian quadrature points. (For k = 3 modified Gaussian quadrature
points are used. See (3.25).) Let Mi denote an interior nodal point on ai, with φMi the associated
local basis function, such that ∫

ai

φMi r ds 6= 0 . (3.10)

Denote the other nodal points as S1, . . . , Snb .

Introduce Rh : X → Xh an approximation operator defined by

Rhv(Sj) = Phv(Sj), j = 1, . . . , nb, (3.11)

Rhv(Mi) · τ i = Phv(Mi) · τ i, i = i, . . . , ne, (3.12)∫
ai

Rhv · ni r ds =

∫
ai

v · ni r ds, i = i, . . . , ne. (3.13)

For v0 defined in (3.9), let

v0
h = Rhv

0 , e0
h = v0

h − Phv0 , and e0 = v0 − Phv0 ,

By construction
‖Πhq

0
h‖2Q = ba(q

0
h , v0) = ba(q

0
h , v0

h) .

Also,
‖v0

h‖X(T ) ≤ ‖e0
h‖X(T ) + ‖Phv0‖X(T ) ≤ ‖e0

h‖X(T ) + ‖v0‖X(T ) ,

To complete the proof it suffices to show that ‖e0
h‖X ≤ C ‖e0‖X . To establish this inequality re-

quires us to look closely at the triangulation of Ω and the interpolation. We introduce the additional
notation. For T ∈ Th, (see Figure 3.1) let

FT (ξ) = JT ξ +

[
r1

z1

]
, JT =

[
(r2 − r1) (r3 − r1)
(z2 − z1) (z3 − z1)

]
, (3.14)

aTi , i = 1, 2, 3, denote the edges of T , with MT
i denoting the associated edge point used in (3.12),

nTi the unit normal used in (3.13), lTi its length, and ITe ⊂ 1, 2, 3 an index set such that i ∈ ITe
implies that aTi 6⊂ Γ0, i.e. aTi does not lie on the z-axis.
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Figure 3.1: Mapping of the reference triangle T̂ to triangle T .

By assumption of a regular triangulation, there exists constants cJ , CJ > 0 such that

cJh
2
T ≤ |det(JT )| = |JT | ≤ CJh

2
T .

For Θ ⊂ Ω, let rmax(Θ) := max{r : (r, z) ∈ Θ̄}, and rmin(Θ) := min{r : (r, z) ∈ Θ̄} .

As Th is a regular triangulation of Ω we have that there exists c1 > 0 such that

rmax(T ) ≥ c1hT , for all T ∈ Th . (3.15)

It is useful to categorization the triangles T of Th into three types. For constants c2, c3, c4 > 0 the
following inequalities hold.

Type 1: T ∩ Γ0 is empty. For these triangles we have that

rmin(T ) ≥ c2 hT . (3.16)

Type 2: T ∩ Γ0 is a side. For these triangles, without loss of generality (WLOG), we assume that
the local counter-clockwise labeling of T is such that the vertices S1 and S3 (equivalently aT2 )
lie on Γ0. Then, under the transformation FT ,

r = r2 ξ = rmax(T ) ξ , and rmax(T ) ≤ c3hT . (3.17)

Type 3: T ∩ Γ0 is a point. For these triangles, WLOG, we assume that the local counter-clockwise
labeling of T is such that the vertex S1 lies on Γ0. Under the transformation FT ,

r = r2 ξ + r3η ≥ min{r2, r3}(ξ + η) ≥ c4 hT (ξ + η) . (3.18)

Step 3 in proof of Lemma 2
For each T ∈ Th we now estimate ‖e0

h‖X(T ). As T ∈ Th is considered fixed we omit the superscript

T in the notation of aTi , M
T
i , etc.
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We have

e0
h|T =

3∑
i=1

e0
h(Mi) · ni φi ni ,

where φi is the canonical local basis function of Xh associated with Mi. Thus,

‖e0
h‖2X(T ) = ‖e0

h r‖21V 1(T ) + |e0
h z|21H1(T )

