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Abstract. We present a finite element scheme capable of preserving the nonnegative and
bounded solutions of the generalized Burgers-Huxley equation. Proofs of existence and unique-
ness of a solution to the continuous problem together with some results concerning the boundedness
and the nonnegativity of the solution are given. Under appropriate conditions on the mesh and the
initial and boundary data, boundedness and nonnegativity of the finite element approximation are
established. An a priori error estimate for the approximation is also derived. Numerical experiments
are presented which support the derived theoretical results.
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1. Introduction. The class of advection-diffusion-reaction problems has been
used extensively to model different physical processes such as atmospheric air quality
[20], the mobility of fish populations [27], nuclear waste disposal [14], pattern for-
mation [23] and the reactive transport of contaminants [16]. An important member
of this class and the object of study in this paper is the generalized Burgers-Huxley
equation, which has found application in biology [28], electrodynamics [29] and trans-
port phenomena [1]. For Ω ⊂ R2, the nonlinear partial differential equation under
consideration is:

∂u

∂t
+ αup

(
∂u

∂x
+

∂u

∂y

)
−∆u− ug(u) = 0, (x, t) ∈ Ω× (0, T ), (1.1)

where α ∈ R+ is the advection coefficient, γ ∈ (0, 1), p ≥ 1 are parameters and

g(u) = β(1− up)(up − γ), β > 0. (1.2)

The numerical approximation in 1D of (1.1) using a variety of techniques has received
considerable attention. One approach is the Adomian decomposition [15] which needs
no discretization, linearization or perturbation, and provides an analytical solution
in the form of a power series using Adomian polynomials. A second approach, which
can be classified as a Lagrange multiplier method, is the variational iteration method
(VIM) [2]. This technique uses a linerization assumption as an initial approximation
and later, through a correction functional, the approximation is made more precise.
Results have shown that in some cases one iteration of VIM is of comparable accuracy
to a 5-term Adomian solution. A third approach which belongs to the class of interpo-
lation techniques is the spectral collocation method (SC) [7]. Using Chebyshev-Gauss-
Lobatto collocation points, an interpolant polynomial is constructed and a differential
operator in terms of the grid point values is computed. The matrices that appear in
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SC are generally ill-conditioned and some preconditioning is requierd. A fourth ap-
proach is the use of Haar wavelets [4]. The procedure relies on the decomposition of
a L2([a, b]) function in terms of the orthogonal Haar basis. The matrices that arise
in the computations are sparse and the accuracy is in general high even with few
collocation points. A fifth approach is finite differences [26], where a Runge-Kutta
method of order 4 is used in time and coupled with a 10-th order finite difference
scheme in space. A final example of approximation methods investigated in 1D is the
finite element method [19], where a three-step Taylor-Galerkin finite element scheme
is implemeneted to approximate a problem with the diffusion term being multiplied
by a perturbation parameter ε.
Of interest is the design of numerical methods capable of preserving the nonnega-
tive and bounded solutions of (1.1). Among all the aforementioned methods, only
finite differences and finite element methods have been successful in being able to
supply proofs for the conservation of those properties. Works in this direction in the
case of finite differences include [22, 21, 25]. If we restrict ourselves to the smaller
class of linear parabolic problems of the form ut − ∇ · (κ∇u) = f , where κ satisfies
0 < κmin ≤ κ(x) ≤ κmax and f is bounded, for finite differences and finite ele-
ment the (discrete) nonnegativity preservation property is equivalent to the (discrete)
maximum principle, a bridge that was established in [10]. Some articles on finite el-
ements concerning maximum principles for advection-reaction-diffusion problems are
[6, 18, 9, 11].
In this document we propose a finite element scheme capable of preserving the nonneg-
ative and bounded solutions of (1.1) under suitable conditions for the computational
parameters ∆t, h, and on the triangulation Th of the region Ω. In Section 2 we estab-
lish a result concerning the existence and uniqueness of a solution to the continuous
problem (1.1). Moreover, we prove that for certain initial and boundary conditions,
any classical solution to (1.1) satisfies certain boundedness conditions. Then, in Sec-
tion 3, we state the weak formulation and prove the boundedness of the solution in
this setting. The discrete weak formulation is introduced in Section 4 and therein we
show the computability of the scheme and state parallel results to the ones derived
for the continuous problem. In Section 5 we provide an a priori error estimate which
guarantees that the method is of first order accurate, with respect to the space and
time discretizations. Finally, in Section 6, numerical experiments are presented which
support our theoretical results.

2. Continuous problem. In this section we establish the existence of a solution
to (1.1) for some time interval of positive length [0, T0]. Then, we show that under
suitable boundary and initial conditions, the solution u is nonnegative and bounded.

Before we state our first result, we introduce the following definition.

Definition 2.1. The real valued function F (x, t, z1, . . . , zr), F : Ω×R+ ∪ {0}×
Rr → R, with Ω ⊂ R2, is locally Hölder continuous with respect to (x, t) if for all
B ⊂ Ω× [0, T ], B compact, there exist a constant C > 0 and 0 < κ < 1 such that

|F (x1, t1, z1, . . . , zr)− F (x2, t2, z1, . . . , zr)| ≤ C‖(x1, t1)− (x2, t2)‖κ`

for all (x, t) ∈ B, where ‖ · ‖` is any vector norm on R3.

