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Abstract

We present a model for generalized Newtonian fluid flow through a porous medium. In the
model the dependence of the fluid viscosity on the velocity is replaced by a dependence on a
smoothed (locally averaged) velocity. With appropriate assumptions on the smoothed velocity,
existence of a solution to the model is shown. Two examples of smoothing operators are presented
in the appendix. A numerical approximation scheme is presented and an a priori error estimate
derived. A numerical example is given illustrating the approximation scheme and the a priori
error estimate.
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1 Introduction

Of interest in this article is the modeling and approximation of generalized Newtonian fluid flow
through a porous medium. Darcy’s modeling equations for a steady-state fluid flow through a porous
medium, Ω, are

νeff K
−1 u + ∇p = 0 , in Ω , (1.1)

∇ · u = 0 , in Ω . (1.2)

where u and p denote the velocity and pressure of the fluid, respectively. K(x) in (1.1) represents the
permeability of the medium at x ∈ Ω, which is assumed to be a symmetric, positive definite tensor.
As our investigations are not concerned with K, we assume that K is of the form k(x)I where k(x)
is a Lipschitz continuous, positive, bounded and bounded away from zero, scalar function. νeff in
(1.1) represents the effective viscosity of the fluid.
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In the case of a Newtonian fluid we have that νeff is a positive constant. For a generalized Newtonian
fluid νeff is a function of |u|. Two such examples are

Power Law Model: νeff (|u|) = cν |u|r−2 , Cross Model: νeff (|u|) = ν∞ +
ν0 − ν∞

1 + cν |u|2−r
, (1.3)

where cν , ν0, ν∞ and r are fluid dependent constants. For shear thinning fluids 1 < r < 2. (In
modeling the viscosity of shear thinning fluids the Power Law model suffers the criticism that as
|u| → 0 νeff →∞.)

For the case of a Newtonian fluid (1.1), (1.2) are well studied. The two standard approaches in
analyzing (1.1), (1.2) are: (i) study (1.1), (1.2) as a mixed formulation problem for u and p (either
(u, p) ∈ Hdiv(Ω) × L2(Ω), or (u, p) ∈ L2(Ω) × H1(Ω)), or (ii) use (1.2) to eliminate u in (1.1) to
obtain a generalized Laplace’s equation for p.

For generalized Newtonian fluids, with νeff = νeff (|u|), assumptions are required on νeff in order
to establish existence and uniqueness of solutions. Typical assumptions are uniform continuity of
νeff (|u|)u and strong monotonicity of νeff (|u|) [7, 8, 10], i.e., there exists C > 0 such that

|νeff (|u|)u − νeff (|v|)v| ≤ C |u − v| , ∀u, v ∈ IRd , (1.4)

(νeff (|u|)u − νeff (|v|)v) · (u − v) ≥ C (u − v) · (u − v) , ∀u, v ∈ IRd . (1.5)

A more general setting where the fluid rheology is defined implicitly has been analyzed in [5, 6]. The
case where the fluid viscosity depends on the shear rate and pressure has been studied in [13, 12].
For both of these cases additional structure beyond (1.4) and (1.5) is required in order to establish
existence and uniqueness of a solution.

A nonlinear Darcy fluid flow problem, with a permeability dependent upon the pressure was inves-
tigated by Azäıez, Ben Belgacem, Bernardi, and Chorfi [2], and Girault, Murat, and Salgado [11].
For a Lipschitz continuous permeability function, bounded above and bounded away from zero, ex-
istence of a solution (u, p) ∈ L2(Ω)×H1(Ω) was established. Important in handling the nonlinear
permeability function, in establishing existence of a solution, was the property that p ∈ H1(Ω).
In [2] the authors also investigated a spectral numerical approximation scheme for the nonlinear
Darcy problem, assuming an axisymmetric domain Ω. A convergence analysis for the finite element
discretization of that problem was given in [11].

Our interest in this paper is in relaxing the assumptions (1.4) and (1.5). Specifically, our interest is
assuming that νeff (·) is only Lipschitz continuous and both bounded above and bounded away from
zero. However, relaxing the conditions (1.4) and (1.5) requires us to make an additional assumption
regarding the argument of νeff (·). In order to obtain a modeling system of equations for which a
solution can be shown to exist, we replace u in νeff (|u|) by a smoothed velocity, us. The approach
of regularizing the model with the introduction of us is, in part, motivated by the fact that the
Darcy fluid flow equations can be derived by averaging, e.g. volume averaging [16], homogenization
[1], or mixture theory [14].

Presented in the Appendix are two smoothing operators for u. One is a local averaging operator,
whereby us(x) is obtained by averaging u in a neighborhood of x. The second smoothing operator,
which is nonlocal, computes us(x) using a differential filter applied to u. That is, us is given by the
solution to an elliptic differential equation whose right hand side is u. For establishing the existence
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of a solution to (1.1)-(1.2), the key property of the smoothing operators is that they transform a
weakly convergent sequence in L2(Ω) into a sequence which converges strongly in L∞(Ω).

For the mathematical analysis of this problem it is convenient to have homogeneous boundary
conditions. This is achieved by introducing a suitable change of variables. For example, assuming
∂Ω = Γin ∪ Γ ∪ Γout, in the case the specified boundary conditions are

u · (−n) = gin on Γin, u · n = 0 on Γ, p = pout on Γout ,

we introduce functions b(x) and pb(x) defined on Ω satisfying

∇ · b = 0 , in Ω ,

b · n = −gin , on Γin ,

b · ti = 0 , on Γin ,

b = 0 , on ∂Ω\Γin ,

where ti, i = 1, . . . , (d− 1) denotes an orthogo-
nal set of tangent vectors on Γin.