=

∫
T

∣∣∣∣∣
3∑
i=1

e0
h(Mi) · ni∇aφi ni r

∣∣∣∣∣
2

r dx +

∫
T

∣∣∣∣∣
3∑
i=1

e0
h(Mi) · ni φi ni r

∣∣∣∣∣
2

1

r2
r dx

+

∫
T

∣∣∣∣∣
3∑
i=1

e0
h(Mi) · ni∇aφi ni z

∣∣∣∣∣
2

r dx

≤
3∑
i=1

(
e0
h(Mi) · ni

)2 3∑
i=1

(
|φi|21H1(T ) + ‖φi‖2−1L2(T )

)
. (3.19)

Mapping from T to the reference triangle T̂ we have

|φi|21H1(T ) =

∫
T
|∇aφi|2r dx ≤ C

∫
T̂

(
|∂φ̂i
∂ξ
|2 + |∂φ̂i

∂η
|2
)
h−2
T r̂ h2

T dξ

≤ C rmax(T ) . (3.20)

For T a Type 1 triangle,

‖φi‖2−1L2(T ) =

∫
T
|φi|2

1

r2
r dx =

∫
T̂
|φ̂i|2

1

r̂
h2
T dξ

≤ C1
1

rmin(T )
h2
T ≤ C hT . (3.21)

For T a Type 2 triangle, for i ∈ Ie, φ̂i vanishes along ξ = 0 thus φ̂i = ξψ̂i, with ψ̂i ∈ Pk−1(T ).

‖φi‖2−1L2(T ) =

∫
T
|φi|2

1

r2
r dx =

∫
T̂
|φ̂i|2

1

rmax(T ) ξ
h2
T dξ

≤ C1

∫
T̂
ξ |ψ̂i|2 hT dξ ≤ C hT . (3.22)

For T a Type 3 triangle,

‖φi‖2−1L2(T ) =

∫
T
|φi|2

1

r2
r dx =

∫
T̂
|φ̂i|2

1

r2ξ + r3η
h2
T dξ

≤ C1

∫
T̂
|φ̂i|2

1

ξ + η
hT dξ ≤ C hT . (3.23)

Thus, combining (3.20)–(3.23), we have for i ∈ Ie

|φi|21H1(T ) + ‖φi‖2−1L2(T ) ≤ C rmax(T ) . (3.24)
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Next we need to construct an estimate for |e0
h(Mi) · ni|.

By construction of v0
h, ∫

ai

e0
h(Mi) · ni φi r ds =

∫
ai

e0 · ni r ds ,

i.e. |e0
h(Mi) · ni| |

∫
ai

φi r ds| ≤
∫
ai

|e0 · ni| r ds .

Note that φi r is a polynomial of degree ≤ k + 1 in s along ai which vanishes at the endpoints. For
k = 2 and k ≥ 4 the k − 1 Gaussian quadrature formula exactly evaluates

∫
ai
φi r ds. For k = 3 the

modified Gaussian quadrature formula,∫ 1

−1
f(t) dt ∼ 5

6
f(−1/

√
5) +

5

6
f(1/
√

5) , (3.25)

exactly evaluates the integral.

With rMi the r coordinate of Mi, applying the quadrature formula we have that there exists c > 0
such that ∣∣c rMi li e

0
h(Mi) · ni

∣∣ ≤ ∫
ai

|e0 · ni| r ds .

For ai ⊂ Γ0, e0
h(Mi) · ni = 0. Otherwise, for ai 6⊂ Γ0, there exists a constant C > 0 such that

rMi ≥ C rmax(T ), and li ≥ 2σhT . Thus∣∣e0
h(Mi) · ni

∣∣ ≤ C (rmax(T )hT )−1
∫
ai

|e0 · ni| r ds . (3.26)

Next we use the obvious bound∫
ai

|e0 · ni| r ds ≤
∫
ai

|e0
r | r ds +

∫
ai

|e0
z| r ds . (3.27)

For
∫
ai
|e0
r | r ds, again using the mapping of the triangle T to the reference triangle T̂∫

ai

|e0
r | r ds ≤ hT

∫
âi

|r̂e0
r | dŝ ≤ hT ‖r̂e0

r‖L2(∂T̂ )
.