In order to prove the existence and uniqueness of a solution for (1.1), we use the
following result from the theory of quasi-linear parabolic equations.
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Theorem 2.2 ([12], pg. 206). Consider the following parabolic problem

ut = Au+ F (x, t, u,∇u), subject to

u(x, t) = û(x, t) for (x, t) ∈ Ω× {0} ∪ ∂Ω× [0, T ],
(2.1)

where A is an elliptic operator of order 2. If the following assumptions hold:
1. û is smooth,
2. F (x, t, u,∇u) is locally Hölder continuous with respect to (x, t),
3. F (x, t, u,∇u) is Lipschitz continuous in u, uniformly for bounded subsets of

Ω× [0, T ]× R× R2,
4. ût = Aû+ F (x, 0, û,∇û) holds for (x, t) ∈ ∂Ω× {0},

then there exist a unique solution to (2.1) in Ω× [0, T0] for some 0 < T0 ≤ T .

Corollary 2.3. If the boundary and initial conditions of (1.1) satisfy the as-
sumptions of Theorem 2.2, then there exists T0 > 0 such that a unique solution to
(1.1) exists in Ω× [0, T0].

Proof. Using (1.1), let B be a compact subset of Ω× [0, T ], and F (x, t, u,∇u) =

−αup

[
1
1

]
· ∇u+ ug(u). Observe that for (x1, t1), (x2, t2) ∈ B,

|F (x1, t1, u,∇u) − F (x2, t2, u,∇u)| = 0, i.e. property 2 is satisfied. Now for B a
bounded subset of Ω× [0, T ]× R× R2, and (x, t, u1,∇u), (x, t, u2,∇u) ∈ B,

|F (x, t, u1,∇u)− F (x, t, u2,∇u)| = |r(u1)− r(u2)|
≤ sup

(x,t,u,∇u)∈B

|r′(u)||u1 − u2|,

where r(x) is a polynomial of degree 2p+1 whose coefficients may depend on x, t and
∇u. Thus, property 3 holds and consequently F satisfies all assumptions of Theorem
2.2.

The next result establishes the boundedness of the solution u to (1.1).

Theorem 2.4.
1. If u(x, t) is a classical solution of (1.1) satisfying 0 ≤ u(x, 0) < γ1/p for

x ∈ Ω and 0 ≤ u(x, t) < γ1/p for x ∈ ∂Ω and t > 0, then 0 ≤ u(x, t) < γ1/p

for x ∈ Ω and t ≥ 0.
2. If u(x, t) is a classical solution of (1.1) satisfying γ1/p < u(x, 0) ≤ 1 for

x ∈ Ω and γ1/p < u(x, t) ≤ 1 for x ∈ ∂Ω and t > 0, then γ1/p < u(x, t) ≤ 1
for x ∈ Ω and t ≥ 0.

Proof.
1. First we show that u(x, t) ≥ 0 for x ∈ Ω and t ≥ 0. Assume that there

exists x0 and t0 such that u(x0, t0) < 0. This implies the existence of δ,
tδ and xδ such that 0 < δ < γ, and u(xδ, tδ) = −δ with the property that
u(xδ, tδ) is a local minimum for u(x, tδ). Thus, using (1.1) and noting that
g(u(xδ, tδ)) < 0, we obtain

ut(xδ, tδ) = ∆u− αup(ux + uy) + ug(u)
∣∣∣
(xδ,tδ)

≥ 0− αup(xδ, tδ)(0 + 0) + u(xδ, tδ)g(u(xδ, tδ))

> 0.

(2.2)
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Now, as u(x, 0) ≥ 0 for x ∈ Ω, we may assume further that tδ is the first time
when this occurs. Then, for some ε > 0 we must have that u(xδ, t) is strictly
decreasing for t ∈ (tδ−ε, tδ). However, this contradicts (2.2). Hence we must
conclude that u(x, t) ≥ 0 for x ∈ Ω and t > 0.

To establish the second part, note that if u(x, t) satisfying 0 < u(x, t) < γ1/p

and (1.1) has an interior local maximum at xm ∈ Ω at t = tm, then

ut(xm, tm) = ∆u− αup(ux + uy) + ug(u)
∣∣∣
(xm,tm)

≤ 0− αup(xm, tm)(0 + 0) + u(xm, tm)g(u(xm, tm))

< 0.

Thus u(x, t) must be strictly decreasing at any such interior maximum point.
As u(x, 0) < γ1/p and u(x, t) < γ1/p for x ∈ ∂Ω and t > 0, then it immediatly
follows that u(x, t) < γ1/p for x ∈ Ω, t ≥ 0.

2. An analogous argument establishes this case.

A simple consequence of the previous Theorem is the following.

Corollary 2.5. Under the assumptions of Theorem 2.4, together with the con-
straint that 0 ≤ u(x, 0) ≤ 1 for x ∈ Ω and 0 ≤ u(x, t) ≤ 1 for x ∈ ∂Ω and t > 0, then
0 ≤ u(x, t) ≤ 1 for x ∈ Ω and t ≥ 0.

Proof. The proof follows from the nonnegativity and the upper bound arguments
discussed in Theorem 2.4.