∇ · ∇pb = 0 , in Ω ,

pb = pout , on Γout ,

∂pb
∂n

= 0 , on ∂Ω\Γout .

(In case the pressure is specified on the inflow boundary Γin, then b = 0, and the definition of pb
is appropriately modified.)

With the change of variables: u = u0 + b and p = p0 + pb, and subsequent relabeling u0 = u,
p0 = p and f = −∇pb we obtain the following system of modeling equations:

β(|us + b|)u + β(|us + b|)b + ∇p = f , in Ω , (1.6)

∇ · u = 0 , in Ω , (1.7)

u · n = 0 , on Γin ∪ Γ , (1.8)

p = 0 , on Γout , (1.9)

where β(|us + b|) = νeff (|us + b|) k−1.

In the next section we show that, under suitable assumptions on β(·) and us, there exists a unique
solution to (1.6)-(1.9). An approximation scheme is presented in Section 3, and an a priori error
estimate derived. A numerical example illustrating the approximation scheme and the a priori error
estimate is presented in Section 4.

2 Existence and Uniqueness

In this section we investigate the existence and uniqueness of solutions to the nonlinear system
equations (1.6)-(1.9). We assume that Ω ⊂ IRd, d = 2 or 3, is a convex polyhedral domain and for
vectors in IRd | · | denotes the Euclidean norm.

Throughout, we use C to denote a generic nonnegative constant, independent of the mesh parameter
h, whose actual value may change from line to line in the analysis.
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We make the following assumptions on β(·) and us.
Assumptions on β(·)
Aβ1 : β(·) : IR+ −→ IR+ ,
Aβ2 : 0 < βmin ≤ β(s) ≤ βmax, ∀s ∈ IR+,
Aβ3: β is Lipschitz continuous, |β(s1) − β(s2)| ≤ Cβ |s1 − s2|.

Assumptions on us

Aus1: For u ∈ L2(Ω), ‖us‖L∞(Ω) ≤ Cs ‖u‖L2(Ω) ,
Aus2: For {un}∞n=1 ⊂ L2(Ω), with un converging weakly to u ∈ L2(Ω), then {usn}∞n=1 converges to
us in L∞(Ω) ,
Aus3: The mapping u 7→ us is linear.

Weak formulation of (1.6)-(1.9)
Let X = {v ∈ Hdiv(Ω) : v · n = 0 , on Γin ∪ Γ}. We use

(f , g) :=

∫
Ω
f · g dΩ , and ‖f‖ := (f , f)1/2

to denote the L2 inner product and the L2 norm over Ω, respectively, for both scalar and vector
valued functions. Additionally, we introduce the norm

‖v‖X =

(∫
Ω

(∇ · v∇ · v + v · v) dΩ

)1/2

.

Remark: For v ∈ Hdiv(Ω) it follows that v ·n ∈ H−1/2(∂Ω). For the interpretation of the condition
v · n = 0 on Γin ∪ Γ see [9, 15].

We restate (1.6)-(1.9) as: Given b, f ∈ L2(Ω), find (u, p) ∈ X ×L2(Ω), such that for all v ∈ X and
q ∈ L2(Ω)

(β(|us + b|)u , v) − (p , ∇ · v) + (β(|us + b|)b , v) = (f , v) , (2.1)

(q , ∇ · u) = 0 . (2.2)

For the spaces X and L2(Ω) we have the following inf-sup condition

inf
q∈L2(Ω)

sup
v∈X

(q , ∇ · v)

‖q‖ ‖v‖X
≥ c0 > 0 . (2.3)

We begin by establishing boundedness of any solution to (2.1)-(2.2).

Lemma 2.1 Any solution (u, p) ∈ X × L2(Ω) to (2.1)-(2.2) satisfies

‖u‖X + ‖p‖ ≤ C (‖b‖ + ‖f‖) . (2.4)

Proof : From (2.2) and that ∇ ·X ⊂ L2(Ω) we have that any solution u to (2.1)-(2.2) satisfies

‖∇ · u‖ = 0 . (2.5)
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With the choice v = u, q = p, subtracting (2.2) from (2.1), and using assumption Aβ2 yields

(β(|us + b|)u , u) = − (β(|us + b|)b , u) + (f , u) ,

βmin ‖u‖2 ≤ βmax ‖b‖ ‖u‖ + ‖f‖ ‖u‖ . (2.6)

Combining (2.5) and (2.6) we obtain the stated bound for u. The estimate for p is obtained using
the inf-sup condition (2.3).

‖p‖ ≤ 1

c0
sup
v∈X

(p , ∇ · v)

‖v‖X
=

1

c0
sup
v∈X

(β(|us + b|)u , v) + (β(|us + b|)b , v) − (f , v)

‖v‖X

≤ 1

c0
(‖β(|us + b|)u‖ + ‖β(|us + b|)b‖ + ‖f‖)

≤ 1

c0
(βmax (‖u‖ + ‖b‖) + ‖f‖) ,

from which the stated bound follows.

Define Z =
{
v ∈ X : (q , ∇ · v) = 0 ,∀q ∈ L2(Ω)

}
.