Applying the Trace Theorem to T̂ , and using |JT | ≥ cJ h
2
T , we then have∫

ai

|e0
r | r ds ≤ C hT ‖r̂e0

r‖H1(T̂ )

≤ C hT

(∫
T
|re0

r |2 |JT |−1 dx +

∫
T
|∇a re0

r |2 h2
T |JT |−1 dx

)1/2

≤ C

(∫
T
|e0
r |2 r r dx + h2

T

∫
T
|∇a e0

r |2 r r dx + h2
T

∫
T

∣∣∣∣e0
r

r

∣∣∣∣2 r r dx
)1/2

(3.28)

≤ C (rmax(T ))1/2
(
‖e0
r‖21L2(T ) + h2

T ‖e0
r‖21V 1(T )

)1/2
. (3.29)
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In order to bound
∫
ai
|e0
z| r ds we consider the three types for T ∈ Th. In each case we establish∫

ai

|e0
z| r ds ≤ C (rmax(T ))1/2

(
‖e0
z‖21L2(T ) + h2

T |e0
z|21H1(T )

)1/2
. (3.30)

Type 1. T ∩ Γ0 is empty.
Estimate (3.30) is established by mapping T to T̂ and applying the Trace Theorem. (See [5] for
details.)

Type 2. T ∩ Γ0 is a side.
Estimate (3.30) is established by mapping T to T̂ , revolving T̂ around the η-axis to generate a
reference cone Ê, and then applying the Trace Theorem to Ê. (See [5] for details.)

Type 3. T ∩ Γ0 is a point.
In this case, after mapping T to T̂ , the integral is split into two pieces. One piece is handled as
in case Type 2, by forming a reference cone by rotating T̂ around the η-axis. The other piece is
handled similarly, by forming a reference cone by rotating T̂ around the ξ-axis. (See [5] for details.)

Combining (3.27),(3.29) and (3.30) we obtain∫
ai

|e0 · ni| r ds ≤ C (rmax(T ))1/2
(
‖e0
r‖21L2(T ) + h2

T ‖e0
r‖21V 1(T ) + ‖e0

z‖1L2(T ) + h2
T |e0

z|21H1(T )

)1/2
.

(3.31)

From (3.26) and (3.31)∣∣e0
h(Mi) · ni

∣∣2 ≤ C (rmax(T ))−1 h−2
T

(
‖e0
r‖21L2(T ) + h2

T ‖e0
r‖21V 1(T ) + ‖e0

z‖1L2(T ) + h2
T |e0

z|21H1(T )

)
.

(3.32)

Combining (3.19),(3.24), and (3.32) yields

‖e0
h‖2X(T ) ≤ C h−2

T

(
‖e0
r‖21L2(T ) + h2

T ‖e0
r‖21V 1(T ) + ‖e0

z‖1L2(T ) + h2
T |e0

z|21H1(T )

)
. (3.33)

Summing over the triangles we obtain

‖e0
h‖2X(T ) ≤ C

∑
T∈Th

h−2
T ‖e

0‖2
1L2(T ) + ‖e0‖2X

 . (3.34)

Thus, what remains to show is that∑
T∈Th

h−2
T ‖e

0‖2
1L2(T ) ≤ C ‖e0‖2X . (3.35)

Using the fact that the mesh is a uniformly regular triangulation implies that there exists a constant
c > 0 such that c h ≤ hT . Hence (3.35) may be replaced by showing that

‖e0‖
1L2(Ω) ≤ C h ‖e0‖X . (3.36)

To establish (3.36) we use the following Propositions relating function spaces defined on Ω to ax-
isymmetric functions, with zero angular component, defined on Ω̆.
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Proposition 1 [3] The axisymmetric reduction of functions in
(
L2(Ω̆)

)3
, with zero angular com-

ponent, to functions in
(

1L
2(Ω)

)2
is an isometry (up to a factor of

√
2π).

Proposition 2 The axisymmetric reduction of functions in
(
H2(Ω̆)

)3
, with zero angular compo-

nent, to functions in
(

1H
2(Ω)

)2
is a bounded mapping satisfying ‖w̆‖

(H2(Ω̆))
3 ≥ ‖w‖(1H2(Ω))2.

Proof : The proof follows by direct calculation.