3. Variational formulation. In this section we introduce the weak formulation
of (1.1) and the notation that will be used for the rest of the document. We consider
a bounded convex polygonal domain Ω ⊂ R2 and a regular triangulation of it Th,
with mesh parameter h. For T ∈ Th, P1(T ) will represent the vector space of affine
functions on T . As usual, ‖ · ‖Lp(Ω), ‖ · ‖p will be used to denote the norms in Lp(Ω)
and Hp(Ω), respectively. The inner product in L2 will be denoted by (·, ·) and we let
‖ · ‖ = ‖ · ‖L2(Ω), and ‖ · ‖∞ = ‖ · ‖L∞(Ω).
The spaces that we will consider in the analysis are

X = H1
0 (Ω) =

{
v ∈ H1(Ω) : v|∂Ω = 0

}
, and (3.1)

Xh =
{
v ∈ C0(Ω) : v|T ∈ P1(T ),∀T ∈ Th, v|∂Ω = 0

}
. (3.2)

Taking a test function v ∈ X, multiplying (1.1) by v, and integrating, we obtain

(ut, v) + a(u, v) + b(up, u, v)− (ug(u), v) = 0, ∀v ∈ X, 0 < t ≤ T

subject to u(x, 0) = u0(x), x ∈ Ω, (3.3)

where

a(u, v) =

∫
Ω

∇u · ∇v dΩ and b(u, v, w) = α

∫
Ω

u

(
∂v

∂x
+

∂v

∂y

)
w dΩ. (3.4)

The following lemmas will be useful to prove the boundedness of the solution of (3.3).
Lemma 3.1. For p, s ∈ R+, u ∈ H1(Ω) ∩ Lp+s(Ω), and u|∂Ω = 0, we have that

b(up, u, us) = 0.
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Proof. We have

b(up, u, us) =

∫
Ω

up

(
∂u

∂x
+

∂u

∂y

)
us dΩ =

∫
Ω

up+s

[
1
1

]
· ∇u dΩ

= −
∫
Ω

u∇ ·
(
up+s

[
1
1

])
dΩ = −(p+ s)

∫
Ω

up+s

[
1
1

]
· ∇u dΩ.

Since p+ s is nonnegative, this last equality implies that

(p+ s+ 1) b(up, u, us) = 0.

Lemma 3.2. For s ≥ 2 and us−1 ∈ H1(Ω), we have that

a(u, us−1) =
4(s− 1)

s2
a(us/2, us/2).

Proof. Note that

∇us/2 =
s

2
us/2−1∇u ⇐⇒ ∇u =

2

s
u1−s/2∇us/2. (3.5)

From (3.4) and using (3.5)

a(u, us−1) =

∫
Ω

∇u · ∇us−1 dΩ =

∫
Ω

∇u · (s− 1)us−2∇u dΩ

=

∫
Ω

2

s
u1−s/2∇us/2 · (s− 1)us−2 2

s
u1−s/2∇us/2 dΩ

=
4(s− 1)

s2
a(us/2, us/2).

Lemma 3.3. Let m = 2n with n ∈ N be given, and define gb = maxs∈[−1,1] |g(s)|.
If u0 ∈ Lm(Ω), then any solution u to (3.3) that belongs to Lm(Ω) satisfies the bound

‖u(t)‖mLm(Ω) +
4(m− 1)

m3

∫ t

0

(
exp

(
(t− s)gb/m

)
‖∇um/2‖2

)
ds

≤ ‖u0‖mLm(Ω) exp
(
t gb/m

)
.

Proof. With the choice v =
1

m
um−1, and using Lemmas 3.1 and 3.2, we obtain

from (3.3)

d

dt
‖um/2‖2 + 4(m− 1)

m3
‖∇um/2‖ − 1

m
(ug(u), um−1) = 0.

Noting that m is even, g is a polynomial in u, and if |u| > 1, then g(u) < 0, we obtain
the following bound

(ug(u), um−1) =

∫
|u|≤1

umg(u) dΩ+

∫
|u|>1

umg(u) dΩ

≤ gb

∫
|u|≤1

um dΩ ≤ gb‖um/2‖2.
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Thus,

d

dt
‖um/2‖2 + 4(m− 1)

m3
‖∇um/2‖ − gb

m
‖um/2‖2 ≤ 0. (3.6)

Letting µ(t) = −t gb/m, multiplying (3.6) by exp(µ(t)) and integrating, we obtain∫ t

0

d

ds

(
exp(µ(s))‖um/2‖2

)
ds+

4(m− 1)

m3

∫ t

0

exp(µ(s))‖∇um/2‖2 ds ≤ 0. (3.7)

From (3.7) we can conclude that

‖um/2(t)‖2 + 4(m− 1)

m3

∫ t

0

exp(µ(s− t))‖∇um/2‖2 ds ≤ ‖um/2
0 ‖2 exp(µ(−t)).

In order to establish that solutions of (3.3) are also bounded in Lp(Ω), for p odd, we
recall the following interpolation result.

Lemma 3.4. Let 0 < p1 < p2 < ∞ and f ∈ Lp1(Ω) ∩ Lp2(Ω). Then f ∈ Lp(Ω)
for all p1 ≤ p ≤ p2. Moreover, we have that

‖f‖Lpλ (Ω) ≤ ‖f‖1−λ
Lp1 (Ω)‖f‖

λ
Lp2 (Ω) for all 0 ≤ λ ≤ 1,

where 1/pλ = (1− λ)/p1 + λ/p2.
Proof. Using Hölder’s inequality with p = p1/((1 − λ)pλ) and q = p2/(λpλ), we

obtain

‖f‖pλ

Lpλ (Ω) =

∫
Ω

|f |(1−λ)pλ |f |λpλ ≤ ‖f (1−λ)pλ‖Lp(Ω)‖fλpλ‖Lq(Ω). (3.8)

Taking the pλ-th root of (3.8), the result follows.

