Generalized Newtonian Fluid Flow through a Porous Medium

V.J. Ervin * Hyesuk Lee ${ }^{\dagger}$ A.J. Salgado ${ }^{\ddagger}$

May 29, 2014

Abstract

We present a model for generalized Newtonian fluid flow through a porous medium. In the model the dependence of the fluid viscosity on the velocity is replaced by a dependence on a smoothed (locally averaged) velocity. With appropriate assumptions on the smoothed velocity, existence of a solution to the model is shown. Two examples of smoothing operators are presented in the appendix. A numerical approximation scheme is presented and an a priori error estimate derived. A numerical example is given illustrating the approximation scheme and the a priori error estimate.

Key words. Darcy equation, Generalized Newtonian fluid
AMS Mathematics subject classifications. 65N30, 75D03, 76A05, 76M10

1 Introduction

Of interest in this article is the modeling and approximation of generalized Newtonian fluid flow through a porous medium. Darcy's modeling equations for a steady-state fluid flow through a porous medium, Ω, are

$$
\begin{align*}
\nu_{e f f} K^{-1} \mathbf{u}+\nabla p & =0, \text { in } \Omega, \tag{1.1}\\
\nabla \cdot \mathbf{u} & =0, \text { in } \Omega . \tag{1.2}
\end{align*}
$$

where \mathbf{u} and p denote the velocity and pressure of the fluid, respectively. $K(\mathbf{x})$ in (1.1) represents the permeability of the medium at $\mathbf{x} \in \Omega$, which is assumed to be a symmetric, positive definite tensor. As our investigations are not concerned with K, we assume that K is of the form $k(\mathbf{x}) \mathbf{I}$ where $k(\mathbf{x})$ is a Lipschitz continuous, positive, bounded and bounded away from zero, scalar function. $\nu_{e f f}$ in (1.1) represents the effective viscosity of the fluid.

[^0]In the case of a Newtonian fluid we have that $\nu_{e f f}$ is a positive constant. For a generalized Newtonian fluid $\nu_{e f f}$ is a function of $|\mathbf{u}|$. Two such examples are

$$
\begin{equation*}
\text { Power Law Model: } \nu_{e f f}(|\mathbf{u}|)=c_{\nu}|\mathbf{u}|^{r-2}, \text { Cross Model: } \nu_{e f f}(|\mathbf{u}|)=\nu_{\infty}+\frac{\nu_{0}-\nu_{\infty}}{1+c_{\nu}|\mathbf{u}|^{2-r}} \tag{1.3}
\end{equation*}
$$

where $c_{\nu}, \nu_{0}, \nu_{\infty}$ and r are fluid dependent constants. For shear thinning fluids $1<r<2$. (In modeling the viscosity of shear thinning fluids the Power Law model suffers the criticism that as $|\mathbf{u}| \rightarrow 0 \nu_{e f f} \rightarrow \infty$.)

For the case of a Newtonian fluid (1.1), (1.2) are well studied. The two standard approaches in analyzing (1.1), (1.2) are: (i) study (1.1), (1.2) as a mixed formulation problem for \mathbf{u} and p (either $(\mathbf{u}, p) \in H_{d i v}(\Omega) \times L^{2}(\Omega)$, or $\left.(\mathbf{u}, p) \in L^{2}(\Omega) \times H^{1}(\Omega)\right)$, or (ii) use (1.2) to eliminate \mathbf{u} in (1.1) to obtain a generalized Laplace's equation for p.

For generalized Newtonian fluids, with $\nu_{e f f}=\nu_{e f f}(|\mathbf{u}|)$, assumptions are required on $\nu_{e f f}$ in order to establish existence and uniqueness of solutions. Typical assumptions are uniform continuity of $\nu_{e f f}(|\mathbf{u}|) \mathbf{u}$ and strong monotonicity of $\nu_{\text {eff }}(|\mathbf{u}|)[7,8,10]$, i.e., there exists $C>0$ such that

$$
\begin{align*}
\left|\nu_{e f f}(|\mathbf{u}|) \mathbf{u}-\nu_{e f f}(|\mathbf{v}|) \mathbf{v}\right| & \leq C|\mathbf{u}-\mathbf{v}|, \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}, \tag{1.4}\\
\left(\nu_{e f f}(|\mathbf{u}|) \mathbf{u}-\nu_{e f f}(|\mathbf{v}|) \mathbf{v}\right) \cdot(\mathbf{u}-\mathbf{v}) & \geq C(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{d} . \tag{1.5}
\end{align*}
$$

A more general setting where the fluid rheology is defined implicitly has been analyzed in [5, 6]. The case where the fluid viscosity depends on the shear rate and pressure has been studied in [13, 12]. For both of these cases additional structure beyond (1.4) and (1.5) is required in order to establish existence and uniqueness of a solution.

A nonlinear Darcy fluid flow problem, with a permeability dependent upon the pressure was investigated by Azaïez, Ben Belgacem, Bernardi, and Chorfi [2], and Girault, Murat, and Salgado [11]. For a Lipschitz continuous permeability function, bounded above and bounded away from zero, existence of a solution $(\mathbf{u}, p) \in L^{2}(\Omega) \times H^{1}(\Omega)$ was established. Important in handling the nonlinear permeability function, in establishing existence of a solution, was the property that $p \in H^{1}(\Omega)$. In [2] the authors also investigated a spectral numerical approximation scheme for the nonlinear Darcy problem, assuming an axisymmetric domain Ω. A convergence analysis for the finite element discretization of that problem was given in [11].

Our interest in this paper is in relaxing the assumptions (1.4) and (1.5). Specifically, our interest is assuming that $\nu_{e f f}(\cdot)$ is only Lipschitz continuous and both bounded above and bounded away from zero. However, relaxing the conditions (1.4) and (1.5) requires us to make an additional assumption regarding the argument of $\nu_{e f f}(\cdot)$. In order to obtain a modeling system of equations for which a solution can be shown to exist, we replace \mathbf{u} in $\nu_{e f f}(|\mathbf{u}|)$ by a smoothed velocity, \mathbf{u}^{s}. The approach of regularizing the model with the introduction of \mathbf{u}^{s} is, in part, motivated by the fact that the Darcy fluid flow equations can be derived by averaging, e.g. volume averaging [16], homogenization [1], or mixture theory [14].

Presented in the Appendix are two smoothing operators for \mathbf{u}. One is a local averaging operator, whereby $\mathbf{u}^{s}(\mathbf{x})$ is obtained by averaging \mathbf{u} in a neighborhood of \mathbf{x}. The second smoothing operator, which is nonlocal, computes $\mathbf{u}^{s}(\mathbf{x})$ using a differential filter applied to \mathbf{u}. That is, \mathbf{u}^{s} is given by the solution to an elliptic differential equation whose right hand side is \mathbf{u}. For establishing the existence
of a solution to (1.1)-(1.2), the key property of the smoothing operators is that they transform a weakly convergent sequence in $L^{2}(\Omega)$ into a sequence which converges strongly in $L^{\infty}(\Omega)$.

For the mathematical analysis of this problem it is convenient to have homogeneous boundary conditions. This is achieved by introducing a suitable change of variables. For example, assuming $\partial \Omega=\Gamma_{i n} \cup \Gamma \cup \Gamma_{\text {out }}$, in the case the specified boundary conditions are

$$
\mathbf{u} \cdot(-\mathbf{n})=g_{\text {in }} \text { on } \Gamma_{\text {in }}, \quad \mathbf{u} \cdot \mathbf{n}=0 \text { on } \Gamma, \quad p=p_{\text {out }} \text { on } \Gamma_{\text {out }},
$$

we introduce functions $\mathbf{b}(\mathbf{x})$ and $p_{b}(\mathbf{x})$ defined on Ω satisfying

$$
\begin{array}{rlrl}
\nabla \cdot \mathbf{b} & =0, \text { in } \Omega, \\
\mathbf{b} \cdot \mathbf{n} & =-g_{\text {in }}, \text { on } \Gamma_{\text {in }}, & \nabla \cdot \nabla p_{b} & =0, \text { in } \Omega, \\
\mathbf{b} \cdot \mathbf{t}_{i} & =0, \text { on } \Gamma_{i n}, & p_{b} & =p_{\text {out }}, \text { on } \Gamma_{\text {out }}, \\
\mathbf{b} & =\mathbf{0}, \text { on } \partial \Omega \backslash \Gamma_{\text {in }}, & \frac{\partial p_{b}}{\partial \mathbf{n}} & =0, \text { on } \partial \Omega \backslash \Gamma_{\text {out }} .
\end{array}
$$ nal set of tangent vectors on $\Gamma_{i n}$.

(In case the pressure is specified on the inflow boundary $\Gamma_{i n}$, then $\mathbf{b}=\mathbf{0}$, and the definition of p_{b} is appropriately modified.)

With the change of variables: $\mathbf{u}=\mathbf{u}_{0}+\mathbf{b}$ and $p=p_{0}+p_{b}$, and subsequent relabeling $\mathbf{u}_{0}=\mathbf{u}$, $p_{0}=p$ and $\mathbf{f}=-\nabla p_{b}$ we obtain the following system of modeling equations:

$$
\begin{align*}
\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}+\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}+\nabla p & =\mathbf{f}, \text { in } \Omega, \tag{1.6}\\
\nabla \cdot \mathbf{u} & =0, \text { in } \Omega, \tag{1.7}\\
\mathbf{u} \cdot \mathbf{n} & =0, \text { on } \Gamma_{i n} \cup \Gamma, \tag{1.8}\\
p & =0, \text { on } \Gamma_{\text {out }}, \tag{1.9}
\end{align*}
$$

where $\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)=\nu_{e f f}\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) k^{-1}$.
In the next section we show that, under suitable assumptions on $\beta(\cdot)$ and \mathbf{u}^{s}, there exists a unique solution to (1.6)-(1.9). An approximation scheme is presented in Section 3, and an a priori error estimate derived. A numerical example illustrating the approximation scheme and the a priori error estimate is presented in Section 4.