Let ĕ0 denote the axisymmetric extension of e0 to Ω̆. From Proposition 1 we have that

ĕ0 ∈
(
L2(Ω̆)

)3
and ‖ĕ0‖L2(Ω̆) =

√
2π‖e0‖

1L2(Ω). Let w̆ ∈
(
H1

0 (Ω̆)
)3

be given by

∇ · ∇w̆ = ĕ0 , in Ω̆ . (3.37)

As ĕ0 is axisymmetric, then w̆ is also. Additionally, as Ω̆ is convex, w̆ ∈
(
H2(Ω̆)

)3
, and

‖w̆‖H2(Ω̆) ≤ C1 ‖ĕ0‖L2(Ω̆) ≤ C ‖e0‖
1L2(Ω).

Let w be the reduction of w̆ to Ω. From Proposition 2 we have that w ∈
(

1H
2(Ω)

)2
, and

‖w‖(1H2(Ω))2 ≤ ‖w̆‖(H2(Ω̆))
3 ≤ C ‖e0‖

1L2(Ω).

Then

2π ‖e0‖2
1L2(Ω) = ‖ĕ0‖2

L2(Ω̆)
= (ĕ0, ĕ0)L2(Ω̆)

= (∇w̆, ∇ĕ0)L2(Ω̆) = 2π 〈w, e0〉X
= 2π 〈w − χ , e0〉X , for χ ∈ Xh ,

≤ 2π ‖e0‖X inf
χ∈Xh

‖w − χ‖X

≤ 2π ‖e0‖X C h ‖w‖(1H2(Ω))2 (from [2], Theorem 5)

≤ C h ‖e0‖X ‖e0‖
1L2(Ω) . (3.38)

Thus we have that
‖e0‖

1L2(Ω) ≤ C h ‖e0‖X . (3.39)

Proof of Theorem 1: In view of Lemmas 1 and 2, the proof of Theorem 1 now follows as in [9].

4 The LBB condition for Taylor-Hood and Crouzeix-Raviart ele-
ments

In this section we show that the Stenberg sufficiency criteria for satisfying the LBB condition
(1.1)(1.3) is satisfied for Taylor-Hood P2 − P1 and the conforming Crouzeix-Raviart approximating
elements on triangles.
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4.1 Taylor-Hood P2 − P1 approximation pair

We begin by identifying an appropriate macroelement, M , and then show that the corresponding
vector space Nh,M has dimension one.

Let M be given by the collection of three triangles in Figure 4.1.

1R
2R

3R

4R

5R

T1

T2

T3

6R

7R

,
1 1

)(r z
2

, )
2

(r z

, )
3 3

(r z

, )
4 4

(r z
, )

5 5
(r z

r

z

Figure 4.1: Macroelement for Taylor-Hood
P2 − P1.

1R

2R

T1

7R
T2

T3

3R

5R

8R

6R

4R( )

z

r

Figure 4.2: Macroelement for Taylor-Hood
P2 − P1.

Let Xh,M , Qh,M , Nh,M , be given by (3.1)-(3.3) with k = 2 and l = 1, and

X0
h,M = {w ∈ (C0(Ω))2 : w|∂Ω = 0 ,w|Ω\M = 0, w|T ∈ (P2(T ))2, ∀T ∈M} ⊂ Xh,M , (4.1)

N0
h,M =

{
q ∈ Qh,M : ba(q , w) = 0 , ∀w ∈ X0

h,M

}
⊃ Nh,M . (4.2)

As the function q = constant is contained in Nh,M and N0
h,M , we have 1 ≤ dim(Nh,M ) ≤ dim(N0

h,M ).

Hence it suffices to show that dim(N0
h,M ) = 1.

Note that X0
h,M differs from Xh,M in that for M such that M ∩Γ0 6= ∅, w ∈ X0

h,M satisfies w|Γ0 = 0,

whereas for w ∈ Xh,M , wr|Γ0 = 0. X0
h,M is introduced for convenience so that we do not need to

separately consider those macroelements which have a nontrivial intersection with the symmetry
boundary, Γ0.

For notational convenience we suppress the h subscript and 0 superscript, i.e. NM ≡ N0
h,M and

XM ≡ X0
h,M .

We have that

XM = span

{
v1 = q6(r, z)

[
1
0

]
,v2 = q6(r, z)

[
0
1

]
,v3 = q7(r, z)

[
1
0

]
,v4 = q7(r, z)

[
0
1

]}
,

where q6, q7 represent the (continuous) Lagrangian quadratic basis function which has value 1 at
nodeR6, R7, respectively, and vanish at all other nodes. QM = span{l1(r, z), l2(r, z), l3(r, z), l4(r, z),
l5(r, z)}, where li, i = 1, . . . , 5, represents the (continuous) Lagrangian linear basis function which
has value 1 at node Ri and vanishes at nodes Rj , j = 1, 2, . . . , 5, j 6= i.