Theorem 3.5. For u0 ∈ Lp(Ω) for all t ∈ [0, T ], we have that any solution
u(x, t) of (3.3) is bounded in the Lp norm, p ≥ 2 on the interval [0, T ]. Moreover,
‖u(t)‖∞ ≤ ‖u0‖∞ for all t ∈ [0, T ].

Proof. We consider two cases. The case when p < ∞ follows from the interpolation
property of Lemma 3.4 applied to Lemma 3.3. The case p = ∞ follows by taking
the m-th root of the bound established in Lemma 3.3, and then taking the limit as
m → ∞.

4. Discrete problem. In this section we introduce the fully discrete finite ele-
ment scheme and derive some properties of it. For the temporal discretization, for M
given, let ∆t = T/M , tk = k∆t, and fk = f(tk). Replacing the time derivative with
a backward Euler discretization and lagging all nonlinearities in (3.3) results in the
following problem: Compute uk

h ∈ Xh for k = 1, . . . ,M , such that for all v ∈ Xh

(
uk
h − uk−1

h

∆t
, v) + (∇uk

h,∇v) + b((uk−1
h )p, uk

h, v)− (uk
hg(u

k−1
h ), v) = 0, (4.1)

subject to u0
h(xi) = u0(xi) for i = 1, . . . , N, (4.2)

where the xi represent the nodes of the triangulation Th of Ω.

Let {φj(x)}Nj=1 be a Lagrangian basis for Xh, where φj(x) ∈ Xh is defined by

φj(x) =

{
1, x = xj

0, x 6= xj
. (4.3)
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With bk = α(uk−1
h )p

[
1
1

]
, gk = g(uk−1

h ), uk
h(x) =

∑N
j=1 cjφj(x), and v = φi,

i = 1, . . . , N , equation (4.1) is equivalent to

Ac = r, (4.4)

where

Aij =
1

∆t

∫
Ω

φjφi dΩ+

∫
Ω

∇φj · ∇φi dΩ+

∫
Ω

bk · ∇φj φi dΩ

−
∫
Ω

gkφj φi dΩ, and (4.5)

ri =
1

∆t

∫
Ω

uk−1
h φi dΩ. (4.6)

In [24], conditions to ensure that A is an M -matrix [13] were investigated. These
conditions involved the following assumptions on the mesh: For every triangle T not
adjacent to ∂Ω, there are positive constants ch, Ch, cθ, cJ and CJ such that:

A1 . For ei the edge opposite to the i-th vertex, chh ≤ `(ei) ≤ Chh, where `
denotes the length.

A2 . The angle ϕ subtended at any vertex satisfies 0 < cθ ≤ cosϕ < 1.
A3 . cJh

2 ≤ |J | ≤ CJh
2,

where |J | is the determinant of the matrix that appears in the mapping from the

reference triangle T̂ to the triangle T ∈ Th (see [24] (4.6)).
For the approximation of uk

h in (4.1) we make the following assumption for uk−1
h which

we later confirm in Theorem 4.3.
A4 . For k ≥ 1, 0 ≤ uk−1

h ≤ 1.
Note that under assumption A4 we have that ‖bk‖∞ ≤ α and ‖gk‖∞ ≤ β( 1−γ

2 )2 ≤ β.
The computability of the numerical scheme can now be established.

Theorem 4.1. Under assumptions A1-A4, for h and ∆t satisfying

0 <
CJh

2

24

(
1

6CJ
c2hcθ −

√
2

6
αhCh − β

24

(
1− γ

2

)2

CJh
2

)−1

≤ ∆t ≤ 1

(1− γ)βp

(4.7)
there exists a unique solution uk

h, k = 1, 2, . . . ,M , satisfying (4.1).
Proof. From [24], (4.7) guarantees that the square coefficent matrix A in (4.5) is

an M -matrix. Hence A is invertible, which implies a unique solution uk
h to (4.1).

We now address the question of boundedness for the numerical approximation of
(4.1). Note that with the (nonnegative) Lagrangian basis functions φj (see (4.3)),
uk
h(x) ≥ 0 is equivalent to c ≥ 0 (see (4.4)).

Lemma 4.2. Let the assumptions of Theorem 4.1 hold.
1. If uk−1

h in (4.1) satisfies 0 ≤ uk−1
h (x) < γ1/p for x ∈ Ω , then 0 ≤ uk

h < γ1/p

for x ∈ Ω.
2. If uk−1

h in (4.1) satisfies γ1/p < uk−1
h (x) ≤ 1 for x ∈ Ω, then γ1/p < uk

h ≤ 1
for x ∈ Ω.

Proof.
1. The nonnegativity follows from the fact that A is an M -matrix (A−1 is non-

negative) and that the right hand side of (4.4) is nonnegative.
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In order to establish the upper bound, we let w = eτ −uk where e is a vector
with all components equal to 1, and τ a nonnegative number to be determined
below. Replacing c in (4.4) with uk, we observe that Aw = Aeτ−Auk implies
the following chain of equalities

(Aw)i = τ(Ae)i − (r)i

= τ
n∑

j=1

Aij − (uk−1
h , φi)

(see the proof of Theorem 2.3 in [24])

= τ(1, vi)− τ∆t (g(uk−1
h ), φi)− (uk−1

h , φi)

= (τ − τ∆t g(uk−1
h )− uk−1

h , φi). (4.8)