2 Existence and Uniqueness

In this section we investigate the existence and uniqueness of solutions to the nonlinear system equations (1.6)-(1.9). We assume that $\Omega \subset \mathbb{R}^{d}, d=2$ or 3 , is a convex polyhedral domain and for vectors in $\mathbb{R}^{d}|\cdot|$ denotes the Euclidean norm.

Throughout, we use C to denote a generic nonnegative constant, independent of the mesh parameter h, whose actual value may change from line to line in the analysis.

We make the following assumptions on $\beta(\cdot)$ and \mathbf{u}^{s}.
Assumptions on $\beta(\cdot)$
$\overline{\mathbf{A} \beta \mathbf{1}: \beta(\cdot): \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+},}$
$\mathbf{A} \beta \mathbf{2}: 0<\beta_{\text {min }} \leq \beta(s) \leq \beta_{\text {max }}, \forall s \in \mathbb{R}^{+}$,
$\mathbf{A} \beta \mathbf{3}: \beta$ is Lipschitz continuous, $\left|\beta\left(s_{1}\right)-\beta\left(s_{2}\right)\right| \leq C_{\beta}\left|s_{1}-s_{2}\right|$.
Assumptions on \mathbf{u}^{s}

Au $\mathbf{u}^{\mathbf{s}}$: For $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty} \subset L^{2}(\Omega)$, with \mathbf{u}_{n} converging weakly to $\mathbf{u} \in L^{2}(\Omega)$, then $\left\{\mathbf{u}_{n}^{s}\right\}_{n=1}^{\infty}$ converges to \mathbf{u}^{s} in $L^{\infty}(\Omega)$,
$\mathbf{A u}^{\mathrm{s}} \mathbf{3}$: The mapping $\mathbf{u} \mapsto \mathbf{u}^{s}$ is linear.
Weak formulation of (1.6)-(1.9)
$\overline{\text { Let } X=\left\{\mathbf{v} \in H_{d i v}(\Omega): \mathbf{v} \cdot \mathbf{n}\right.}=0$, on $\left.\Gamma_{i n} \cup \Gamma\right\}$. We use

$$
(f, g):=\int_{\Omega} f \cdot g d \Omega, \text { and }\|f\|:=(f, f)^{1 / 2}
$$

to denote the L^{2} inner product and the L^{2} norm over Ω, respectively, for both scalar and vector valued functions. Additionally, we introduce the norm

$$
\|\mathbf{v}\|_{X}=\left(\int_{\Omega}(\nabla \cdot \mathbf{v} \nabla \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v}) d \Omega\right)^{1 / 2}
$$

Remark: For $\mathbf{v} \in H_{\text {div }}(\Omega)$ it follows that $\mathbf{v} \cdot \mathbf{n} \in H^{-1 / 2}(\partial \Omega)$. For the interpretation of the condition $\mathbf{v} \cdot \mathbf{n}=0$ on $\Gamma_{\text {in }} \cup \Gamma$ see [9, 15].

We restate (1.6)-(1.9) as: Given $\mathbf{b}, \mathbf{f} \in L^{2}(\Omega)$, find $(\mathbf{u}, p) \in X \times L^{2}(\Omega)$, such that for all $\mathbf{v} \in X$ and $q \in L^{2}(\Omega)$

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}, \mathbf{v}\right)-(p, \nabla \cdot \mathbf{v})+\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) & =(\mathbf{f}, \mathbf{v}), \tag{2.1}\\
(q, \nabla \cdot \mathbf{u}) & =0 . \tag{2.2}
\end{align*}
$$

For the spaces X and $L^{2}(\Omega)$ we have the following inf-sup condition

$$
\begin{equation*}
\inf _{q \in L^{2}(\Omega)} \sup _{\mathbf{v} \in X} \frac{(q, \nabla \cdot \mathbf{v})}{\|q\|\|\mathbf{v}\|_{X}} \geq c_{0}>0 \tag{2.3}
\end{equation*}
$$

We begin by establishing boundedness of any solution to (2.1)-(2.2).
Lemma 2.1 Any solution $(\mathbf{u}, p) \in X \times L^{2}(\Omega)$ to (2.1)-(2.2) satisfies

$$
\begin{equation*}
\|\mathbf{u}\|_{X}+\|p\| \leq C(\|\mathbf{b}\|+\|\mathbf{f}\|) \tag{2.4}
\end{equation*}
$$

Proof: From (2.2) and that $\nabla \cdot X \subset L^{2}(\Omega)$ we have that any solution \mathbf{u} to (2.1)-(2.2) satisfies

$$
\begin{equation*}
\|\nabla \cdot \mathbf{u}\|=0 \tag{2.5}
\end{equation*}
$$

With the choice $\mathbf{v}=\mathbf{u}, q=p$, subtracting (2.2) from (2.1), and using assumption $\mathbf{A} \beta \mathbf{2}$ yields

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}, \mathbf{u}\right) & =-\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{u}\right)+(\mathbf{f}, \mathbf{u}), \\
\beta_{\min }\|\mathbf{u}\|^{2} & \leq \beta_{\max }\|\mathbf{b}\|\|\mathbf{u}\|+\|\mathbf{f}\|\|\mathbf{u}\| . \tag{2.6}
\end{align*}
$$

Combining (2.5) and (2.6) we obtain the stated bound for \mathbf{u}. The estimate for p is obtained using the inf-sup condition (2.3).

$$
\begin{aligned}
\|p\| & \leq \frac{1}{c_{0}} \sup _{\mathbf{v} \in X} \frac{(p, \nabla \cdot \mathbf{v})}{\|\mathbf{v}\|_{X}}=\frac{1}{c_{0}} \sup _{\mathbf{v} \in X} \frac{\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right)-(\mathbf{f}, \mathbf{v})}{\|\mathbf{v}\|_{X}} \\
& \leq \frac{1}{c_{0}}\left(\left\|\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}\right\|+\left\|\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}\right\|+\|\mathbf{f}\|\right) \\
& \leq \frac{1}{c_{0}}\left(\beta_{\max }(\|\mathbf{u}\|+\|\mathbf{b}\|)+\|\mathbf{f}\|\right),
\end{aligned}
$$

from which the stated bound follows.

$$
\text { Define } Z=\left\{\mathbf{v} \in X:(q, \nabla \cdot \mathbf{v})=0, \forall q \in L^{2}(\Omega)\right\} .
$$

Because of the inf-sup condition (2.3), the weak formulation (2.1)-(2.2) can be equivalently stated as: Given $\left.\mathbf{b}, \mathbf{f} \in L^{2}(\Omega)\right)$, find $\mathbf{u} \in Z$, such that for all $\mathbf{v} \in Z$

$$
\begin{equation*}
\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right)=(\mathbf{f}, \mathbf{v}) . \tag{2.7}
\end{equation*}
$$

Remark: For $\mathbf{v} \in Z,\|\mathbf{v}\|_{X}=\|\mathbf{v}\|$, as $\|\nabla \cdot \mathbf{v}\|=0$.
To establish the existence of a solution to (2.7) we use the Leray-Schauder fixed point theorem. To do this we show that a solution to (2.7) is a fixed point of a compact mapping Φ.

Theorem 2.1 For $\beta(\cdot)$ and \mathbf{u}^{s} satisfying assumptions $\mathbf{A} \beta \mathbf{1}-\mathbf{A} \beta \mathbf{3}$ and $\mathbf{A} \mathbf{u}^{\mathbf{s}} \mathbf{1}-\mathbf{A u}^{\mathrm{s}} \mathbf{2}$, respectively, there exists a solution \mathbf{u} to (2.7).

Proof: Let $\Phi: Z \longrightarrow Z$ be defined by $\Phi(\mathbf{u})=\mathbf{w}$, where \mathbf{w} satisfies

$$
\begin{equation*}
\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{w}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right)=(\mathbf{f}, \mathbf{v}) . \tag{2.8}
\end{equation*}
$$

That Φ is well defined follows from $\mathbf{A} \beta \mathbf{2}$ and the Lax-Milgram theorem.
To show that Φ is a compact operator, let $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty}$ denote a bounded sequence in Z. From $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty}$ we can extract a subsequence, which we again denote as $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty}$, such that $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty}$ converges weakly to $\mathbf{u} \in Z$. For $\mathbf{w}_{n}=\Phi\left(\mathbf{u}_{n}\right)$, using (2.8)

$$
\begin{aligned}
\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{w}, \mathbf{v}\right)-\left(\beta\left(\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right) \mathbf{w}_{n}, \mathbf{v}\right)= & -\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) \\
\Longleftrightarrow\left(\beta\left(\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right)\left(\mathbf{w}-\mathbf{w}_{n}\right), \mathbf{v}\right)= & -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right)\right) \mathbf{w}, \mathbf{v}\right) \\
& -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right)\right) \mathbf{b}, \mathbf{v}\right) .
\end{aligned}
$$