Because of the inf-sup condition (2.3), the weak formulation (2.1)-(2.2) can be equivalently stated
as: Given b, f ∈ L2(Ω)), find u ∈ Z, such that for all v ∈ Z

(β(|us + b|)u , v) + (β(|us + b|)b , v) = (f , v) . (2.7)

Remark: For v ∈ Z, ‖v‖X = ‖v‖, as ‖∇ · v‖ = 0.

To establish the existence of a solution to (2.7) we use the Leray-Schauder fixed point theorem. To
do this we show that a solution to (2.7) is a fixed point of a compact mapping Φ.

Theorem 2.1 For β(·) and us satisfying assumptions Aβ1−Aβ3 and Aus1−Aus2, respectively,
there exists a solution u to (2.7).

Proof : Let Φ : Z −→ Z be defined by Φ(u) = w, where w satisfies

(β(|us + b|)w , v) + (β(|us + b|)b , v) = (f , v) . (2.8)

That Φ is well defined follows from Aβ2 and the Lax-Milgram theorem.

To show that Φ is a compact operator, let {un}∞n=1 denote a bounded sequence in Z. From {un}∞n=1

we can extract a subsequence, which we again denote as {un}∞n=1, such that {un}∞n=1 converges
weakly to u ∈ Z. For wn = Φ(un), using (2.8)

(β(|us + b|)w , v) − (β(|usn + b|)wn , v) = − (β(|us + b|)b , v) + (β(|usn + b|)b , v)

⇐⇒ (β(|usn + b|) (w − wn) , v) = − ((β(|us + b|) − β(|usn + b|)) w , v)

− ((β(|us + b|) − β(|usn + b|)) b , v) .
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With v = w − wn, and using Aβ2 and Aβ3

βmin‖w − wn‖2 ≤ ‖Cβ | (|us + b| − |usn + b|) | w‖ ‖w − wn‖
+ ‖Cβ | (|us + b| − |usn + b|) | b‖ ‖w − wn‖

≤ ‖Cβ |us − usn|w‖ ‖w − wn‖ + ‖Cβ |us − usn|b‖ ‖w − wn‖
≤ Cβ

√
d ‖us − usn‖L∞(Ω) ‖w‖ ‖w − wn‖

+ Cβ
√
d ‖us − usn‖L∞(Ω) ‖b‖ ‖w − wn‖

⇒ ‖w − wn‖X = ‖w − wn‖ ≤
Cβ
√
d

βmin
‖us − usn‖L∞(Ω) (‖w‖ + ‖b‖) ,

from which, with Aus2, we can conclude that Φ is a compact operator.

For r = βmax

βmin
(‖b‖ + ‖f‖), from Lemma 2.1 we have that ‖Φ(u)‖ ≤ r , ∀u ∈ Z. Then, applying

the Leray-Schauder fixed point theorem [17] we obtain that there exists a u ∈ Z such that u = Φ(u).

Under small data conditions we have the following theorem guaranteeing uniqueness of solutions to
(2.7).

Theorem 2.2 With the stated assumptions Aβ1−Aβ3 and Aus1−Aus2, and the condition that

‖b‖ ≤ max
{
βmin/βmax , βmin/(Cβ

√
dCs)

}
, if a solution u to (2.7) exists satisfying

‖u‖ < max

{
βmin
βmax

,
βmin

Cβ
√
dCs

}
− ‖b‖ , (2.9)

then there is no other solution to (2.7).

Proof : Suppose that both u and w ∈ Z satisfy (2.7), i.e., together with (2.7) we have that

(β(|ws + b|)w , v) + (β(|ws + b|)b , v) − (f , v) = 0 , ∀v ∈ Z . (2.10)

With v = u − w, subtracting (2.10) from (2.7) and using the bounds for β(·) we obtain

(β(|ws + b|)(u − w) , (u − w)) + ((β(|us + b|) − β(|ws + b|))u , (u − w))

+ ((β(|us + b|) − β(|ws + b|))b , (u − w)) = 0 (2.11)

⇒ βmin ‖u − w‖2 ≤ βmax‖u‖ ‖u − w‖ + βmax‖b‖ ‖u − w‖
⇒ (βmin − βmax(‖u‖ + ‖b‖))‖u − w‖ ≤ 0 (2.12)

⇒ w = u , provided ‖u‖ < βmin
βmax

− ‖b‖ . (2.13)

Alternatively, from (2.11), using Aβ3 and Aus1,

βmin ‖u − w‖2 ≤ Cβ
√
d ‖us − ws‖L∞(Ω)‖u‖ ‖u − w‖

+ Cβ
√
d ‖us − ws‖L∞(Ω)‖b‖ ‖u − w‖

≤ Cβ
√
dCs (‖u‖ + ‖b‖) ‖u − w‖2

⇒ (βmin − Cβ
√
dCs (‖u‖ + ‖b‖))‖u − w‖2 ≤ 0

⇒ w = u , provided ‖u‖ < βmin

Cβ
√
dCs

− ‖b‖ .
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3 Finite Element Approximation

In this section we investigate the finite element approximation to (u, p) satisfying (1.6)-(1.9).

Let Th be a triangulation of Ω made of triangles (in IR2) or tetrahedrons (in IR3). Thus, the
computational domain is defined by

Ω = ∪K∈ThK.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of triangle (tetrahedron) K, ρK is the diameter of the greatest ball (sphere)
included in K, and h = maxK∈Th hK . For k ∈ IN, let Pk(A) denote the space of polynomials on A
of degree no greater than k, and RTk(Th) the (Piola) affine transformation of the Raviart-Thomas
elements of order k on the unit triangle. We define the finite element spaces Xh, X

s
h and Qh as

follows.