Note that the defining equation for NM generates four equations for the five unknown constants
p1, p2, p3, p4, p5, where p(r, z) = p1 l1(r, z) + p2 l2(r, z) + p3 l3(r, z) + p4 l4(r, z) + p5 l5(r, z) .
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Using Green’s theorem,∫
M
p∇a · v r dx +

∫
M
p vr dx = −

∫
M

v · ∇ap r dx = −
3∑
j=1

∫
Tj

v · ∇ap r dx . (4.3)

Also, ∫
Tj

v · ∇ap r dx =

∫
T̂

v̂ · J−tTj ∇ξ,ηp̂ r̂ |JTj | dξ dη , (4.4)

where |JTj | denotes the absolute value of the determinant of JTj , J
−t
Tj

the transpose of the inverse

of JTj , and ĝ(ξ, η) := g(F−1
Tj

(r, z)), (see (3.14)).

For v ∈ XM , p ∈ QM , v̂ is a (vector) quadratic function, ∇ξ,ηp̂ is a constant vector, and JTj is a
constant matrix. Hence the integrand in (4.4) is a polynomial of degree ≤ 3.

Introduce the following Lagrangian quadratic and linear basis functions on T̂ .

q̂1(ξ, η) = (1 − ξ − η)(1 − 2ξ − 2η) , q̂2(ξ, η) = ξ (2ξ − 1) ,

q̂3(ξ, η) = η (2η − 1) , q̂4(ξ, η) = 4 ξ η ,

q̂5(ξ, η) = 4 η (1 − ξ − η) , q̂6(ξ, η) = 4 ξ (1 − ξ − η) ,

and
l̂1(ξ, η) = (1 − ξ − η) , l̂2(ξ, η) = ξ , l̂3(ξ, η) = η . (4.5)

Also note that the quadrature formula∫
T̂
f̂(ξ, η) dξ dη ∼ 8

120

(
f̂(1/2, 0) + f̂(1/2, 1/2) + f̂(0, 1/2)

)
+

3

120

(
f̂(0, 0) + f̂(1, 0) + f̂(0, 1)

)
+

27

120
f̂(1/3, 1/3) , (4.6)

is exact for polynomials of degree ≤ 3.

4.1.1 Computation of
∫
T2

v · ∇ap r dx

In terms of the mapping of T2 to the reference triangle, relative to (3.14), associate S1 ≡ R1,
S2 ≡ R3, and S3 ≡ R5.

We have that

v1(r, z)|T2 = q̂6(F−1
T2

(r, z))

[
1
0

]
, v2(r, z)|T2 = q̂6(F−1

T2
(r, z))

[
0
1

]
,

v3(r, z)|T2 = q̂4(F−1
T2

(r, z))

[
1
0

]
, v4(r, z)|T2 = q̂4(F−1

T2
(r, z))

[
0
1

]
,

p(r, z) = p1 l̂1(F−1
T2

(r, z)) + p3 l̂3(F−1
T2

(r, z)) + p5 l̂5(F−1
T2

(r, z)) ,

and JT2 =

[
(r3 − r1) (r5 − r1)
(z3 − z1) (z5 − z1)

]
.
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Using (4.4) and (4.6) we have that∫
T2

v1 · ∇ap r dx =
1

30
(2r1 + 2r3 + r5) ((z3 − z5)p1 + (z5 − z1)p3 + (z1 − z3)p5) , (4.7)

∫
T2

v2 · ∇ap r dx = − 1

30
(2r1 + 2r3 + r5) ((r3 − r5)p1 + (r5 − r1)p3 + (r1 − r3)p5) , (4.8)∫

T2

v3 · ∇ap r dx =
1

30
(r1 + 2r3 + 2r5) ((z3 − z5)p1 + (z5 − z1)p3 + (z1 − z3)p5) , (4.9)

and ∫
T2

v4 · ∇ap r dx = − 1

30
(r1 + 2r3 + 2r5) ((r3 − r5)p1 + (r5 − r1)p3 + (r1 − r3)p5) . (4.10)

Similar equations to (4.7)-(4.10) are obtained from considering
∫
T1

v ·∇ap r dx, and
∫
T3

v ·∇ap r dx.
(See [5] for details.)