With $\mathbf{v}=\mathbf{w}-\mathbf{w}_{n}$, and using $\mathbf{A} \beta \mathbf{2}$ and $\mathbf{A} \beta \mathbf{3}$

$$
\begin{aligned}
\beta_{\min }\left\|\mathbf{w}-\mathbf{w}_{n}\right\|^{2} \leq & \left\|C_{\beta}\left|\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|-\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right)\right| \mathbf{w}\right\|\left\|\mathbf{w}-\mathbf{w}_{n}\right\| \\
& +\left\|C_{\beta}\left|\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|-\left|\mathbf{u}_{n}^{s}+\mathbf{b}\right|\right)\right| \mathbf{b}\right\|\left\|\mathbf{w}-\mathbf{w}_{n}\right\| \\
\leq & \left\|C_{\beta}\left|\mathbf{u}^{s}-\mathbf{u}_{n}^{s}\right| \mathbf{w}\right\|\left\|\mathbf{w}-\mathbf{w}_{n}\right\|+\left\|C_{\beta}\left|\mathbf{u}^{s}-\mathbf{u}_{n}^{s}\right| \mathbf{b}\right\|\left\|\mathbf{w}-\mathbf{w}_{n}\right\| \\
\leq & C_{\beta} \sqrt{d}\left\|\mathbf{u}^{s}-\mathbf{u}_{n}^{s}\right\|_{L^{\infty}(\Omega)}\|\mathbf{w}\|\left\|\mathbf{w}-\mathbf{w}_{n}\right\| \\
& +C_{\beta} \sqrt{d}\left\|\mathbf{u}^{s}-\mathbf{u}_{n}^{s}\right\|_{L^{\infty}(\Omega)}\|\mathbf{b}\|\left\|\mathbf{w}-\mathbf{w}_{n}\right\| \\
\Rightarrow\left\|\mathbf{w}-\mathbf{w}_{n}\right\|_{X}= & \left\|\mathbf{w}-\mathbf{w}_{n}\right\| \leq \frac{C_{\beta} \sqrt{d}}{\beta_{\min }}\left\|\mathbf{u}^{s}-\mathbf{u}_{n}^{s}\right\|_{L^{\infty}(\Omega)}(\|\mathbf{w}\|+\|\mathbf{b}\|),
\end{aligned}
$$

from which, with $\mathbf{A} \mathbf{u}^{\mathrm{s}} \mathbf{2}$, we can conclude that Φ is a compact operator.
For $r=\frac{\beta_{\text {max }}}{\beta_{\text {min }}}(\|\mathbf{b}\|+\|\mathbf{f}\|)$, from Lemma 2.1 we have that $\|\Phi(\mathbf{u})\| \leq r, \forall \mathbf{u} \in Z$. Then, applying the Leray-Schauder fixed point theorem [17] we obtain that there exists a $\mathbf{u} \in Z$ such that $\mathbf{u}=\Phi(\mathbf{u})$.

Under small data conditions we have the following theorem guaranteeing uniqueness of solutions to (2.7).

Theorem 2.2 With the stated assumptions $\mathbf{A} \beta \mathbf{1}-\mathbf{A} \beta \mathbf{3}$ and $\mathbf{A u}^{\mathbf{s}} \mathbf{1}-\mathbf{A} \mathbf{u}^{\mathbf{s}} \mathbf{2}$, and the condition that $\|\mathbf{b}\| \leq \max \left\{\beta_{\min } / \beta_{\max }, \beta_{\min } /\left(C_{\beta} \sqrt{d} C_{s}\right)\right\}$, if a solution \mathbf{u} to (2.7) exists satisfying

$$
\begin{equation*}
\|\mathbf{u}\|<\max \left\{\frac{\beta_{\min }}{\beta_{\max }}, \frac{\beta_{\min }}{C_{\beta} \sqrt{d} C_{s}}\right\}-\|\mathbf{b}\|, \tag{2.9}
\end{equation*}
$$

then there is no other solution to (2.7).
Proof: Suppose that both \mathbf{u} and $\mathbf{w} \in Z$ satisfy (2.7), i.e., together with (2.7) we have that

$$
\begin{equation*}
\left(\beta\left(\left|\mathbf{w}^{s}+\mathbf{b}\right|\right) \mathbf{w}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{w}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right)-(\mathbf{f}, \mathbf{v})=0, \quad \forall \mathbf{v} \in Z \tag{2.10}
\end{equation*}
$$

With $\mathbf{v}=\mathbf{u}-\mathbf{w}$, subtracting (2.10) from (2.7) and using the bounds for $\beta(\cdot)$ we obtain

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{w}^{s}+\mathbf{b}\right|\right)(\mathbf{u}-\mathbf{w}),(\mathbf{u}-\mathbf{w})\right) & +\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{w}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u},(\mathbf{u}-\mathbf{w})\right) \\
& +\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{w}^{s}+\mathbf{b}\right|\right)\right) \mathbf{b},(\mathbf{u}-\mathbf{w})\right)=0 \tag{2.11}\\
\Rightarrow \beta_{\min }\|\mathbf{u}-\mathbf{w}\|^{2} & \leq \beta_{\max }\|\mathbf{u}\|\|\mathbf{u}-\mathbf{w}\|+\beta_{\max }\|\mathbf{b}\|\|\mathbf{u}-\mathbf{w}\| \\
\Rightarrow\left(\beta_{\min }-\beta_{\max }(\|\mathbf{u}\|\right. & +\|\mathbf{b}\|))\|\mathbf{u}-\mathbf{w}\| \leq 0 \tag{2.12}\\
\Rightarrow \mathbf{w}=\mathbf{u}, \text { provided } & \|\mathbf{u}\|<\frac{\beta_{\min }}{\beta_{\max }}-\|\mathbf{b}\| \tag{2.13}
\end{align*}
$$

Alternatively, from (2.11), using $\mathbf{A} \beta \mathbf{3}$ and $\mathbf{A} \mathbf{u}^{\mathbf{s}} \mathbf{1}$,

$$
\begin{aligned}
\beta_{\min }\|\mathbf{u}-\mathbf{w}\|^{2} \leq & C_{\beta} \sqrt{d}\left\|\mathbf{u}^{s}-\mathbf{w}^{s}\right\|_{L^{\infty}(\Omega)}\|\mathbf{u}\|\|\mathbf{u}-\mathbf{w}\| \\
& +C_{\beta} \sqrt{d}\left\|\mathbf{u}^{s}-\mathbf{w}^{s}\right\|_{L^{\infty}(\Omega)}\|\mathbf{b}\|\|\mathbf{u}-\mathbf{w}\| \\
\leq & C_{\beta} \sqrt{d} C_{s}(\|\mathbf{u}\|+\|\mathbf{b}\|)\|\mathbf{u}-\mathbf{w}\|^{2} \\
\Rightarrow \quad\left(\beta_{\min }-C_{\beta} \sqrt{d} C_{s}(\|\mathbf{u}\| \leq\right. & \|\mathbf{b}\|)\|\mathbf{u}-\mathbf{w}\|^{2} \leq 0 \\
\Rightarrow \mathbf{w}=\mathbf{u}, \text { provided } \quad & \|\mathbf{u}\|<\frac{\beta_{\min }}{C_{\beta} \sqrt{d} C_{s}}-\|\mathbf{b}\| .
\end{aligned}
$$

3 Finite Element Approximation

In this section we investigate the finite element approximation to (\mathbf{u}, p) satisfying (1.6)-(1.9).
Let T_{h} be a triangulation of Ω made of triangles (in \mathbb{R}^{2}) or tetrahedrons (in \mathbb{R}^{3}). Thus, the computational domain is defined by

$$
\bar{\Omega}=\cup_{K \in T_{h}} \bar{K}
$$

We assume that there exist constants c_{1}, c_{2} such that

$$
c_{1} h \leq h_{K} \leq c_{2} \rho_{K},
$$

where h_{K} is the diameter of triangle (tetrahedron) K, ρ_{K} is the diameter of the greatest ball (sphere) included in K, and $h=\max _{K \in T_{h}} h_{K}$. For $k \in \mathbb{N}$, let $P_{k}(A)$ denote the space of polynomials on A of degree no greater than k, and $R T_{k}\left(T_{h}\right)$ the (Piola) affine transformation of the Raviart-Thomas elements of order k on the unit triangle. We define the finite element spaces X_{h}, X_{h}^{s} and Q_{h} as follows.

$$
\begin{align*}
X_{h} & :=\left\{R T_{k}\left(T_{h}\right) \cap X\right\}, \tag{3.1}\\
X_{h}^{s} & :=\left\{\mathbf{v} \in X \cap C^{0}(\bar{\Omega}):\left.\mathbf{v}\right|_{K} \in P_{l}(K), \forall K \in T_{h}\right\}, \tag{3.2}\\
Q_{h} & :=\left\{q \in L^{2}(\Omega):\left.q\right|_{K} \in P_{k}(K), \forall K \in T_{h}\right\} . \tag{3.3}
\end{align*}
$$

$$
\begin{equation*}
\text { Additionally, let } Z_{h}:=\left\{\mathbf{v} \in X_{h}:(q, \mathbf{v})=0, \forall q \in Q_{h}\right\} . \tag{3.4}
\end{equation*}
$$

Note that as $\nabla \cdot X_{h} \subset Q_{h}$, for $\mathbf{v} \in Z_{h}$ we have that $\|\nabla \cdot \mathbf{v}\|=0$, thus $\|\mathbf{v}\|_{X}=\|\mathbf{v}\|$.
For X_{h} and Q_{h} defined in (3.1) and (3.3), the following discrete inf-sup condition is satisfied

$$
\begin{equation*}
\inf _{q \in Q_{h}} \sup _{\mathbf{v} \in X_{h}} \frac{(q, \nabla \cdot \mathbf{v})}{\|q\|_{Q}\|\mathbf{v}\|_{X}} \geq c_{0}>0 \tag{3.5}
\end{equation*}
$$