Xh := {RTk(Th) ∩X} , (3.1)

Xs
h :=

{
v ∈ X ∩ C0(Ω) : v|K ∈ Pl(K), ∀K ∈ Th

}
, (3.2)

Qh :=
{
q ∈ L2(Ω) : q|K ∈ Pk(K), ∀K ∈ Th

}
. (3.3)

Additionally, let Zh := {v ∈ Xh : (q , v) = 0 , ∀q ∈ Qh} . (3.4)

Note that as ∇ ·Xh ⊂ Qh, for v ∈ Zh we have that ‖∇ · v‖ = 0, thus ‖v‖X = ‖v‖.

For Xh and Qh defined in (3.1) and (3.3), the following discrete inf-sup condition is satisfied

inf
q∈Qh

sup
v∈Xh

(q , ∇ · v)

‖q‖Q ‖v‖X
≥ c0 > 0 . (3.5)

With Xh, Zh, Qh defined above, we have the following approximation properties [4, 3]. For u ∈
Z ∩Hk+1(Ω) and p ∈ Hk+1(Ω)

inf
v∈Zh

‖u − v‖X = inf
v∈Zh

‖u − v‖ ≤ C inf
v∈Xh

‖u − v‖ = C hk+1‖u‖Hk+1(Ω) , (3.6)

inf
q∈Qh

‖p − q‖ ≤ C hk+1‖p‖Hk+1(Ω) . (3.7)

The approximation scheme we investigate is: Given b, f ∈ L2(Ω), determine (uh, ph) ∈ Xh × Qh,
satisfying

(β(|ush + b|)uh , v) − (ph , ∇ · v) + (β(|ush + b|)b , v) = (f , v) , ∀v ∈ Xh (3.8)

(q , ∇ · uh) = 0 , ∀q ∈ Qh. (3.9)

Regarding ush, note that applying a smoother to a function v ∈ Xh (typically) does not result in
vs ∈ Xs

h. Therefore, we let ũsh ∈ H l+1(Ω) ∩C0(Ω) denote the result of the smoother applied to uh,
and define

ush(x) = Ihũ
s
h(x) , (3.10)
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where Ih : C0(Ω) −→ Xs
h denotes an interpolation operator.

We assume that the smoothed velocity ũsh is sufficiently regular such that there exists a constant
dependent on ũsh, Cũs

h
such that

‖ũsh − Ihũ
s
h‖L∞(Ω) ≤ Cũs

h
hl+1 . (3.11)

The precise dependence of Cũs
h

on ũsh will depend on the particular smoother used.

The existence, uniqueness, and boundedness of the solutions (unh, p
n
h) to (3.8)-(3.9) are established

in a completely analogous manner as for the continuous problem.

Corollary 3.1 (See Lemma 2.1.) Any solution (u, p) ∈ Xh ×Qh to (3.8)-(3.9) satisfies

‖uh‖X + ‖ph‖ ≤ C (‖b‖ + ‖f‖) . (3.12)

Corollary 3.2 (See Theorem 2.1.) For β(·) and ush satisfying assumptions Aβ1−Aβ3 and Aus1−
Aus2, respectively, there exists a solution (uh, ph) to (3.8)-(3.9).

Proof : The existence of uh is established as that for u in Theorem 2.1. The existence of ph then
follows from the discrete inf-sup condition (3.5).

In the next lemma we present the a priori error estimate for the approximation given by (3.8)-(3.9).

Lemma 3.1 For (u, p) ∈ Hk+1(Ω) ∩X ×Hk+1(Ω) satisfying (2.1)-(2.2), (uh, ph) satisfying (3.8)-
(3.9), and u satisfying the small data condition

Cβ
√
dCs (‖u‖ + ‖b‖) < βmin , (3.13)

and assuming that Cũs
h

given in (3.11) is bounded by a constant Cu, we have that there exists C > 0
such that

‖u − uh‖X + ‖p − ph‖ ≤ C
(
hk+1 ‖u‖Hk+1(Ω) + hk+1 ‖p‖Hk+1(Ω) + Cuh

l+1
)
. (3.14)

Remark: The condition (3.13) guarantees uniqueness of the solution to (3.8)-(3.9), see Theorem
2.2.

Proof : We have that the solutions uh and u to (3.8)-(3.9) and (2.1)-(2.2), respectively, satisfy the
following equations for all v ∈ Zh:

(β(|ush + b|)uh , v) + (β(|ush + b|)b , v) = (f , v) , (3.15)

and

(β(|ush + b|)u , v) + (β(|ush + b|)b , v) = (f , v) − ((β(|us + b|) − β(|ush + b|)) u , v)

− ((β(|us + b|) − β(|ush + b|)) b , v) . (3.16)
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With e = u − uh, subtracting equations (3.15) and (3.16) we obtain

(β(|ush + b|)e , v) = − ((β(|us + b|) − β(|ush + b|)) u , v)

− ((β(|us + b|) − β(|ush + b|)) b , v) , ∀v ∈ Zh . (3.17)

For U ∈ Zh, let e = (u − U) + (U − uh) := Λ + E. Then, for v = E, (3.17) becomes

(β(|ush + b|)E , E) = − (β(|ush + b|)Λ , E) − ((β(|us + b|) − β(|ush + b|)) u , E)

− ((β(|us + b|) − β(|ush + b|)) b , E) . (3.18)

Next we bound each of the terms in (3.18).