Motivated by (4.8), we investigate the behavior of s(x) = τ(1 − β∆t(1 −
xp)(xp − γ)) − x. Of interest is s(x) > 0. Observe that for τ = γ1/p and
x < γ1/p, the coefficient of τ , (1− β∆t(1− xp)(xp − γ)) > 1. Thus, s(x) > 0
and therefore Aeτ − Auk > 0, implying that uk < γ1/pe, i.e. uk

h(x) < γ1/p

for x ∈ Ω.
2. We start with the lower bound. Let w = uk − τe. Proceeding as before, we

note that

(Aw)i = (r)i − τ(Ae)i

= −(τ − τ∆t g(uk−1
h )− uk−1

h , φi). (4.9)

In this case, s(x) = −τ(1 − β∆t(1 − xp)(xp − γ)) + x. For τ = γ1/p and
x > γ1/p, the coefficient of τ in s(x) is negative and consequently s(x) > 0.
The bound now follows.
For the upper bound we consider τ = 1 in (4.8) and note that s(1) = 0.
Therefore, it is sufficient to show that s′(x) ≤ 0 for 0 ≤ x ≤ 1. Computing
s′(x) ≤ 0 we obtain

−β∆t(pxp−1 − 2px2p−1 + pγxp−1)− 1 ≤ 0,

which is equivalent to − β∆tpxp−1((1 + γ)− 2xp) ≤ 1.

Noting that the left hand side is maximized when x = 1, it is sufficient to
require

∆t ≤ 1

(1− γ)βp
(see (4.7)).

Finally, since A is an M -matrix and Aeτ − Auk is nonnegative, we obtain
that w is also nonnegative and consequently that uk ≤ 1, i.e. uk

h(x) ≤ 1 for
x ∈ Ω.

The previous discussion yields the following Theorem.

Theorem 4.3. Under the assumptions of Lemma 4.2, if 0 ≤ uk−1
h (x) ≤ 1 for

x ∈ Ω then 0 ≤ uk
h ≤ 1.

Proof. The inequality follows from the positivity of uk and the second part of
Lemma 4.2.
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Using the results derived for the continuous and discrete problems, we are ready
to derive an a priori error estimate.

5. Error analysis. Throughout this section we assume that both the initial and
boundary conditions are bounded in the interval [0, 1], so that in view of Theorem 3.5
and Theorem 4.3, the estimates ‖uk‖∞ ≤ 1 and ‖uk

h‖∞ ≤ 1 hold for the continuous
solution and the discrete approximation, respectively. Moreover, from the previous
discussion, we have that the functions g(·) as defined in (1.2) and f(x) = xp, which are
evaluated at either uk

h or uk, are bounded in L∞(Ω) with bounds β and 1, respectively.
Using these facts, we note that f and g are Lipschitz continuous. We denote their
corresponding Lipschitz constant by pL and gL, respectively. The following Lemmas
will be helpful in the analysis.

Lemma 5.1 ([24]). For u, ut, utt in L2((0, T ], L2(Ω)),

‖uk
t − uk − uk−1

∆t
‖2 ≤ ∆t

3

∫ tk

tk−1

‖utt‖2. (5.1)

Lemma 5.2. For a function f(x, t) such that f and ft are L2((0, T ], L2(Ω)), we
have

‖fk − fk−1‖2 ≤ (∆t)2
∫ tk

tk−1

‖ft‖2 dt.

We will also use the discrete version of Gronwall’s lemma [17].

Lemma 5.3. Let ∆t, H, and an, bn, cn, γn (for integers n ≥ 0), be nonnegative
numbers such that

a` +∆t
∑̀
n=0

bn ≤ ∆t
∑̀
n=0

γnan +∆t
∑̀
n=0

cn +H for ` ≥ 0.

Suppose that ∆tγn < 1, for all n, and set σn = (1−∆tγn)
−1. Then

a` +∆t
∑̀
n=0

bn ≤ exp

(
∆t
∑̀
n=0

σnγn

)(
∆t
∑̀
n=0

cn +H

)
for ` ≥ 0.

Additional norms that we will use in the analysis are the discrete norms

|||v|||s =

(
M∑
k=0

‖v(x, tk)‖2Hs(Ω)∆t

)1/2

, |||v|||∞ = sup
0≤k≤M

‖vk‖∞. (5.2)

We are now in position to state the main result of this section.

Theorem 5.4. Let u(x, t) ∈ L∞((0, T ],H2(Ω)), ut(x, t) ∈ L2((0, T ],H2(Ω)),
utt(x, t) ∈ L2((0, T ], L2(Ω)) be the solution of (3.3) on the interval (0, T ]. Assume
further that the initial condition u0 and the boundary conditions are bounded in [0, 1].
Then, the finite element approximation uk

h converges to u as ∆t, h → 0, provided that

9



∆t and h satisfy Theorem 4.1. In addition, there exists a constant C > 0, such that
the approximation uk

h satisfies the following error estimate:

‖uk − uk
h‖2 +

k∑
n=1

‖∇(uk − uk
h)‖2∆t ≤ 2C2h2|||u|||22 + 2C2h4‖uk‖2H2(Ω)

+ 2K
(
(∆t)2 F3

∫ T

0

‖ut‖2 dt+ C(h4(F4 + β) + 4h2)|||u|||22

+
(∆t)2

3

∫ T

0

‖utt‖2 dt+ C
h4

2

∫ T

0

‖ut‖22 dt
)
,

(5.3)

where Fi = |||Fi|||∞,

Fk
2 = 3 + 6 pL‖∇uk‖∞ + 3β + (

√
2 +

5
√
2

2
) + 3gL,

Fk
3 = 2 pL‖∇uk‖∞ + gL,

Fk
4 = gL + 2 pL‖∇uk‖∞, and

K = exp

(
T (F2 + F4)

1−∆t(F2 + F4)

)
.