With X_{h}, Z_{h}, Q_{h} defined above, we have the following approximation properties [4, 3]. For $\mathbf{u} \in$ $Z \cap H^{k+1}(\Omega)$ and $p \in H^{k+1}(\Omega)$

$$
\begin{align*}
\inf _{\mathbf{v} \in Z_{h}}\|\mathbf{u}-\mathbf{v}\|_{X}= & \inf _{\mathbf{v} \in Z_{h}}\|\mathbf{u}-\mathbf{v}\| \leq C \inf _{\mathbf{v} \in X_{h}}\|\mathbf{u}-\mathbf{v}\|=C h^{k+1}\|\mathbf{u}\|_{H^{k+1}(\Omega)}, \tag{3.6}\\
& \inf _{q \in Q_{h}}\|p-q\| \leq C h^{k+1}\|p\|_{H^{k+1}(\Omega)} \tag{3.7}
\end{align*}
$$

The approximation scheme we investigate is: Given $\mathbf{b}, \mathbf{f} \in L^{2}(\Omega)$, determine $\left(\mathbf{u}_{h}, p_{h}\right) \in X_{h} \times Q_{h}$, satisfying

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{u}_{h}, \mathbf{v}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) & =(\mathbf{f}, \mathbf{v}), \forall \mathbf{v} \in X_{h} \tag{3.8}\\
\left(q, \nabla \cdot \mathbf{u}_{h}\right) & =0, \forall q \in Q_{h} . \tag{3.9}
\end{align*}
$$

Regarding \mathbf{u}_{h}^{s}, note that applying a smoother to a function $\mathbf{v} \in X_{h}$ (typically) does not result in $\mathbf{v}^{s} \in X_{h}^{s}$. Therefore, we let $\tilde{\mathbf{u}}_{h}^{s} \in H^{l+1}(\Omega) \cap C^{0}(\Omega)$ denote the result of the smoother applied to \mathbf{u}_{h}, and define

$$
\begin{equation*}
\mathbf{u}_{h}^{s}(x)=I_{h} \tilde{\mathbf{u}}_{h}^{s}(x) \tag{3.10}
\end{equation*}
$$

where $I_{h}: C^{0}(\Omega) \longrightarrow X_{h}^{s}$ denotes an interpolation operator.
We assume that the smoothed velocity $\tilde{\mathbf{u}}_{h}^{s}$ is sufficiently regular such that there exists a constant dependent on $\tilde{\mathbf{u}}_{h}^{s}, C_{\tilde{\mathbf{u}}_{h}^{s}}$ such that

$$
\begin{equation*}
\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)} \leq C_{\tilde{\mathbf{u}}_{h}^{s}} h^{l+1} \tag{3.11}
\end{equation*}
$$

The precise dependence of $C_{\tilde{\mathbf{u}}_{h}^{s}}$ on $\tilde{\mathbf{u}}_{h}^{s}$ will depend on the particular smoother used.
The existence, uniqueness, and boundedness of the solutions $\left(\mathbf{u}_{h}^{n}, p_{h}^{n}\right)$ to (3.8)-(3.9) are established in a completely analogous manner as for the continuous problem.

Corollary 3.1 (See Lemma 2.1.) Any solution ($\mathbf{u}, p) \in X_{h} \times Q_{h}$ to (3.8)-(3.9) satisfies

$$
\begin{equation*}
\left\|\mathbf{u}_{h}\right\|_{X}+\left\|p_{h}\right\| \leq C(\|\mathbf{b}\|+\|\mathbf{f}\|) \tag{3.12}
\end{equation*}
$$

Corollary $\mathbf{3 . 2}$ (See Theorem 2.1.) For $\beta(\cdot)$ and \mathbf{u}_{h}^{s} satisfying assumptions $\mathbf{A} \beta \mathbf{1}-\mathbf{A} \beta \mathbf{3}$ and $\mathbf{A} \mathbf{u}^{\mathrm{s}} \mathbf{1}-$ $\mathbf{A u}^{\mathbf{s}} \mathbf{2}$, respectively, there exists a solution $\left(\mathbf{u}_{h}, p_{h}\right)$ to (3.8)-(3.9).

Proof: The existence of \mathbf{u}_{h} is established as that for \mathbf{u} in Theorem 2.1. The existence of p_{h} then follows from the discrete inf-sup condition (3.5).

In the next lemma we present the a priori error estimate for the approximation given by (3.8)-(3.9).
Lemma 3.1 For $(\mathbf{u}, p) \in H^{k+1}(\Omega) \cap X \times H^{k+1}(\Omega)$ satisfying (2.1)-(2.2), (\mathbf{u}_{h}, p_{h}) satisfying (3.8)(3.9), and \mathbf{u} satisfying the small data condition

$$
\begin{equation*}
C_{\beta} \sqrt{d} C_{s}(\|\mathbf{u}\|+\|\mathbf{b}\|)<\beta_{\min }, \tag{3.13}
\end{equation*}
$$

and assuming that $C_{\tilde{\mathbf{u}}_{h}^{s}}$ given in (3.11) is bounded by a constant $C_{\mathbf{u}}$, we have that there exists $C>0$ such that

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{X}+\left\|p-p_{h}\right\| \leq C\left(h^{k+1}\|\mathbf{u}\|_{H^{k+1}(\Omega)}+h^{k+1}\|p\|_{H^{k+1}(\Omega)}+C_{\mathbf{u}} h^{l+1}\right) \tag{3.14}
\end{equation*}
$$

Remark: The condition (3.13) guarantees uniqueness of the solution to (3.8)-(3.9), see Theorem 2.2.

Proof: We have that the solutions \mathbf{u}_{h} and \mathbf{u} to (3.8)-(3.9) and (2.1)-(2.2), respectively, satisfy the following equations for all $\mathbf{v} \in Z_{h}$:

$$
\begin{equation*}
\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{u}_{h}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right)=(\mathbf{f}, \mathbf{v}), \tag{3.15}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{u}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) & =(\mathbf{f}, \mathbf{v})-\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u}, \mathbf{v}\right) \\
& -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{b}, \mathbf{v}\right) \tag{3.16}
\end{align*}
$$

With $\mathbf{e}=\mathbf{u}-\mathbf{u}_{h}$, subtracting equations (3.15) and (3.16) we obtain

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{e}, \mathbf{v}\right)= & -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u}, \mathbf{v}\right) \\
& -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{b}, \mathbf{v}\right), \forall \mathbf{v} \in Z_{h} . \tag{3.17}
\end{align*}
$$

For $\mathbf{U} \in Z_{h}$, let $\mathbf{e}=(\mathbf{u}-\mathbf{U})+\left(\mathbf{U}-\mathbf{u}_{h}\right):=\boldsymbol{\Lambda}+\mathbf{E}$. Then, for $\mathbf{v}=\mathbf{E}$, (3.17) becomes

$$
\begin{align*}
\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{E}, \mathbf{E}\right)= & -\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \boldsymbol{\Lambda}, \mathbf{E}\right)-\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u}, \mathbf{E}\right) \\
& -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{b}, \mathbf{E}\right) . \tag{3.18}
\end{align*}
$$

Next we bound each of the terms in (3.18).

$$
\begin{align*}
& \quad\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{E}, \mathbf{E}\right) \geq \beta_{\min }\|\mathbf{E}\|^{2} \tag{3.19}\\
& \quad-\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \boldsymbol{\Lambda}, \mathbf{E}\right) \leq \beta_{\max }\|\boldsymbol{\Lambda}\|\|\mathbf{E}\| \leq \epsilon_{1}\|\mathbf{E}\|^{2}+\frac{1}{4 \epsilon} \beta_{\max }^{2}\|\boldsymbol{\Lambda}\|^{2} \tag{3.20}\\
& -\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u}, \mathbf{E}\right) \leq\left\|\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u}\right\|\|\mathbf{E}\| \\
& \leq C_{\beta} \sqrt{d}\left\|\mathbf{u}^{s}-\mathbf{u}_{h}^{s}\right\|_{L^{\infty}(\Omega)}\|\mathbf{u}\|\|\mathbf{E}\| \\
& \leq C_{\beta} \sqrt{d}\left(\left\|\mathbf{u}^{s}-\tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)}+\left\|\tilde{\mathbf{u}}_{h}^{s}-\mathbf{u}_{h}^{s}\right\|_{L^{\infty}(\Omega)}\right)\|\mathbf{u}\|\|\mathbf{E}\| \\
& \leq C_{\beta} \sqrt{d}\left(C_{s}\left\|\mathbf{u}-\mathbf{u}_{h}\right\|+\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)}\right)\|\mathbf{u}\|\|\mathbf{E}\| \\
& \leq C_{\beta} \sqrt{d}\left(C_{s}(\|\boldsymbol{\Lambda}\|+\|\mathbf{E}\|)+\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)}\right)\|\mathbf{u}\|\|\mathbf{E}\| \\
& \leq C_{\beta} \sqrt{d} C_{s}\|\mathbf{u}\|\|\mathbf{E}\|^{2}+\epsilon_{2}\|\mathbf{E}\|^{2}+\frac{1}{2 \epsilon_{2}} C_{\beta}^{2} d\|\mathbf{u}\|^{2}\left(C_{s}^{2}\|\boldsymbol{\Lambda}\|^{2}+\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)}^{2}\right) \tag{3.21}
\end{align*}
$$