(β(|ush + b|)E , E) ≥ βmin‖E‖2 . (3.19)

− (β(|ush + b|)Λ , E) ≤ βmax ‖Λ‖ ‖E‖ ≤ ε1‖E‖2 +
1

4ε
β2
max ‖Λ‖2 . (3.20)

− ((β(|us + b|) − β(|ush + b|)) u , E) ≤ ‖ (β(|us + b|) − β(|ush + b|)) u‖ ‖E‖
≤ Cβ

√
d ‖us − ush‖L∞(Ω) ‖u‖ ‖E‖

≤ Cβ
√
d
(
‖us − ũsh‖L∞(Ω) + ‖ũsh − ush‖L∞(Ω)

)
‖u‖ ‖E‖

≤ Cβ
√
d
(
Cs ‖u − uh‖ + ‖ũsh − Ihũ

s
h‖L∞(Ω)

)
‖u‖ ‖E‖

≤ Cβ
√
d
(
Cs (‖Λ‖ + ‖E‖) + ‖ũsh − Ihũ

s
h‖L∞(Ω)

)
‖u‖ ‖E‖

≤ Cβ
√
dCs ‖u‖ ‖E‖2 + ε2‖E‖2 +

1

2ε2
C2
β d ‖u‖2

(
C2
s ‖Λ‖2 + ‖ũsh − Ihũ

s
h‖2L∞(Ω)

)
.(3.21)

A similar bound to that given in (3.21) holds for the third term on the right hand side of (3.18).
Combining the estimates (3.19)-(3.21) with (3.18) we have(

βmin − ε1 − Cβ
√
dCs (‖u‖ + ‖b‖) − 2ε2

)
‖E‖2 ≤(

1

4 ε1
β2
max +

1

2 ε2
C2
β dC

2
s (‖u‖2 + ‖b‖2)

)
‖Λ‖2

+
1

2 ε2
C2
β d
(
‖u‖2 + ‖b‖2)

)
‖ũsh − Ihũ

s
h‖2L∞(Ω) . (3.22)

Hence, in view of the stated hypothesis (3.13), there exists C > 0 such that
‖E‖ ≤ C

(
‖Λ‖ + ‖ũsh − Ihũ

s
h‖L∞(Ω)

)
. Finally, from the triangle inequality and (3.6) we have

that

‖u − uh‖X = ‖u − uh‖ ≤ ‖Λ‖ + ‖E‖ ≤ C
(
hk+1‖u‖Hk+1(Ω) + Cu h

l+1
)
. (3.23)

To obtain the error estimate for the pressure, let P ∈ Qh. Then, from (3.5) we have that there
exists v ∈ Xh such that

c0 ‖P − ph‖ ≤
(P − ph , ∇ · v)

‖v‖X
=

(P , ∇ · v) − (ph , ∇ · v)

‖v‖X
.
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Using (3.8) and (2.1) we obtain

c0 ‖v‖X ‖P − ph‖ ≤ (P , ∇ · v) + (f , v) − (β(|ush + b|)uh , v) − (β(|ush + b|)b , v)

= (P , ∇ · v) − (p , ∇ · v) + (β(|us + b|)u , v) + (β(|us + b|)b , v)

− (β(|ush + b|)uh , v) − (β(|ush + b|)b , v)

= (P − p , ∇ · v) + (β(|ush + b|) (u− uh) , v) + ((β(|us + b|) − β(|ush + b|)) u , v)

+ ((β(|us + b|) − β(|ush + b|)) b , v)

⇒ c0 ‖P − ph‖ ≤ ‖P − p‖ + βmax ‖u− uh‖
+Cβ

√
d
(
Cs ‖u − uh‖ + ‖ũsh − Ihũh‖L∞(Ω)

)
(‖u‖ + ‖b‖) .

Using the triangle inequality, (2.4), (3.7), (3.11) and (3.23) we obtain the stated estimate for ‖p− ph‖.

Remark: The L∞(Ω) norm used for the term (ũsh − Ihũ
s
h) and the L2(Ω) norm used for u and b

in (3.22) may be interchanged, assuming that the functions u and b are sufficiently regular.

4 Numerical Computations

In this section we present a numerical example to demonstrate the numerical approximation scheme
(3.8)-(3.9), and investigate the a priori error estimate (3.14).

Let Ω = (−1 , 1)× (0 , 1), β(s) = v∞ + (v0− v∞)/(1 + ks2−r), with parameters v∞ = 1, v0 = 5,
k = 1, and r = 1/2. (β(·) represents the Cross model for the effective viscosity for a generalized
Newtonian fluid.) The true solution u and p are taken to be

u(x, y) =

[
sin(πx) cos(πy)
cos(πx) sin(πy)

]
, p(x, y) = xy . (4.1)

For this choice of u, ∇ · u 6= 0, hence a right hand side function is added to (3.9). The boundary
conditions used are u ·n along {1}×(0 , 1), (−1 , 1)×{1}, {−1}×(0 , 1), with p = 0 weakly imposed
along (−1 , 1)× {0}. A computation mesh corresponding to mesh parameter h = 1/4 is presented
in Figure 4.1. Plots of β(|u|), u and p are given in Figures 4.2, 4.3 and 4.4, respectively.