4.1.2 Dimension of NM

Let

α1 := 2r1 + r2 + 2r3 , α2 := 2r1 + 2r3 + r5 ,

α3 := r1 + 2r3 + 2r5 , α4 := 2r3 + r4 + 2r5 .

Note, as ri ≥ 0, i = 1, 2, . . . , 5, and the geometry of the triangles, that α1, α2, α3 and α4 > 0.

Corresponding to
∫
M p∇a · v r dx +

∫
M p vr dx = −

∫
M v · ∇ap r dx = 0 , ∀v ∈ XM , we obtain

(after minor simplification) the following linear system of equations, Ap = 0, where A is given by
α1(z2 − z3) + α2(z3 − z5) α1(−z1 + z3) α1(z1 − z2) + α2(−z1 + z5) α2(z1 − z3)
α1(r2 − r3) + α2(r3 − r5) α1(−r1 + r3) α1(r1 − r2) + α2(−r1 + r5) α2(r1 − r3)

α3(z3 − z5) α3(−z1 + z5) + α4(z4 − z5) α4(−z3 + z5) α3(z1 − z3) + α4(z3 − z4)
α3(r3 − r5) α3(−r1 + r5) + α4(r4 − r5) α4(−r3 + r5) α3(r1 − r3) + α4(r3 − r4)

 .

(4.11)

Note that p1 = p2 = p3 = p4 = p5 is a solution to (4.11), i.e. NM contains the constant functions.
To show that dim(NM ) = 1 it suffices to show that the matrix A has full rank, i.e. the rows of A
are linearly independent.

Lemma 3 The rows of the matrix A given in (4.11) are linearly independent.

Proof : Let p̃1 = p1 + (α3/α4)p4, p̃5 = p5 + (α2/α1)p2, p̃ = [p̃1 p2 p3 p4 p̃5]T , and consider in
place of Ap = 0 the corresponding linear system Ãp̃ = 0.

To see that the rows of Ã are linearly independent, consider:

C1Ã1,· + C2Ã2,· + C3Ã3,· + C4Ã4,· = 0 . (4.12)
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Corresponding to columns 1 and 2 in (4.12) we have[
α1(z2 − z3) + α2(z3 − z5) α1(r2 − r3) + α2(r3 − r5)

α1(−z1 + z3) α1(−r1 + r3)

] [
C1

C2

]
=

[
0
0

]
.

Note that if r1 = r3, as R1 6= R3, then the second equation implies C1 = 0. The first equation then
gives C2 = 0. Therefore, assume r1 6= r3.

A non-trivial solution for C1, C2 requires the determinant of the 2 × 2 matrix to be zero. This
implies

(z2 − z3) + α2
α1

(z3 − z5)

(r2 − r3) + α2
α1

(r3 − r5)
=

z1 − z3

r1 − r3
. (4.13)

Consider now the quadrilateral formed by R1, R2, R3, RP , where RP denotes the point on the half-
line passing through R5 and terminating at R3 given by

RP := (r3 −
α2

α1
(r3 − r5) , z3 −

α2

α1
(z3 − z5) .

Equation (4.13) implies that the vector ~RPR2 has the same slope as the vector ~R1R3, which is
impossible as they form opposite diagonals of the quadrilateral. Hence C1 = C2 = 0.

An analogous argument using columns 4 and 5 in (4.12) leads to C3 = C4 = 0.

Hence, the rows of Ã are linearly independent, i.e. rank(Ã) = 4 = rank(A).

By modifying the matrix in (4.11), it is straight forward to show that the three triangles depicted in
Figure 4.2 also form a macroelement for Taylor-Hood P2 − P1 approximation pair. Thus, we could
conclude that for any triangulation of the domain of Ω, which can be partitioned into groups of
three adjacent triangles, the Taylor-Hood P2−P1 approximation pair is LBB stable. However often
the number of triangles in a triangulation is not exactly divisible by three. Next we demonstrate
that there are many choices of macroelements for the Taylor-Hood P2 − P1 approximation pair.