A similar bound to that given in (3.21) holds for the third term on the right hand side of (3.18). Combining the estimates (3.19)-(3.21) with (3.18) we have

$$
\begin{align*}
& \left(\beta_{\text {min }}-\epsilon_{1}-C_{\beta} \sqrt{d} C_{s}(\|\mathbf{u}\|+\|\mathbf{b}\|)-2 \epsilon_{2}\right)\|\mathbf{E}\|^{2} \leq \\
& \left(\frac{1}{4 \epsilon_{1}} \beta_{\max }^{2}+\frac{1}{2 \epsilon_{2}} C_{\beta}^{2} d C_{s}^{2}\left(\|\mathbf{u}\|^{2}+\|\mathbf{b}\|^{2}\right)\right)\|\boldsymbol{\Lambda}\|^{2} \\
& \left.\quad+\frac{1}{2 \epsilon_{2}} C_{\beta}^{2} d\left(\|\mathbf{u}\|^{2}+\|\mathbf{b}\|^{2}\right)\right)\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)}^{2} . \tag{3.22}
\end{align*}
$$

Hence, in view of the stated hypothesis (3.13), there exists $C>0$ such that $\|\mathbf{E}\| \leq C\left(\|\boldsymbol{\Lambda}\|+\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right\|_{L^{\infty}(\Omega)}\right)$. Finally, from the triangle inequality and (3.6) we have that

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{X}=\left\|\mathbf{u}-\mathbf{u}_{h}\right\| \leq\|\boldsymbol{\Lambda}\|+\|\mathbf{E}\| \leq C\left(h^{k+1}\|\mathbf{u}\|_{H^{k+1}(\Omega)}+C_{\mathbf{u}} h^{l+1}\right) \tag{3.23}
\end{equation*}
$$

To obtain the error estimate for the pressure, let $P \in Q_{h}$. Then, from (3.5) we have that there exists $\mathbf{v} \in X_{h}$ such that

$$
c_{0}\left\|P-p_{h}\right\| \leq \frac{\left(P-p_{h}, \nabla \cdot \mathbf{v}\right)}{\|\mathbf{v}\|_{X}}=\frac{(P, \nabla \cdot \mathbf{v})-\left(p_{h}, \nabla \cdot \mathbf{v}\right)}{\|\mathbf{v}\|_{X}} .
$$

Using (3.8) and (2.1) we obtain

$$
\begin{aligned}
c_{0}\|\mathbf{v}\|_{X}\left\|P-p_{h}\right\| \leq & (P, \nabla \cdot \mathbf{v})+(\mathbf{f}, \mathbf{v})-\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{u}_{h}, \mathbf{v}\right)-\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) \\
= & (P, \nabla \cdot \mathbf{v})-(p, \nabla \cdot \mathbf{v})+\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{u}, \mathbf{v}\right)+\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) \\
& -\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{u}_{h}, \mathbf{v}\right)-\left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right) \mathbf{b}, \mathbf{v}\right) \\
=(P-p, \nabla \cdot \mathbf{v})+ & \left(\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\left(\mathbf{u}-\mathbf{u}_{h}\right), \mathbf{v}\right)+\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{u}, \mathbf{v}\right) \\
& +\left(\left(\beta\left(\left|\mathbf{u}^{s}+\mathbf{b}\right|\right)-\beta\left(\left|\mathbf{u}_{h}^{s}+\mathbf{b}\right|\right)\right) \mathbf{b}, \mathbf{v}\right) \\
\Rightarrow c_{0}\left\|P-p_{h}\right\| \leq & \|P-p\|+\beta_{\max }\left\|\mathbf{u}-\mathbf{u}_{h}\right\| \\
& +C_{\beta} \sqrt{d}\left(C_{s}\left\|\mathbf{u}-\mathbf{u}_{h}\right\|+\left\|\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}\right\|_{L^{\infty}(\Omega)}\right)(\|\mathbf{u}\|+\|\mathbf{b}\|) .
\end{aligned}
$$

Using the triangle inequality, (2.4), (3.7), (3.11) and (3.23) we obtain the stated estimate for $\left\|p-p_{h}\right\|$.

Remark: The $L^{\infty}(\Omega)$ norm used for the term $\left(\tilde{\mathbf{u}}_{h}^{s}-I_{h} \tilde{\mathbf{u}}_{h}^{s}\right)$ and the $L^{2}(\Omega)$ norm used for \mathbf{u} and \mathbf{b} in (3.22) may be interchanged, assuming that the functions \mathbf{u} and \mathbf{b} are sufficiently regular.

4 Numerical Computations

In this section we present a numerical example to demonstrate the numerical approximation scheme (3.8)-(3.9), and investigate the a priori error estimate (3.14).

Let $\Omega=(-1,1) \times(0,1), \beta(s)=v_{\infty}+\left(v_{0}-v_{\infty}\right) /\left(1+k s^{2-r}\right)$, with parameters $v_{\infty}=1, v_{0}=5$, $k=1$, and $r=1 / 2$. $(\beta(\cdot)$ represents the Cross model for the effective viscosity for a generalized Newtonian fluid.) The true solution \mathbf{u} and p are taken to be

$$
\mathbf{u}(x, y)=\left[\begin{array}{c}
\sin (\pi x) \cos (\pi y) \tag{4.1}\\
\cos (\pi x) \sin (\pi y)
\end{array}\right], \quad p(x, y)=x y
$$

For this choice of $\mathbf{u}, \nabla \cdot \mathbf{u} \neq 0$, hence a right hand side function is added to (3.9). The boundary conditions used are $\mathbf{u} \cdot \mathbf{n}$ along $\{1\} \times(0,1),(-1,1) \times\{1\},\{-1\} \times(0,1)$, with $p=0$ weakly imposed along $(-1,1) \times\{0\}$. A computation mesh corresponding to mesh parameter $h=1 / 4$ is presented in Figure 4.1. Plots of $\beta(|\mathbf{u}|), \mathbf{u}$ and p are given in Figures 4.2, 4.3 and 4.4, respectively.
Example 1.
For \mathbf{u}_{h}^{s}, the interpolate of $\tilde{\mathbf{u}}_{h}^{s}$ (the smoothed function of \mathbf{u}_{h}), we compute a continuous, piecewise quadratic, velocity by taking a simple average of \mathbf{u}_{h} at the nodal points of \mathbf{u}_{h}^{s}. Computations were performed using $R T_{0}-\operatorname{disc} P_{0}, R T_{1}-\operatorname{disc} P_{1}$, and $R T_{2}-\operatorname{disc} P_{2}$ elements for the velocity and pressure. (By $R T_{k}$ we are referring to Raviart-Thomas elements of degree k, and $d i s c P_{k}$ refers to the space of discontinuous scalar functions which are polynomials of degree less that or equal to k on each triangle in the triangulation.) The results, together with the experimental convergence rates are presented in Table 4.1. The experimental convergence rates are consistent with those predicted by (3.14) for $l=2$. (Regarding the $O\left(h^{4}\right)$ experimental convergence rate for the pressure using $R T_{2}-d i s c P_{2}$ elements, note that the true solution for the pressure lies in the $d i s c P_{2}$ approximation space.)

Example 2.
In order to investigate the dependence of the approximation on the interpolant of the smoother,

Figure 4.1: Computational mesh for $h=1 / 4$.

Figure 4.3: Plot of the velocity flow field \mathbf{u}.

Figure 4.2: Plot of $\beta(|\mathbf{u}|)$.

Figure 4.4: Plot of the pressure function p.
in this case we take \mathbf{u}_{h}^{s} to be a continuous, piecewise linear function, obtained by taking a simple average of $\tilde{\mathbf{u}}_{h}^{s}$ at the vertices of the triangles in the triangulations. The results obtained using $R T 1$ - discP1, and $R T 2$ - discP2 approximating elements are presented in Table 4.2. In this case ($l=1$) we observe optimal convergence for $R T 1-\operatorname{discP1}$ (and $R T 0-d i s c P 0$, results not included). However, the experimental convergence rates for the $R T 2$ - discP2 approximation is limited to 2 for the velocity and pressure, consistent with (3.14).

A Example of a local smoothing function

In this section we give an example of a local smoothing function which satisfies properties $\mathbf{A u}^{\mathrm{s}} \mathbf{1}$ and $\mathbf{A u}^{\mathbf{s}} \mathbf{2}$ presented in Section 2. The smoothing function is a simple averaging operator. We use the term domain to refer to an open connected set in \mathbb{R}^{n}.