Example 1.
For ush, the interpolate of ũsh (the smoothed function of uh), we compute a continuous, piecewise
quadratic, velocity by taking a simple average of uh at the nodal points of ush. Computations were
performed using RT0 − discP0, RT1 − discP1, and RT2 − discP2 elements for the velocity and pres-
sure. (By RTk we are referring to Raviart-Thomas elements of degree k, and discPk refers to the
space of discontinuous scalar functions which are polynomials of degree less that or equal to k on
each triangle in the triangulation.) The results, together with the experimental convergence rates
are presented in Table 4.1. The experimental convergence rates are consistent with those predicted
by (3.14) for l = 2. (Regarding the O(h4) experimental convergence rate for the pressure using
RT2−discP2 elements, note that the true solution for the pressure lies in the discP2 approximation
space.)

Example 2.
In order to investigate the dependence of the approximation on the interpolant of the smoother,
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Figure 4.1: Computational mesh for h = 1/4.
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Figure 4.2: Plot of β(|u|).
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Figure 4.3: Plot of the velocity flow field u.
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Figure 4.4: Plot of the pressure function p.

in this case we take ush to be a continuous, piecewise linear function, obtained by taking a simple
average of ũsh at the vertices of the triangles in the triangulations. The results obtained using
RT1− discP1, and RT2− discP2 approximating elements are presented in Table 4.2. In this case
(l = 1) we observe optimal convergence for RT1−discP1 (and RT0−discP0, results not included).
However, the experimental convergence rates for the RT2 − discP2 approximation is limited to 2
for the velocity and pressure, consistent with (3.14).

A Example of a local smoothing function

In this section we give an example of a local smoothing function which satisfies properties Aus1
and Aus2 presented in Section 2. The smoothing function is a simple averaging operator. We use
the term domain to refer to an open connected set in IRn.

For simplicity we present the case for a scalar function u(x). For a vector valued function the
smoother is simply applied to each of the coordinate functions.
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h ‖u− uh‖L2(Ω) Cvg. rate ‖∇ · (u− uh)‖L2(Ω) Cvg. rate ‖p− ph‖L2(Ω)
Cvg. rate

Xh = RT0 Qh = discP0

1/4 3.543E-01 0.98 1.274E+00 0.97 9.212E-2 1.29
1/6 2.376E-01 0.98 8.589E-01 0.99 5.464E-2 1.10
1/8 1.790E-01 1.00 6.468E-01 0.99 3.981E-2 1.08
1/10 1.433E-01 1.00 5.184E-01 0.99 3.131E-2 1.05
1/12 1.195E-01 4.325E-01 2.588E-2

Pred. 1.0 1.0 1.0

Xh = RT1 Qh = discP1

1/4 5.645E-02 1.94 2.020E-01 1.97 5.680E-03 2.80
1/6 2.574E-02 1.98 9.089E-02 1.99 1.824E-03 2.44
1/8 1.456E-02 1.99 5.134E-02 1.99 9.049E-04 2.30
1/10 9.344E-03 1.99 3.292E-02 1.99 5.419E-04 2.21
1/12 6.495E-03 2.289E-02 3.619E-04

Pred. 2.0 2.0 2.0

Xh = RT2 Qh = discP2

1/4 6.661E-03 3.09 2.268E-02 2.97 9.877E-04 3.98
1/6 1.905E-03 3.06 6.788E-03 2.99 1.966E-04 3.94
1/8 7.905E-04 3.02 2.874E-03 2.99 6.328E-05 4.02
1/10 4.028E-04 3.02 1.474E-03 3.00 2.578E-05 3.98
1/12 2.321E-04 8.537E-04 1.247E-05

Pred. 3.0 3.0 3.0

Table 4.1: Example 1, ush a quadratic interpolant of ũsh.

h ‖u− uh‖L2(Ω) Cvg. rate ‖∇ · (u− uh)‖L2(Ω) Cvg. rate ‖p− ph‖L2(Ω)
Cvg. rate

Xh = RT1 Qh = discP1

1/4 6.744E-2 1.88 2.020E-01 1.97 2.420E-2 1.99
1/6 3.150E-2 1.93 9.089E-02 1.99 1.079E-2 2.06
1/8 1.808E-2 1.95 5.134E-02 1.99 5.960E-3 2.01
1/10 1.170E-2 1.97 3.292E-02 1.99 3.802E-3 2.01
1/12 8.169E-3 2.289E-02 2.634E-3

Pred. 2.0 2.0 2.0

Xh = RT2 Qh = discP2

1/4 3.635E-2 1.84 2.268E-02 2.97 2.770E-2 1.17
1/6 1.727E-2 1.97 6.788E-03 2.99 1.727E-2 3.15
1/8 9.804E-3 1.97 2.874E-03 2.99 6.984E-3 2.00
1/10 6.310E-3 1.97 1.474E-03 3.00 4.473E-3 2.00
1/12 4.404E-3 8.537E-04 3.107E-3

Pred. 2.0 2.0 2.0

Table 4.2: Example 2, ush a linear interpolant of ũsh.

Let Ω denote a bounded domain in IRn and L(Ω) the Lebesgue measurable sets in Ω. Let δ > 0
denote the (fixed) volume measure over which we average a function to obtain its smoothed value.
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For x ∈ Ω the typical averaging volume which comes to mind is B(x, rδ), where B(x, rδ) denotes the
ball centered at x of radius rδ having volume δ. As δ is fixed the difficulty in using B(x, rδ) arises
for points whose distance from ∂Ω is less that rδ. This requires us to consider averaging volumes
other than balls. Namely, for each point x ∈ Ω we associate a domain V (x) having a volume of δ.
We require that the association of x with V (x) be continuous. This continuity is formally described
in the next paragraph.