Proof. Recalling the weak formulation

(uk
t , v) + (∇uk,∇v) + b((uk)p, uk, v)− (ukg(uk), v) = (fk, v) (5.4)

and its discretization

(
uk
h − uk−1

h

∆t
, v) + (∇uk

h,∇v) + b((uk−1
h )p, uk

h, v)− (uk
hg(u

k−1
h ), v) = (fk, v), (5.5)

we subtract (5.5) from (5.4) to obtain

(
∂uk

∂t
−

uk
h − uk−1

h

∆t
, v) + (∇(uk − uk

h),∇v) + b((uk)p, uk, v)− b((uk−1
h )p, uk

h, v)

−(ukg(uk), v) + (uk
hg(u

k−1
h ), v) = 0.

(5.6)

Rewriting (5.6)

(
∂uk

∂t
−

uk
h − uk−1

h

∆t
, v) + (∇(uk − uk

h),∇v) + b((uk)p − (uk−1)p, uk, v)

+ b((uk−1)p − (uk−1
h )p, uk, v) + b((uk−1

h )p, uk − uk
h, v)

− (uk(g(uk)− g(uk−1)), v)− ((uk − uk
h)g(u

k−1), v)

− (uk
h(g(u

k−1)− g(uk−1
h )), v) = 0.

(5.7)

For Uk ∈ Xh, let e
k = uk − uk−1

h = Λk +Ek where Λk = uk −Uk and Ek = Uk − uk
h.

Substituting into (5.7) we obtain

(
∂uk

∂t
− uk − uk−1

∆t
, v) + (

Λk − Λk−1 + Ek − Ek−1

∆t
, v) + (∇(Λk + Ek),∇v)

+ b((uk)p − (uk−1)p, uk, v) + b((uk−1)p − (uk−1
h )p, uk, v)

+ b((uk−1
h )p,Λk + Ek, v)− (uk(g(uk)− g(uk−1)), v)

− ((Λk + Ek)g(uk−1), v)− (uk
h(g(u

k−1)− g(uk−1
h )), v) = 0.

(5.8)

10



Choosing v = Ek, multiplying (5.8) by ∆t and rearranging, yields

(Ek − Ek−1, Ek) + ∆t(∇Ek,∇Ek) = −∆t (
∂uk

∂t
− uk − uk−1

∆t
, Ek)

−∆t b((uk)p − (uk−1)p, uk, Ek)−∆t b((uk−1)p − (uk−1
h )p, uk, Ek)

−∆t b((uk−1
h )p,Λk + Ek, Ek) + ∆t (uk(g(uk)− g(uk−1)), Ek)

+ ∆t ((Λk + Ek)g(uk−1), Ek) + ∆t (uk
h(g(u

k−1)− g(uk−1
h )), Ek)

− (Λk − Λk−1, Ek)−∆t (∇Λk,∇Ek).

(5.9)

Using Cauchy-Schwarz and Young’s inequality results in the following bounds for the
terms appearing in (5.9).

(Ek − Ek−1, Ek) = ‖Ek‖2 −
∫
Ω

Ek−1Ek ≥ ‖Ek‖2 − 1

2
‖Ek‖2 − 1

2
‖Ek−1‖2

=
1

2
‖Ek‖2 − 1

2
‖Ek−1‖2.

A direct application of Lemma 5.1 yields

(
∂uk

∂t
− uk − uk−1

∆t
, Ek) ≤ 1

2
‖uk

t − uk − uk−1

∆t
‖2 + 1

2
‖Ek‖2

≤ ∆t

6

∫ tk

tk−1

‖utt‖2 +
1

2
‖Ek‖2.

Using the Lipschitz continuity of g and f(x) = xp and Lemma 5.2, we obtain

|b((uk)p − (uk−1)p, uk, Ek)| ≤
∫
Ω

|(uk)p − (uk−1)p| |
[

1
1

]
· ∇uk| |Ek| dΩ

≤ 2 pL‖∇uk‖∞
∫
Ω

|uk − uk−1| |Ek| dΩ

≤ pL‖∇uk‖∞(‖uk − uk−1‖2 + ‖Ek‖2)

≤ pL‖∇uk‖∞(∆t

∫ tk

tk−1

‖ut‖2 dt+ ‖Ek‖2).

|b((uk−1)p − (uk−1
h )p, uk, Ek)| ≤

∫
Ω

|(uk−1)p − (uk−1
h )p| |

[
1
1

]
· ∇uk| |Ek| dΩ

≤ 2 pL‖∇uk‖∞
∫
Ω

|uk−1 − uk−1
h | |Ek| dΩ

= 2 pL‖∇uk‖∞
∫
Ω

|Ek−1 + Λk−1| |Ek| dΩ

≤ pL‖∇uk‖∞(‖Ek−1‖2 + ‖Λk−1‖2 + 2‖Ek‖2).