For simplicity we present the case for a scalar function $u(\mathbf{x})$. For a vector valued function the smoother is simply applied to each of the coordinate functions.

h	$\left\\|\mathbf{u}-\mathbf{u}_{h}\right\\|_{L^{2}(\Omega)}$	Cvg. rate	$\left\\|\nabla \cdot\left(\mathbf{u}-\mathbf{u}_{h}\right)\right\\|_{L^{2}(\Omega)}$	Cvg. rate	$\left\\|p-p_{h}\right\\|_{L^{2}(\Omega)}$	Cvg. rate
$X_{h}=R T_{0} \quad Q_{h}=\operatorname{disc}_{0}$						
1/4	$3.543 \mathrm{E}-01$	0.98	$1.274 \mathrm{E}+00$	0.97	$9.212 \mathrm{E}-2$	1.29
1/6	$2.376 \mathrm{E}-01$	0.98	$8.589 \mathrm{E}-01$	0.99	$5.464 \mathrm{E}-2$	1.10
1/8	$1.790 \mathrm{E}-01$	1.00	$6.468 \mathrm{E}-01$	0.99	$3.981 \mathrm{E}-2$	1.08
1/10	$1.433 \mathrm{E}-01$	1.00	$5.184 \mathrm{E}-01$	0.99	$3.131 \mathrm{E}-2$	1.05
1/12	$1.195 \mathrm{E}-01$		$4.325 \mathrm{E}-01$		$2.588 \mathrm{E}-2$	
Pred.		1.0		1.0		1.0
$X_{h}=R T_{1} \quad Q_{h}=d i s c P_{1}$						
1/4	$5.645 \mathrm{E}-02$	1.94	$2.020 \mathrm{E}-01$	1.97	$5.680 \mathrm{E}-03$	2.80
1/6	$2.574 \mathrm{E}-02$	1.98	$9.089 \mathrm{E}-02$	1.99	$1.824 \mathrm{E}-03$	2.44
1/8	$1.456 \mathrm{E}-02$	1.99	$5.134 \mathrm{E}-02$	1.99	$9.049 \mathrm{E}-04$	2.30
1/10	$9.344 \mathrm{E}-03$	1.99	$3.292 \mathrm{E}-02$	1.99	$5.419 \mathrm{E}-04$	2.21
1/12	$6.495 \mathrm{E}-03$		$2.289 \mathrm{E}-02$		$3.619 \mathrm{E}-04$	
Pred.		2.0		2.0		2.0
$X_{h}=R T_{2} \quad Q_{h}=$ discP $_{2}$						
1/4	$6.661 \mathrm{E}-03$	3.09	$2.268 \mathrm{E}-02$	2.97	$9.877 \mathrm{E}-04$	3.98
1/6	$1.905 \mathrm{E}-03$	3.06	$6.788 \mathrm{E}-03$	2.99	$1.966 \mathrm{E}-04$	3.94
1/8	$7.905 \mathrm{E}-04$	3.02	$2.874 \mathrm{E}-03$	2.99	$6.328 \mathrm{E}-05$	4.02
1/10	$4.028 \mathrm{E}-04$	3.02	$1.474 \mathrm{E}-03$	3.00	$2.578 \mathrm{E}-05$	3.98
1/12	$2.321 \mathrm{E}-04$		$8.537 \mathrm{E}-04$		$1.247 \mathrm{E}-05$	
Pred.		3.0		3.0		3.0

Table 4.1: Example 1, \mathbf{u}_{h}^{s} a quadratic interpolant of $\tilde{\mathbf{u}}_{h}^{s}$.

h	$\left\\|\mathbf{u}-\mathbf{u}_{h}\right\\|_{L^{2}(\Omega)}$	Cvg. rate	$\left\\|\nabla \cdot\left(\mathbf{u}-\mathbf{u}_{h}\right)\right\\|_{L^{2}(\Omega)}$	Cvg. rate	$\left\\|p-p_{h}\right\\|_{L^{2}(\Omega)}$	Cvg. rate
$X_{h}=R T_{1} \quad Q_{h}=$ disc $^{\prime}$						
1/4	$6.744 \mathrm{E}-2$	1.88	$2.020 \mathrm{E}-01$	1.97	$2.420 \mathrm{E}-2$	1.99
1/6	$3.150 \mathrm{E}-2$	1.93	$9.089 \mathrm{E}-02$	1.99	$1.079 \mathrm{E}-2$	2.06
1/8	$1.808 \mathrm{E}-2$	1.95	$5.134 \mathrm{E}-02$	1.99	$5.960 \mathrm{E}-3$	2.01
1/10	$1.170 \mathrm{E}-2$	1.97	$3.292 \mathrm{E}-02$	1.99	$3.802 \mathrm{E}-3$	2.01
1/12	8.169E-3		$2.289 \mathrm{E}-02$		$2.634 \mathrm{E}-3$	
Pred.		2.0		2.0		2.0
$X_{h}=R T_{2} \quad Q_{h}=$ discP $_{2}$						
1/4	$3.635 \mathrm{E}-2$	1.84	$2.268 \mathrm{E}-02$	2.97	$2.770 \mathrm{E}-2$	1.17
1/6	$1.727 \mathrm{E}-2$	1.97	$6.788 \mathrm{E}-03$	2.99	$1.727 \mathrm{E}-2$	3.15
1/8	$9.804 \mathrm{E}-3$	1.97	$2.874 \mathrm{E}-03$	2.99	$6.984 \mathrm{E}-3$	2.00
1/10	$6.310 \mathrm{E}-3$	1.97	$1.474 \mathrm{E}-03$	3.00	$4.473 \mathrm{E}-3$	2.00
1/12	$4.404 \mathrm{E}-3$		$8.537 \mathrm{E}-04$		$3.107 \mathrm{E}-3$	
Pred.		2.0		2.0		2.0

Table 4.2: Example 2, \mathbf{u}_{h}^{s} a linear interpolant of $\tilde{\mathbf{u}}_{h}^{s}$.

Let Ω denote a bounded domain in \mathbb{R}^{n} and $\mathcal{L}(\Omega)$ the Lebesgue measurable sets in Ω. Let $\delta>0$ denote the (fixed) volume measure over which we average a function to obtain its smoothed value.

For $\mathbf{x} \in \Omega$ the typical averaging volume which comes to mind is $B\left(\mathbf{x}, r_{\delta}\right)$, where $B\left(\mathbf{x}, r_{\delta}\right)$ denotes the ball centered at \mathbf{x} of radius r_{δ} having volume δ. As δ is fixed the difficulty in using $B\left(\mathbf{x}, r_{\delta}\right)$ arises for points whose distance from $\partial \Omega$ is less that r_{δ}. This requires us to consider averaging volumes other than balls. Namely, for each point $\mathbf{x} \in \Omega$ we associate a domain $V(\mathbf{x})$ having a volume of δ. We require that the association of \mathbf{x} with $V(\mathbf{x})$ be continuous. This continuity is formally described in the next paragraph.

Let ν denote the Lebesgue measure in \mathbb{R}^{n}. For $S_{1}, S_{2} \in \mathcal{L}(\Omega)$, introduce the metric $d\left(S_{1}, S_{2}\right)$ defined by

$$
\begin{equation*}
d\left(S_{1}, S_{2}\right):=\nu\left(S_{1} \triangle S_{2}\right), \text { where } S_{1} \triangle S_{2}:=\left(S_{1} \backslash S_{2}\right) \cup\left(S_{2} \backslash S_{1}\right) . \tag{A.1}
\end{equation*}
$$

Now, let $V: \bar{\Omega} \longrightarrow \mathcal{L}(\Omega)$ satisfy: (i) $V(\mathbf{x})$ is a domain with $\nu(V(\mathbf{x}))=\delta$ for all $\mathbf{x} \in \Omega$, and (ii) $d(V(\mathbf{x}), V(\mathbf{y}))=\nu(V(\mathbf{x}) \Delta V(\mathbf{y})) \leq C_{V}|\mathbf{x}-\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \Omega$, where C_{V} a fixed constant. For convenience we denote the domain $V(\mathbf{x})$ as $V_{\mathbf{x}}$.

Definition: Local Smoothing Operator
For $u \in L^{2}(\Omega)$, define u^{s} as

$$
\begin{equation*}
u^{s}(\mathbf{x})=\frac{1}{\delta} \int_{V_{\mathbf{x}}} u(\mathbf{z}) d \Omega \tag{A.2}
\end{equation*}
$$

We have the following properties for $u^{s}(\mathbf{x})$.
Lemma A. 1 For $u \in L^{2}(\Omega), u^{s}$ defined by (A.2) satisfies the following properties.
(i) $\left\|u^{s}\right\|_{L^{\infty}(\Omega)} \leq \delta^{-1 / 2}\|u\|_{L^{2}(\Omega)}$.
(ii) $u^{s}: \bar{\Omega} \longrightarrow \mathbb{R}$ is uniformly continuous.
(iii) Suppose that $\left\{u_{n}\right\}_{n=1}^{\infty} \subset L^{2}(\Omega)$ and that u_{n} converges weakly to $u \in L^{2}(\Omega)$. Then $\left\{u_{n}^{s}\right\}_{n=1}^{\infty}$ converges to u^{s} in $L^{\infty}(\Omega)$.

Proof: Let $1_{S} \in L^{2}(\Omega)$ denote the characteristic function of the domain S. From (A.2), for $\mathbf{x} \in \Omega$

$$
\begin{aligned}
u^{s}(\mathbf{x}) & =\frac{1}{\delta} \int_{V_{\mathbf{x}}} u(\mathbf{z}) d \Omega=\frac{1}{\delta} \int_{\Omega} 1_{V_{\mathbf{x}}} u(\mathbf{z}) d \Omega \\
& \leq \frac{1}{\delta}\left(\int_{\Omega}\left(1_{V_{\mathbf{x}}}\right)^{2} d \Omega\right)^{1 / 2}\left(\int_{\Omega} u(\mathbf{z})^{2} d \Omega\right)^{1 / 2} \\
& =\delta^{-1 / 2}\|u\|_{L^{2}(\Omega)}
\end{aligned}
$$

which establishes (i).
For $\mathbf{x}, \mathbf{y} \in \Omega$,

$$
\begin{aligned}
\left|u^{s}(\mathbf{x})-u^{s}(\mathbf{y})\right| & \leq \frac{1}{\delta} \int_{\Omega}\left|1_{V_{\mathbf{x}}}-1_{V_{\mathbf{y}}}\right||u(\mathbf{z})| d \Omega \\
& =\frac{1}{\delta}\left(\int_{\Omega}\left(1_{V_{\mathbf{x}}}-1_{V_{\mathbf{y}}}\right)^{2} d \Omega\right)^{1 / 2}\left(\int_{\Omega} u(\mathbf{z})^{2} d \Omega\right)^{1 / 2} \\
& =\frac{1}{\delta}\|u\|_{L^{2}(\Omega)} d(V(\mathbf{x}), V(\mathbf{y}))^{1 / 2} \\
& =\frac{C_{V}^{1 / 2}}{\delta}\|u\|_{L^{2}(\Omega)}|\mathbf{x}-\mathbf{y}|^{1 / 2}
\end{aligned}
$$

which establishes the uniform continuity of u^{s}. As u^{s} is bounded on Ω then u^{s} can be continuously extended to $\partial \Omega$.