Let ν denote the Lebesgue measure in IRn. For S1, S2 ∈ L(Ω), introduce the metric d(S1 , S2)
defined by

d(S1 , S2) := ν(S1 4 S2) , where S1 4 S2 := (S1\S2) ∪ (S2\S1) . (A.1)

Now, let V : Ω −→ L(Ω) satisfy: (i) V (x) is a domain with ν(V (x)) = δ for all x ∈ Ω, and (ii)
d(V (x) , V (y)) = ν(V (x)4 V (y)) ≤ CV |x − y| for all x, y ∈ Ω, where CV a fixed constant. For
convenience we denote the domain V (x) as Vx.

Definition: Local Smoothing Operator
For u ∈ L2(Ω), define us as

us(x) =
1

δ

∫
Vx

u(z) dΩ . (A.2)

We have the following properties for us(x).

Lemma A.1 For u ∈ L2(Ω), us defined by (A.2) satisfies the following properties.
(i) ‖us‖L∞(Ω) ≤ δ−1/2 ‖u‖L2(Ω).

(ii) us : Ω −→ IR is uniformly continuous.
(iii) Suppose that {un}∞n=1 ⊂ L2(Ω) and that un converges weakly to u ∈ L2(Ω). Then {usn}∞n=1

converges to us in L∞(Ω).

Proof : Let 1S ∈ L2(Ω) denote the characteristic function of the domain S. From (A.2), for x ∈ Ω

us(x) =
1

δ

∫
Vx

u(z) dΩ =
1

δ

∫
Ω

1Vx u(z) dΩ

≤ 1

δ

(∫
Ω

(1Vx)2 dΩ

)1/2 (∫
Ω
u(z)2 dΩ

)1/2

= δ−1/2 ‖u‖L2(Ω) ,

which establishes (i).

For x, y ∈ Ω,

|us(x) − us(y)| ≤ 1

δ

∫
Ω

∣∣1Vx − 1Vy
∣∣ |u(z)| dΩ

=
1

δ

(∫
Ω

(
1Vx − 1Vy

)2
dΩ

)1/2 (∫
Ω
u(z)2 dΩ

)1/2

=
1

δ
‖u‖L2(Ω) d(V (x) , V (y))1/2

=
C

1/2
V

δ
‖u‖L2(Ω) |x − y|1/2 ,
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which establishes the uniform continuity of us. As us is bounded on Ω then us can be continuously
extended to ∂Ω.

To establish (iii), as {un} converges weakly, let supn ‖un‖ = M < ∞. In addition, for ε > 0, σ =(
ε/(6M C

1/2
V )

)2
, let {zi}Ni=1 denote a σ-net of Ω, i.e., for all x ∈ Ω there exists an ix ∈ {1, 2, . . . , N}

such that |x − zix | < σ.

Now,

|usn(x) − us(x)| =

∣∣∣∣∫
Vx

(un(y) − u(y)) dΩ

∣∣∣∣
=

∣∣∣∣∣
∫
Vzix

(un(y) − u(y)) dΩ +

∫
Vx\Vzix

(un(y) − u(y)) dΩ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Vzix

(un(y) − u(y)) dΩ

∣∣∣∣∣ +

∫
Vx4Vzix

|un(y) − u(y)| dΩ . (A.3)

Since {un} converges weakly to u in L2(Ω), for all w ∈ L2(Ω) there exists Nw such that for n > Nw∣∣∣∣∫
Ω

(un − u) w dΩ

∣∣∣∣ < ε

3
. (A.4)

Let N? = maxi=1,2,...,N

{
N1Vzi

}
. Then, for n > N?∣∣∣∣∣

∫
Vzix

(un(y) − u(y)) dΩ

∣∣∣∣∣ =

∣∣∣∣∫
Ω

(un(y) − u(y)) 1Vzi dΩ

∣∣∣∣ < ε

3
.

For the second term on the right hand side of (A.3) we have

∫
Vx4Vzix

|un(y) − u(y)| dΩ ≤

(∫
Vx4Vzix

|un(y) − u(y)|2 dΩ

)1/2 (∫
Vx4Vzix

1 dΩ

)1/2

≤ 2M ν(Vx 4 Vzix )1/2

≤ 2M C
1/2
V |x − zix |1/2 ≤ 2M C

1/2
V σ1/2

=
ε

3
. (A.5)

Thus, from (A.3)-(A.5) it follows that for all x ∈ Ω, for n > N?

|usn(x) − us(x)| < 2

3
ε, i.e., ‖usn − us‖L∞(Ω) <

2

3
ε < ε .

A.1 Regularity of us (for u ∈ L∞(Ω))

If, in place of u ∈ L2(Ω), we have u ∈ L∞(Ω) then us defined by (A.2) is a H1(Ω) function. To
establish this regularity result we begin by citing a characterization of the W 1,p(IRn) function space.
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Theorem A.1 ( [18], Theorem 2.1.6) Let 1 < p < ∞. Then u ∈ W 1,p(IRn) if and only if
u ∈ Lp(IRn) and(∫

IRn

∣∣∣∣u(x + h) − u(x)

|h|

∣∣∣∣p dx)1/p

= |h|−1 ‖u(x + h) − u(x)‖Lp(IRn
) (A.6)

remains bounded for all h ∈ IRn.