For the next term, using Young’s inequality yields

|b((uk−1
h )p,Λk + Ek, Ek)| ≤

∫
Ω

|(uk−1
h )p| |

[
1
1

]
· ∇(Λk + Ek)| |Ek| dΩ

≤ ‖(uk−1
h )p‖∞

∫
Ω

|
[

1
1

]
· ∇(Λk + Ek)| |Ek| dΩ

≤
√
2(

1

2
‖∇Λk‖2 + (

1

2
+

5

4
)‖Ek‖2 + 1

5
‖∇Ek‖2).
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Using Lemma 5.2,

|(uk(g(uk)− g(uk−1)), Ek)| ≤
∫
Ω

|uk| |g(uk)− g(uk−1)| |Ek| dΩ

≤ ‖uk‖∞gL

∫
Ω

|uk − uk−1| |Ek| dΩ

≤ gL
2
(∆t

∫ tk

tk−1

‖ut‖2 dt+ ‖Ek‖2).

|((Λk + Ek)g(uk−1), Ek)| ≤
∫
Ω

|g(uk−1)| |Λk + Ek| |Ek| dΩ

≤ β(
3

2
‖Ek‖2 + 1

2
‖Λk‖2).

|(uk
h(g(u

k−1)− g(uk−1
h )), Ek)| ≤

∫
Ω

|uk
h| |g(uk−1)− g(uk−1

h )| |Ek| dΩ

≤ ‖uk
h‖∞gL

∫
Ω

|uk−1 − uk−1
h | |Ek| dΩ

≤ gL

∫
Ω

|Ek−1 + Λk−1| |Ek| dΩ

≤ gL(
1

2
‖Ek−1‖2 + ‖Ek‖2 + 1

2
‖Λk−1‖2).

Again, applying Lemma 5.2 and Young’s inequality we bound the following two terms
by

|(Λk − Λk−1, Ek)| ≤ ∆t‖Ek‖2 + 1

4∆t
‖Λk − Λk−1‖2

≤ ∆t‖Ek‖2 + 1

4

∫ tk

tk−1

‖Λt‖2 dt.

|(∇Λk,∇Ek)| ≤ 1

5
‖∇Ek‖2 + 5

4
‖∇Λk‖2.

Substituting the above estimates into (5.9) and rearranging, we obtain

‖Ek‖2 − ‖Ek−1‖2 +∆tFk
1‖∇Ek‖2 ≤

∆tFk
2‖Ek‖2 + (∆t)2 Fk

3

∫ tk

tk−1

‖ut‖2 dt+∆tFk
4‖Ek−1‖2

+∆tFk
4‖Λk−1‖2 +∆tFk

5‖∇Λk‖2 +∆t β‖Λk‖2

+
(∆t)2

3

∫ tk

tk−1

‖utt‖2 dt+
1

2

∫ tk

tk−1

‖Λt‖2 dt,

(5.10)
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where

Fk
1 = 2− 2(1 +

√
2)/5 ≥ 1,

Fk
2 = 3 + 6 pL‖∇uk‖∞ + 3β + (

√
2 +

5
√
2

2
) + 3gL,

Fk
3 = 2 pL‖∇uk‖∞ + gL,

Fk
4 = gL + 2 pL‖∇uk‖∞,

Fk
5 =

5

2
+
√
2 ≤ 4.

(5.11)

Summing (5.10) from k = 1 to k = ` and defining Fi = |||Fi|||∞, yields

‖E`‖2 +
∑̀
k=1

‖∇Ek‖2∆t ≤

∆t (F2 + F4)
∑̀
k=0

‖Ek‖2 + (∆t)2 F3

∫ T

0

‖ut‖2 dt

+∆t
∑̀
k=0

((F4 + β)‖Λk‖2 + 4‖∇Λk‖2)

+
(∆t)2

3

∫ T

0

‖utt‖2 dt+
1

2

∫ T

0

‖Λt‖2 dt.

(5.12)

Choosing ∆t so that ∆t(F2+F4) < 1 and applying Lemma 5.3 results in the following
inequality

‖E`‖2 +
∑̀
k=1

‖∇Ek‖2∆t ≤ K
(
(∆t)2 F3

∫ T

0

‖ut‖2 dt

+∆t
∑̀
k=0

((F4 + β)‖Λk‖2 + 4‖∇Λk‖2)

+
(∆t)2

3

∫ T

0

‖utt‖2 dt+
1

2

∫ T

0

‖Λt‖2 dt
)
,

(5.13)

where

K = exp

(
T (F2 + F4)

1−∆t(F2 + F4)

)
.

From the theory of finite element interpolation [3, 5], we have that for Ih, the inter-
polant of the exact solution u in the space of piecewise linear continuous polynomials,
and Λk = uk − Ihuk, there exist a constant C ≥ 0 such that

‖Λk‖+ h‖∇Λk‖ ≤ Ch2‖uk‖H2(Ω). (5.14)
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Owing to (5.14) and (5.2), (5.13) becomes

‖E`‖2 +
∑̀
k=1

‖∇Ek‖2∆t ≤ K
(
(∆t)2 F3

∫ T

0

‖ut‖2 dt

+ C(h4(F4 + β) + 4h2)|||u|||22

+
(∆t)2

3

∫ T

0

‖utt‖2 dt+ C
h4

2

∫ T

0

|||ut|||22 dt
)
.

(5.15)

Finally, noting that

‖u` − u`
h‖ ≤ ‖E`‖+ ‖Λ`‖,

we get the bound given in (5.3).