To establish (iii), as $\left\{u_{n}\right\}$ converges weakly, let $\sup _{n}\left\|u_{n}\right\|=M<\infty$. In addition, for $\epsilon>0, \sigma=$ $\left(\epsilon /\left(6 M C_{V}^{1 / 2}\right)\right)^{2}$, let $\left\{\mathbf{z}_{i}\right\}_{i=1}^{N}$ denote a σ-net of $\bar{\Omega}$, i.e., for all $\mathbf{x} \in \Omega$ there exists an $i_{\mathbf{x}} \in\{1,2, \ldots, N\}$ such that $\left|\mathbf{x}-\mathbf{z}_{i_{\mathbf{x}}}\right|<\sigma$.

Now,

$$
\begin{align*}
\left|u_{n}^{s}(\mathbf{x})-u^{s}(\mathbf{x})\right| & =\left|\int_{V_{\mathbf{x}}}\left(u_{n}(\mathbf{y})-u(\mathbf{y})\right) d \Omega\right| \\
& =\left|\int_{V_{z_{i_{\mathbf{x}}}}}\left(u_{n}(\mathbf{y})-u(\mathbf{y})\right) d \Omega+\int_{V_{\mathbf{x}} \backslash V_{z_{i_{\mathbf{x}}}}}\left(u_{n}(\mathbf{y})-u(\mathbf{y})\right) d \Omega\right| \\
& \leq\left|\int_{V_{\mathbf{z}_{i_{\mathbf{x}}}}}\left(u_{n}(\mathbf{y})-u(\mathbf{y})\right) d \Omega\right|+\int_{V_{\mathbf{x}} \Delta V_{\mathbf{z}_{i_{\mathbf{x}}}}}\left|u_{n}(\mathbf{y})-u(\mathbf{y})\right| d \Omega . \tag{A.3}
\end{align*}
$$

Since $\left\{u_{n}\right\}$ converges weakly to u in $L^{2}(\Omega)$, for all $w \in L^{2}(\Omega)$ there exists N_{w} such that for $n>N_{w}$

$$
\begin{equation*}
\left|\int_{\Omega}\left(u_{n}-u\right) w d \Omega\right|<\frac{\epsilon}{3} . \tag{A.4}
\end{equation*}
$$

Let $N_{\star}=\max _{i=1,2, \ldots, N}\left\{N_{1_{\bar{z}_{i}}}\right\}$. Then, for $n>N_{\star}$

$$
\left|\int_{V_{\mathbf{z}_{i_{\mathbf{x}}}}}\left(u_{n}(\mathbf{y})-u(\mathbf{y})\right) d \Omega\right|=\left|\int_{\Omega}\left(u_{n}(\mathbf{y})-u(\mathbf{y})\right) 1_{V_{\mathbf{z}_{i}}} d \Omega\right|<\frac{\epsilon}{3} .
$$

For the second term on the right hand side of (A.3) we have

$$
\begin{align*}
\int_{V_{\mathbf{x}} \Delta V_{\mathbf{z}_{i_{\mathbf{x}}}}}\left|u_{n}(\mathbf{y})-u(\mathbf{y})\right| d \Omega & \leq\left(\int_{V_{\mathbf{x}} \Delta V_{\mathbf{z}_{i_{\mathbf{x}}}}}\left|u_{n}(\mathbf{y})-u(\mathbf{y})\right|^{2} d \Omega\right)^{1 / 2}\left(\int_{V_{\mathbf{x}} \Delta V_{\mathbf{z}_{i_{\mathbf{x}}}}} 1 d \Omega\right)^{1 / 2} \\
& \leq 2 M \nu\left(V_{\mathbf{x}} \Delta V_{\mathbf{z}_{i_{\mathbf{x}}}}\right)^{1 / 2} \\
& \leq 2 M C_{V}^{1 / 2}\left|\mathbf{x}-\mathbf{z}_{i_{\mathbf{x}}}\right|^{1 / 2} \leq 2 M C_{V}^{1 / 2} \sigma^{1 / 2} \\
& =\frac{\epsilon}{3} \tag{A.5}
\end{align*}
$$

Thus, from (A.3)-(A.5) it follows that for all $\mathbf{x} \in \Omega$, for $n>N_{\star}$

$$
\left|u_{n}^{s}(\mathbf{x})-u^{s}(\mathbf{x})\right|<\frac{2}{3} \epsilon, \quad \text { i.e., }\left\|u_{n}^{s}-u^{s}\right\|_{L^{\infty}(\Omega)}<\frac{2}{3} \epsilon<\epsilon
$$

A. 1 Regularity of u^{s} (for $u \in L^{\infty}(\Omega)$)

If, in place of $u \in L^{2}(\Omega)$, we have $u \in L^{\infty}(\Omega)$ then u^{s} defined by (A.2) is a $H^{1}(\Omega)$ function. To establish this regularity result we begin by citing a characterization of the $W^{1, p}\left(\mathbb{R}^{n}\right)$ function space.

Theorem A. 1 ([18], Theorem 2.1.6) Let $1<p<\infty$. Then $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ if and only if $u \in L^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left|\frac{u(\mathbf{x}+\mathbf{h})-u(\mathbf{x})}{|\mathbf{h}|}\right|^{p} d \mathbf{x}\right)^{1 / p}=|\mathbf{h}|^{-1}\|u(\mathbf{x}+\mathbf{h})-u(\mathbf{x})\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{A.6}
\end{equation*}
$$

remains bounded for all $\mathbf{h} \in \mathbb{R}^{n}$.

Theorem A. 2 If $u \in L^{\infty}(\Omega)$ then, for u^{s} defined by (A.2), $u^{s} \in H^{1}(\Omega)$.
Proof: In order to apply Theorem A. 1 we need to define an extension of u to \mathbb{R}^{n}. Let

$$
\tilde{u}(\mathbf{x})=\left\{\begin{array}{rr}
u(\mathbf{x}), & \mathbf{x} \in \Omega \\
0, & \mathbf{x} \notin \Omega
\end{array} \quad, \quad \text { and } \tilde{V}: \mathbb{R}^{n} \longrightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)\right.
$$

denote an extension of V satisfying properties (i) and (ii) (with Ω replaced by \mathbb{R}^{n}), and additionally that there exists constants $C_{1}>0$ and $C_{2} \geq 0$ such that (iii) diameter $(\widetilde{V}(\mathbf{z})) \leq C_{1}$ for all $\mathbf{z} \in \mathbb{R}^{n}$, and (iv) $\sup _{\mathbf{z} \in \mathbb{R}^{n} \inf _{\mathbf{y} \in \tilde{V}(\mathbf{z})}|\mathbf{z}-\mathbf{y}| \leq C_{2} \text {. } ~}^{\text {. }}$
Let Ω_{B} denote the bounded set, $\Omega_{B}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: \inf _{\mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|<1+C_{1}+C_{2}\right\} \supset \operatorname{support}\left(\tilde{u}^{s}\right)$. Note that for $\mathbf{x} \in \mathbb{R}^{n} \backslash \Omega_{B}$ and $|\mathbf{h}|<1, \tilde{u}^{s}(\mathbf{x}+\mathbf{h})=0$.

Now, for $|\mathbf{h}| \geq 1$,

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\left|\frac{\tilde{u}^{s}(\mathbf{x}+\mathbf{h})-\tilde{u}^{s}(\mathbf{x})}{|\mathbf{h}|}\right|^{2} d \mathbf{x} & \leq \frac{2}{|\mathbf{h}|^{2}}\left(\int_{\mathbb{R}^{n}}\left(\tilde{u}^{s}(\mathbf{x}+\mathbf{h})\right)^{2} d \mathbf{x}+\int_{\mathbb{R}^{n}}\left(\tilde{u}^{s}(\mathbf{x})\right)^{2} d \mathbf{x}\right) \\
& \leq \frac{4}{|\mathbf{h}|^{2}} \int_{\mathbb{R}^{n}}\left(\tilde{u}^{s}(\mathbf{x})\right)^{2} d \mathbf{x} \leq \frac{4}{|\mathbf{h}|^{2}}\left\|\tilde{u}^{s}\right\|_{L^{\infty}\left(\Omega_{B}\right)}^{2} \nu\left(\Omega_{B}\right) \\
& \leq 4 \nu\left(\Omega_{B}\right)\|\tilde{u}\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{2}=4 \nu\left(\Omega_{B}\right)\|u\|_{L^{\infty}(\Omega)}^{2} . \tag{A.7}
\end{align*}
$$