Lemma 4 Suppose M is a macroelement with NM = 1, consisting of functions which are constant
on M . Let M̃ be formed from M by adding an adjacent triangle (i.e. sharing an edge with M).
Then M̃ is also a macroelement with the desired property that NM̃ = 1, consisting of functions

which are constant on M̃ .

Proof : We consider separately the two cases corresponding to M̃ being formed by adding a triangle
to M that: (i) shares two edges with M , and (ii) shares one edge with M .

Case (i): The added triangle shares two edges with M . (For example, see Figures 4.1, 4.3.)

Let A and Ã be the matrices associated with NM and NM̃ , respectively. For nM,Q the dimension of

QM , we have that rank(A) = nM,Q−1, and that A is a m×nM,Q matrix with m =≥ nM,Q−1. Ã
is therefore a m̃×nM,Q matrix with m̃ ≥ nM,Q + 1, as Ã must have at least one more interior edge
that M . Note that every row in Ã comes from

∫
M̃ vi · ∇p dA = 0, for vi ∈ XM̃ . As, ∀vi ∈ XM̃ ,∫

M̃ vi · ∇p dA = 0 is satisfied for p a constant function, then p1 = p2 = . . . = pnM,Q satisfies

Ãp = 0, and rank(Ã) ≤ nM,Q−1. Since the rank(A) = nM,Q−1, this implies that A has nM,Q−1
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Figure 4.3: New macroelement for Taylor-
Hood P2 − P1.
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Figure 4.4: New macroelement for Taylor-
Hood P2 − P1.

linearly independent rows. The fact that for v ∈ XM , v|M̃\M = 0; we have Ã =

 A
· · ·
B

, which

implies that Ã has at least nM,Q− 1 linearly independent rows. Hence rank(Ã) = nM,Q− 1 and the
dimension of NM̃ = 1.

Case (ii): The added triangle shares one edges with M . Let R2 and R3 denote the endpoints of the
shared triangle edge. (For example, see Figures 4.1, 4.4.)

In this case, along with two new triangle edges, an additional triangle vertex is added to M in
forming M̃ . Therefore, the dimension of QM̃ = dim(QM ) + 1, with the increase in dimension
corresponding to the new added vertex. Again, as ∀vi ∈ XM̃ ,

∫
M̃ vi · ∇p dA = 0 is satisfied

for p a constant function, then p1 = p2 = . . . = pnM,Q+1 satisfies Ãp = 0, which implies that

rank(Ã) ≤ nM,Q. Also, as for v ∈ XM , v|M̃\M = 0; we have Ã =

 A 0
· · · ·
B b

, where the number

of rows in the matrix B is two, corresponds to the velocity basis functions ṽ1, ṽ2, associated with
the shared triangle edge, added to QM to form QM̃ . As the added triangle lies in the support of ṽ1,
and ṽ2, then from (4.4) (and corresponding minor simplifications) b = [α(−z2 +z3) α(−r2 +r3)]T ,
for α > 0. As R2 6= R3, the number of independent rows in Ã must be greater than the number of
independent rows in A = nM,Q − 1. Hence rank(Ã) = nM,Q and the dimension of NM̃ = 1.

Corollary 1 The Taylor-Hood P2−P1 approximation pair is LBB stable on a regular triangulation
of Ω.

4.2 Crouzeix-Raviart approximation pair

Again, we begin by identifying a macroelement M for the conforming Crouzeix-Raviart elements.
In this case we simply take M to be an arbitrary triangle T in Th, see Figure 3.1.
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With l̂i(ξ, η), i = 1, 2, 3, defined in (4.5), let

b̂(ξ, η) = 27 l̂1(ξ, η) l̂2(ξ, η) l̂3(ξ, η) . (4.14)

b̂(ξ, η) is the cubic bubble function which vanishes on the boundary of T̂ , and is equal to 1 at
(ξ, η) = (1/3 , 1/3). With bT (x, y) as defined in (2.17), let

X0
h,M = span

{
bT

[
1
0

]
, bT

[
0
1

]}
⊂ Xh,M , (4.15)

N0
h,M =

{
q ∈ Qh,M : ba(q , w) = 0 , ∀w ∈ X0

h,M

}
⊃ Nh,M . (4.16)

We note, as commented at the beginning of Section 4.1, that q = constant is contained in Nh,M and
N0
h,M , we have 1 ≤ dim(Nh,M ) ≤ dim(N0

h,M ). Hence it suffices to show that dim(N0
h,M ) = 1.