Theorem A.2 If u ∈ L∞(Ω) then, for us defined by (A.2), us ∈ H1(Ω).

Proof : In order to apply Theorem A.1 we need to define an extension of u to IRn. Let

ũ(x) =

{
u(x), x ∈ Ω

0, x 6∈ Ω
, and Ṽ : IRn −→ L(IRn)

denote an extension of V satisfying properties (i) and (ii) (with Ω replaced by IRn), and additionally
that there exists constants C1 > 0 and C2 ≥ 0 such that (iii) diameter(Ṽ (z)) ≤ C1 for all z ∈ IRn,
and (iv) supz∈IRn inf

y∈Ṽ (z)
|z− y| ≤ C2.

Let ΩB denote the bounded set, ΩB := {x ∈ IRn : infy∈Ω |x− y| < 1 + C1 + C2} ⊃ support(ũs).
Note that for x ∈ IRn\ΩB and |h| < 1, ũs(x + h) = 0.

Now, for |h| ≥ 1,∫
IRn

∣∣∣∣ ũs(x + h) − ũs(x)

|h|

∣∣∣∣2 dx ≤ 2

|h|2

(∫
IRn

(ũs(x + h))2 dx +

∫
IRn

(ũs(x))2 dx

)
≤ 4

|h|2

∫
IRn

(ũs(x))2 dx ≤ 4

|h|2
‖ũs‖2L∞(ΩB) ν(ΩB)

≤ 4 ν(ΩB) ‖ũ‖2
L∞(IRn

)
= 4 ν(ΩB) ‖u‖2L∞(Ω) . (A.7)

For |h| < 1,∫
IRn

∣∣∣∣ ũs(x + h) − ũs(x)

|h|

∣∣∣∣2 dx =
1

|h|2

∫
ΩB

|ũs(x + h) − ũs(x)|2 dx

=
1

|h|2

∫
ΩB

∣∣∣∣1δ
∫

ΩB

ũ(z)
(

1
Ṽx+h

(z) − 1
Ṽx

(z)
)
dz

∣∣∣∣2 dx
≤ 1

|h|2
1

δ2
‖ũ‖2L∞(ΩB)

∫
ΩB

(∫
ΩB

∣∣∣1Ṽx+h
(z) − 1

Ṽx
(z)
∣∣∣ dz)2

dx

=
1

|h|2
1

δ2
‖ũ‖2L∞(ΩB)

∫
ΩB

d(Ṽx+h , Ṽx)2 dx

≤ 1

|h|2
1

δ2
‖ũ‖2L∞(ΩB)C

2
V |h|2 ν(ΩB)

=
1

δ2
C2
V ν(ΩB) ‖ũ‖2L∞(ΩB) =

1

δ2
C2
V ν(ΩB) ‖u‖2L∞(Ω) . (A.8)

From (A.7) and (A.8), together with Theorem A.1, we obtain that ũs ∈ H1(IRn). As us = ũs|Ω, it
then follows that us ∈ H1(Ω).
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B Example of a differential smoothing function

As an alternative to the local averaging filter discussed in Section A, in this section we present a
differential smoothing filter.

Let Xs = H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω} ⊂ X . (B.9)

Definition: Differential Smoothing Operator
For u ∈ L2(Ω), define us ∈ Xs as

(∇us , ∇v) = (us , v) , ∀v ∈ Xs . (B.10)

The well posedness of us follows from an application of the Lax-Milgram theorem. Next we show
that this smoothing operation satisfies properties Aus1 and Aus2 presented in Section 2.

Lemma B.2 For u ∈ L2(Ω), us defined by (B.10) satisfies the following properties.
(i) ‖us‖L∞(Ω) ≤ C ‖u‖L2(Ω).
(ii) Suppose that {un}∞n=1 ⊂ L2(Ω), and that un converges weakly to u ∈ L2(Ω). The {usn} converges
to us in L∞(Ω).

Proof : From (B.10) we have that us ∈ Xs, and as u ∈ L2(Ω), from the shift theorem (together
with a sufficiently smooth ∂Ω), it follows that

us ∈ H2(Ω) ∩Xs, with ‖us‖H2(Ω) ≤ C‖u‖ . (B.11)

Using the embedding of H2(Ω) in L∞(Ω) we establish (i).

Let W : L2(Ω) −→ H2(Ω) ∩Xs, W(u) := us, denote the filter mapping. Then from (B.11) W is
a bounded (linear) transformation from L2(Ω) −→ H2(Ω) ∩Xs.

LetW∗ :
(
H2(Ω) ∩Xs

)∗ −→ L2(Ω) denote the adjoint operator ofW. (The existence ofW∗ follows
immediately from the Riesz Representation Theorem.)

Now, for η ∈
(
H2(Ω) ∩Xs

)∗
〈usn − us , η〉H2,(H2)∗ = 〈W(un) − W(u) , η〉H2,(H2)∗ = 〈W(un − u) , η〉H2,(H2)∗

= (un − u , W∗(η))

−→ 0 as n→∞ ,

as un converges weakly in L2(Ω) to u. Hence as H2(Ω)∩Xs is compactly embedded in L∞(Ω)∩Xs,
then usn converges to us strongly in L∞(Ω).
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