For $|\mathbf{h}|<1$,

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\left|\frac{\tilde{u}^{s}(\mathbf{x}+\mathbf{h})-\tilde{u}^{s}(\mathbf{x})}{|\mathbf{h}|}\right|^{2} d \mathbf{x} & =\frac{1}{|\mathbf{h}|^{2}} \int_{\Omega_{B}}\left|\tilde{u}^{s}(\mathbf{x}+\mathbf{h})-\tilde{u}^{s}(\mathbf{x})\right|^{2} d \mathbf{x} \\
& =\frac{1}{|\mathbf{h}|^{2}} \int_{\Omega_{B}}\left|\frac{1}{\delta} \int_{\Omega_{B}} \tilde{u}(\mathbf{z})\left(1_{\tilde{V}_{\mathbf{x}+\mathbf{h}}}(\mathbf{z})-1_{\tilde{V}_{\mathbf{x}}}(\mathbf{z})\right) d \mathbf{z}\right|^{2} d \mathbf{x} \\
& \leq \frac{1}{|\mathbf{h}|^{2}} \frac{1}{\delta^{2}}\|\tilde{u}\|_{L^{\infty}\left(\Omega_{B}\right)}^{2} \int_{\Omega_{B}}\left(\int_{\Omega_{B}}\left|1_{\widetilde{V}_{\mathbf{x}+\mathbf{h}}}(\mathbf{z})-1_{\widetilde{V}_{\mathbf{x}}}(\mathbf{z})\right| d \mathbf{z}\right)^{2} d \mathbf{x} \\
& =\frac{1}{|\mathbf{h}|^{2}} \frac{1}{\delta^{2}}\|\tilde{u}\|_{L^{\infty}\left(\Omega_{B}\right)}^{2} \int_{\Omega_{B}} d\left(\widetilde{V}_{\mathbf{x}+\mathbf{h}}, \widetilde{V}_{\mathbf{x}}\right)^{2} d \mathbf{x} \\
& \leq \frac{1}{|\mathbf{h}|^{2}} \frac{1}{\delta^{2}}\|\tilde{u}\|_{L^{\infty}\left(\Omega_{B}\right)}^{2} C_{V}^{2}|\mathbf{h}|^{2} \nu\left(\Omega_{B}\right) \\
& =\frac{1}{\delta^{2}} C_{V}^{2} \nu\left(\Omega_{B}\right)\|\tilde{u}\|_{L^{\infty}\left(\Omega_{B}\right)}^{2}=\frac{1}{\delta^{2}} C_{V}^{2} \nu\left(\Omega_{B}\right)\|u\|_{L^{\infty}(\Omega)}^{2} . \tag{A.8}
\end{align*}
$$

From (A.7) and (A.8), together with Theorem A.1, we obtain that $\tilde{u}^{s} \in H^{1}\left(\mathbb{R}^{n}\right)$. As $u^{s}=\left.\tilde{u}^{s}\right|_{\Omega}$, it then follows that $u^{s} \in H^{1}(\Omega)$.

B Example of a differential smoothing function

As an alternative to the local averaging filter discussed in Section A, in this section we present a differential smoothing filter.

$$
\begin{equation*}
\text { Let } X^{s}=H_{0}^{1}(\Omega)=\left\{\mathbf{v} \in H^{1}(\Omega): \mathbf{v}=\mathbf{0} \text { on } \partial \Omega\right\} \subset X \tag{B.9}
\end{equation*}
$$

Definition: Differential Smoothing Operator
For $\mathbf{u} \in L^{2}(\Omega)$, define $\mathbf{u}^{s} \in X^{s}$ as

$$
\begin{equation*}
\left(\nabla \mathbf{u}^{s}, \nabla \mathbf{v}\right)=\left(\mathbf{u}^{s}, \mathbf{v}\right), \forall \mathbf{v} \in X^{s} . \tag{B.10}
\end{equation*}
$$

The well posedness of \mathbf{u}^{s} follows from an application of the Lax-Milgram theorem. Next we show that this smoothing operation satisfies properties $\mathbf{A u}^{\mathbf{s}} \mathbf{1}$ and $\mathbf{A u}^{\mathbf{s}} \mathbf{2}$ presented in Section 2.

Lemma B. 2 For $\mathbf{u} \in L^{2}(\Omega)$, \mathbf{u}^{s} defined by (B.10) satisfies the following properties.
(i) $\left\|\mathbf{u}^{s}\right\|_{L^{\infty}(\Omega)} \leq C\|\mathbf{u}\|_{L^{2}(\Omega)}$.
(ii) Suppose that $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty} \subset L^{2}(\Omega)$, and that \mathbf{u}_{n} converges weakly to $\mathbf{u} \in L^{2}(\Omega)$. The $\left\{\mathbf{u}_{n}^{s}\right\}$ converges to \mathbf{u}^{s} in $L^{\infty}(\Omega)$.

Proof: From (B.10) we have that $\mathbf{u}^{s} \in X^{s}$, and as $\mathbf{u} \in L^{2}(\Omega)$, from the shift theorem (together with a sufficiently smooth $\partial \Omega$), it follows that

$$
\begin{equation*}
\mathbf{u}^{s} \in H^{2}(\Omega) \cap X^{s}, \quad \text { with }\left\|\mathbf{u}^{s}\right\|_{H^{2}(\Omega)} \leq C\|\mathbf{u}\| . \tag{B.11}
\end{equation*}
$$

Using the embedding of $H^{2}(\Omega)$ in $L^{\infty}(\Omega)$ we establish (i).
Let $\mathcal{W}: L^{2}(\Omega) \longrightarrow H^{2}(\Omega) \cap X^{s}, \mathcal{W}(\mathbf{u}):=\mathbf{u}^{s}$, denote the filter mapping. Then from (B.11) \mathcal{W} is a bounded (linear) transformation from $L^{2}(\Omega) \longrightarrow H^{2}(\Omega) \cap X^{s}$.

Let $\mathcal{W}^{*}:\left(H^{2}(\Omega) \cap X^{s}\right)^{*} \longrightarrow L^{2}(\Omega)$ denote the adjoint operator of \mathcal{W}. (The existence of \mathcal{W}^{*} follows immediately from the Riesz Representation Theorem.)
Now, for $\boldsymbol{\eta} \in\left(H^{2}(\Omega) \cap X^{s}\right)^{*}$

$$
\begin{aligned}
\left\langle\mathbf{u}_{n}^{s}-\mathbf{u}^{s}, \boldsymbol{\eta}\right\rangle_{H^{2},\left(H^{2}\right)^{*}}= & \left\langle\mathcal{W}\left(\mathbf{u}_{n}\right)-\mathcal{W}(\mathbf{u}), \boldsymbol{\eta}\right\rangle_{H^{2},\left(H^{2}\right)^{*}}=\left\langle\mathcal{W}\left(\mathbf{u}_{n}-\mathbf{u}\right), \boldsymbol{\eta}\right\rangle_{H^{2},\left(H^{2}\right)^{*}} \\
= & \left(\mathbf{u}_{n}-\mathbf{u}, \mathcal{W}^{*}(\boldsymbol{\eta})\right) \\
& \longrightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

as \mathbf{u}_{n} converges weakly in $L^{2}(\Omega)$ to \mathbf{u}. Hence as $H^{2}(\Omega) \cap X^{s}$ is compactly embedded in $L^{\infty}(\Omega) \cap X^{s}$, then \mathbf{u}_{n}^{s} converges to \mathbf{u}^{s} strongly in $L^{\infty}(\Omega)$.

References

[1] G. Allaire. Homogenization of the Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math., 44(6):605-641, 1991.
[2] M. Azaïez, F. Ben Belgacem, C. Bernardi, and N. Chorfi. Spectral discretization of Darcy's equations with pressure dependent porosity. Appl. Math. Comput., 217(5):1838-1856, 2010.
[3] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.
[4] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.
[5] M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda. On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var., 2(2):109-136, 2009.
[6] L. Diening, C. Kreuzer, and E. Süli. Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal., 51(2):984-1015, 2013.
[7] V.J. Ervin, E.W. Jenkins, and S. Sun. Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal., 47(2):929-952, 2009.
[8] V.J. Ervin, E.W. Jenkins, and S. Sun. Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math., 61(11):1198-1222, 2011.
[9] J. Galvis and M. Sarkis. Non-matching mortar discretization analysis for the coupling StokesDarcy equations. Electron. Trans. Numer. Anal., 26:350-384, 2007.
[10] G.N. Gatica, R. Oyarzúa, and F.-J. Sayas. A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA J. Numer. Anal., 32(3):845-887, 2012.
[11] V. Girault, F. Murat, and A. Salgado. Finite element discretization of Darcy's equations with pressure dependent porosity. M2AN Math. Model. Numer. Anal., 44(6):1155-1191, 2010.
[12] A. Hirn, M. Lanzendörfer, and J. Stebel. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity. IMA J. Numer. Anal., 32(4):1604-1634, 2012.
[13] J. Málek, J. Nečas, and K.R. Rajagopal. Global analysis of the flows of fluids with pressuredependent viscosities. Arch. Ration. Mech. Anal., 165(3):243-269, 2002.
[14] K. R. Rajagopal. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci., 17(2):215-252, 2007.
[15] L. Traverso, T.N. Phillips, and Y. Yang. Mixed finite element methods for groundwater flow in heterogeneous aquifers. Computers $\mathcal{E}^{\mathcal{F}}$ Fluids, 88:60-80, 2013.
[16] S. Whitaker. Flow in porous media I. A theoretical derivation of Darcy's law. Transp. Porous Media, 1:3-25, 1986.
[17] E. Zeidler. Applied functional analysis, volume 108 of Applied Mathematical Sciences. SpringerVerlag, New York, 1995. Applications to mathematical physics.
[18] W.P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.

[^0]: *Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA. (vjervin@clemson.edu)
 ${ }^{\dagger}$ Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, U.S.A. (hklee@mail.clemson.edu) Partially supported by the NSF under grant no. DMS-1016182.
 ${ }^{\ddagger}$ Department of Mathematics, University of Tennessee, Knoxville, TN 37996, U.S.A. (asalgad1@utk.edu)