Again, for notational convenience we suppress the h subscript and 0 superscript, i.e. NM ≡ N0
h,M

and XM ≡ X0
h,M .

The defining equation for NM generates two equations for the three unknown constants p1, p2, p3,
where p(r, z) = p1 l1(r, z) + p2 l2(r, z) + p3 l3(r, z).

From (4.3)(4.4) we have∫
M
p∇a · v r dx +

∫
M
p vr dx =

∫
T̂

v̂ · J−tTj ∇ξ,ηp̂ r̂ |JTj | dξ dη .

Let val = |JT |
∫
T̂
b̂(ξ, η) r̂(ξ, η) dξ dη = |JT |

∫
T̂
b̂(ξ, η) (r1 + (r2 − r1)ξ + (r3 − r1)η) dξ dη .

Note that, as b̂(ξ, η) and r̂(ξ, η) are greater than 0 for (ξ, η) ∈ T\∂T , val > 0.

For v = bT

[
1
0

]
, we obtain∫

M
p∇a · v r dx +

∫
M
p vr dx = ((z3 − z1)(p2 − p1) − (z2 − z1)(p3 − p1)) val , (4.17)

and for v = bT

[
0
1

]
,∫

M
p∇a · v r dx +

∫
M
p vr dx = − ((r3 − r1)(p2 − p1) − (r2 − z1)(p3 − p1)) val . (4.18)

From (4.17)(4.18), NM is given by the solutions to the linear system of equations[
z2 − z3 −z1 + z3 z1 − z2

r2 − r3 −r1 + r3 r1 − r2

]
p = 0 , (4.19)

where p = [p1 p2 p3]T .

The two rows of the coefficient matrix in (4.19) are linearly independent unless the points (r1, z1),
(r2, z2), (r3, z3) all lie along a line. That, however, would contradict the facts that the points form
the vertices of a non-degenerate triangle. Hence dim(NM ) = 1.

In summary, we have the following.
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Corollary 2 The conforming Crouzeix-Raviart (P2 + bubble− discP1) approximation pair is LBB
stable on a regular triangulation of Ω.

5 Numerical Experiment

From the continuity and positivity of a(·, ·), the continuity of ba(·, ·), and the inf-sup condition
(1.1)(1.4) we have that approximations (uh, ph) to (2.10)(2.11) satisfy

‖u− uh‖X + ‖p− ph‖Q ≤ C

{
inf

v∈Xh
‖u− v‖X + inf

q∈Qh
‖p− q‖Q

}
.

From [2], for Xh, Qh given by (2.15),(2.16), respectively, and k = 2

inf
v∈Xh

‖u− v‖X ≤ C h2‖u‖
1H3(Ω) and inf

q∈Qh
‖p− q‖Q ≤ C h2‖p‖

1H2(Ω) .

Hence, for u ∈ 1H
3(Ω), p ∈ 1H

2(Ω), we have that

‖u− uh‖X + ‖p− ph‖Q ≤ C h2 . (5.1)

We investigate this a priori error estimate in the following example.

Let Ω = (0, 1/2) × (−1/2, 1/2), Γ0 = {0} × [−1/2, 1/2], Γ = ∂Ω\Γ0. We consider a modified
Taylor-Green vortex flow problem

u(r, z) =

[
−r cos(ωπr) sin(ωπz)

− 2
ωπ cos(ωπr) cos(ωπz) + r sin(ωπr) cos(ωπz)

]
,

p(r, z) = sin(ωπz)(− cos(ωπr) + 2ωπr sin(ωπr)) .

The computations are performed for ω = 1. A plot of the velocity field u, and the pressure p, is
given in Figures 5.1 and 5.2, respectively.

For the Taylor-Hood (k = 2) and Crouzeix-Raviart approximation pairs the errors for the velocity,
pressure, and divergence ( divaxi(u) = ∇a · u + ur/r), along with their experimental convergence
rates are given in Tables 5.1 and 5.2. (The Crouzeix-Raviart approximation is mass conservative over
each triangle T in the triangulation Th, i.e.

∫
T divaxi(uh) r dx = 0 .) The experimental convergence

rates are consistent with those predicted in (5.1).
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