6. Numerical results. In this section three numerical experiments are per-
formed to investigate the theoretical results presented in Lemma 4.2 and Theorem
5.4. Numerical experiments 1 and 2 investigate the nonnegativity and boundedness
of the approximation. Numerical experiment 3 investigates the predicted a priori
error estimate. A traveling wave solution of (1.1) for the case when β = 1 is given [8]

u(x, t) =
(γ
2
+

γ

2
tanh (σγ (z − ct))

)1/p
, (6.1)

where

z =
1√
2
(x+ y), c =

(α− ρ)γ + (α+ ρ)(p+ 1)

2(p+ 1)
, σ =

p(ρ− α)

4(p+ 1)
,

ρ =
√
α2 + 4(1 + p), α = α

√
2.

We note that (6.1) lies in the interval (0, γ1/p). A second traveling-wave solution of
(1.1) for β = 1 and p = 1 is the following [22]

u(x, t) =
1

2
− 1

2
tanh

(
z − νt

r − α

)
, (6.2)

where r =
√
α2 + 8, ν = (2α+(α− r)(2γ− 1))/4. In this case the particular solution

(6.2) lies in the interval (0, 1).

Experiment 1. We let Ω = (−50, 50) × (−50, 50) and approximate (1.1) using
(3.3) for t ∈ [0, 2]. The physical parameters under consideration are α = 0.7, γ = 0.4
and p = 2. The computational parameters are ∆t = 0.1 and h = 3/5. In order
to validate our results concerning the boundedness of the approximations, we use
solution (6.1) for the initial and boundary conditions and compute the minimum and
maximum of uk

h for every discrete time tk.
Note that the initial data and boundary conditions are bounded between 0 and γ1/p.
Figure 6.1 illustrates the results and exhibits the nonnegativity of uk

h and γ1/p − uk
h,

implying that 0 ≤ uk
h < γ1/p, consistent with Lemma 4.2.

Experiment 2. For this experiment we consider Ω = (−20, 30)× (−20, 30) and
t ∈ [0, 2]. The physical parameters are α = 0.4, γ = 0.3 and p = 1. The computational
parameters are ∆t = 0.1 and h = 7/9. This time we imposed initial and boundary
conditions with numeric values lying in (0, 1) using solution (6.2). As before, we
compute the minimum and maximum of the approximations uk

h for every discrete time
tk. The results are shown in Figure 6.2. We note that the approximation uk

h ∈ (0, 1).
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Fig. 6.1. (Left) Evolution of the maximum of the approximation uh(x, t) through time with
respect to the theoretical maximum γ1/p. (Right) Evolution of the minimum of uh(x, t) through
time.
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Fig. 6.2. (Left) Evolution of the quantity 1−maxuh(x, t) through time. (Right) Evolution of
the minimum of uh(x, t) through time.

Experiment 3. As a means of verifying our a priori error estimate, we approx-
imated the solution of (1.1) on Ω = (−40, 80) × (−40, 80) for t ∈ [0, 2] using the
physical parameters α = 1, p = 1 and γ = 0.5. We considered the quantity u − uh

under the norms ‖ · ‖ and ||| · ||| for different values of ∆t and h.
As we chose ∆t ∝ h, Theorem 5.4 predicts that ‖u(T )− uM

h ‖ and |||u− uh||| ∼ Chr,
with r = 1. We compute the experimental convergence rate r̃‖·‖ for ‖ · ‖ using
r̃‖·‖ = log(‖u − uh1‖/‖u − uh2‖)/ log(h1/h2). The quantity r̃|||·||| is similarly com-
puted. The results are shown in Table 6.1 and illustrate the first order convergence
in space and time of the scheme.

7. Conclusion. In the first part of this paper, we established the existence,
nonnegativity and boundedness of the solution to (1.1). The second part of the paper
was dedicated to the study of the proposed finite element scheme, capable of preserving
the nonnegativity and boundedness of the solution under relatively mild conditions
on the computational parameters ∆t, h and the mesh. An a priori error estimate
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∆t h ‖u− uh‖ r̃‖·‖ |||u− uh||| r̃|||·|||

0.800 15 1.38 - 1.72 -
0.400 15/2 0.41 1.74 0.56 1.62
0.200 15/4 0.15 1.49 0.17 1.71
0.100 15/8 0.07 1.07 0.07 1.35
0.050 15/16 0.04 0.95 0.03 1.08
0.025 15/32 0.02 0.95 0.02 1.00

Table 6.1
Convergence rates of the numerical approximation computed using scheme (3.3).

was derived, which shows that the numerical approximation converges to the solution
as ∆t, h → 0. This same analysis also demonstrates that our numerical scheme is of
first order in time and space. The numerical experiments, designed to investigate the
properties of the approximation scheme, were in agreement with the theory.
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[26] M. Sari, G. Gürarslan, and A. Zeytinoğlu. High-order finite difference schemes for numeri-
cal solutions of the generalized Burgers-Huxley equation. Numerical Methods for Partial
Differential Equations, 27(5):1313–1326, 2011.

[27] J.R. Sibert, J. Hampton, D.A. Fournier, and P.J. Bills. An advection-diffusion-reaction model
for the estimation of fish movement parameters from tagging data, with application to
skipjack tuna (katsuwonus pelamis). Canadian Journal of Fisheries and Aquatic Sciences,
56(6):925–938, 1999.

[28] X.Y. Wang, Z.S. Zhu, and Y.K. Lu. Solitary wave solutions of the generalised Burgers-Huxley
equation. J. Phys. A, 23(3):271–274, 1990.

[29] S. Zhou and X. Cheng. A linearly semi-implicit compact scheme for the Burgers-Huxley equa-
tion. International Journal of Computer Mathematics, 88(4):795–804, 2011.

17


