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Abstract. Let Ek(z) be the normalized Eisenstein series of weight k for the modular group

SL(2,Z). We study the zeros of Ek to prove that the equation

n∏
i=1

Eki =
m∏

j=1

E`j

has no solutions, except for those given by known relationships between E4, E6, E8, E10, and E14.

We go on to discuss some implications of this result.

1. Introduction

Let

Ek = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

be the normalized Eisenstein series of weight k over SL(2,Z), where k ≥ 4 is an even integer, Bk is
the kth Bernoulli number, and σk−1(n) =

∑
d|n d

k−1.

Several previous papers have studied the relationships between products of Eisenstein series.
Using the Rankin-Selberg method, Duke [Duk99] and Ghate [Gha00] each independently proved
that the equation

Ek1Ek2 = E`

has only solutions forced by dimension considerations, i.e. those given by

(1.1) E2
4 = E8, E4E6 = E10, E4E10 = E14, E6E8 = E14.

Emmons and Lanphier [EL07] extended this result to the case

n∏
i=1

Eki = E`,

proving that this equation has solutions only for ` ∈ {8, 10, 14}, where these solutions are among
the list given in equation 1.1. Their proof relies on controlling the growth of the coefficients

Ck =
(2πi)k

ζ(k)(k − 1)!
= − 2k

Bk
,

using their rapid decrease in magnitude to argue that the q-coefficients of
∏n
i=1Eki and E` cannot

be equal in general.
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In a somewhat different direction, Nozaki [Noz08] studied the function

Fk(θ) = eikθ/2Ek(eiθ) =
1

2

∑
(c,d)=1
c,d∈Z

(ceiθ/2 + de−iθ/2)−k = 2 cos(kθ/2) + Tk(θ),(1.2)

first considered in [RS70], where Tk(θ) becomes trivially small as k increases. The functions Fk(θ)
and Ek(eiθ) have the same zeros in [π/2, 2π/3], allowing Nozaki to approximate locations of the
zeros of Eisenstein series using the zeros of 2 cos(kθ/2).

In this paper, we refine Nozaki’s methods to demonstrate that for any ` < k, if Ek has a nontrivial
zero (meaning a zero other than i and e2πi/3), then the nontrivial zero of Ek closest to i is distinct
from every zero of E` (see Lemma 2.4). We use a novel application of these methods to completely
classify all monomial relations between Eisenstein series, as in the following theorem.

Theorem 1.1. The equation
n∏
i=1

Eki =

m∏
j=1

E`j

with ki 6= `j for any 1 ≤ i ≤ n, 1 ≤ j ≤ m holds if and only if ki, `j ∈ {4, 6, 8, 10, 14} for all i,j,
and both sides can be rewritten as the same product of powers of E4 and E6 by using equation 1.1.

Thus there are no “nontrivial” monomial relations between Eisenstein series, where by non-
trivial we mean relations which cannot be immediately obtained by taking identical products and
augmenting them with the relations in equation 1.1.

Finally, as an application of Theorem 1.1, we will show in Theorem 3.4 a certain inequality
between critical values of the L-functions associated to normalized Hecke eigenforms.

2. Finding a Distinct Zero of Ek

To prove Theorem 1.1, we must show that, with the exception of E4, E6, E8, E10, and E14,
every Eisenstein series has at least one zero not shared by any Eisenstein series of lesser weight.
In Lemma 2.2, we find a bound on the zeros α∗k,n of Fk in terms of their approximate values αk,n
(see Definition 2.1). Corollary 2.3 to this lemma gives an interesting result regarding the zeros of
Eisenstein series, helpful in proving Lemma 2.4. Lemma 2.4 states that the nontrivial zero of Ek
closest to i, if it exists, is distinct from every zero of E` for ` < k, providing us with what we need
to prove Theorem 1.1.

We begin by introducing a useful definition.

Definition 2.1 ([Noz08]). Let αk,n refer to the nth-zero of 2 cos(kθ/2) located at π
(
1
2 + 2n−1

k

)
if

k ≡ 0 (mod 4) and at π
(
1
2 + 2n

k

)
if k ≡ 2 (mod 4), for 1 ≤ n ≤ dim(Mk) − 1 where Mk is the

space of modular forms of weight k and level one. Let α∗k,n refer to the unique nth zero of Fk(θ)

approximated by αk,n, where Fk(θ) is defined in equation 1.2.

Note that the nontrivial zeros of Ek are exactly the points eiα
∗
k,n .

The following lemma is a slight improvement on the statement of Lemma 3.1 in [Noz08] which
formalizes the sense in which α∗k,n is “approximated” by αk,n for αk,n sufficiently close to π

2 . We
will rely heavily upon it moving forwards.
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Lemma 2.2. For any real c ≥ 1, there exists a positive integer Kc such that if k ≥ Kc and
αk,n + π

ck2 ≤ 11π/18 then

αk,n −
π

ck2
< α∗k,n < αk,n +

π

ck2
.

Proof. Notice that∣∣∣∣2 cos

(
k

2
(αk,n ±

π

ck2
)

)∣∣∣∣ =

∣∣∣∣2 cos

(
k

2
αk,n

)
cos
(
± π

2ck

)
− 2 sin

(
k

2
αk,n

)
sin
(
± π

2ck

)∣∣∣∣
= 2 sin

( π

2ck

)
.

So we can write∣∣∣∣2 cos

(
k

2

(
αk,n ±

π

ck2

))∣∣∣∣− ∣∣∣Tk (αk,n ± π

ck2

)∣∣∣ = 2 sin
( π

2ck

)
−
∣∣∣Tk (αk,n ± π

ck2

)∣∣∣
> 2

2

π

π

2ck
− 3

2

(
1

1.1

)k
=

4(1.1)k − 3ck

2ck(1.1)k
.

For clarification on the inequality, see equation (3.5) in [Noz08]. We now have

2 sin
( π

2ck

)
−
∣∣∣Tk (αk,n ± π

ck2

)∣∣∣ > 0 if 4(1.1)k − 3ck > 0,

i.e. 1.1kk−1 >
3c

4
.

The expression 1.1kk−1 is unbounded and strictly increasing for k ∈ [1,∞). Let Kc be the minimum
positive integer such that 1.1KcK−1c > 3c

4 and let k ≥ Kc. Then

2 sin
( π

2ck

)
>
∣∣∣Tk (αk,n ± π

ck2

)∣∣∣ .
Therefore Fk is nonzero at αk,n ± π

ck2 , and the sign of Fk
(
αk,n ± π

ck2

)
is determined by the sign of

2 cos
(
k
2

(
αk,n ± π

ck2

))
. Since the points αk,n ± π

ck2 are symmetric around a zero of 2 cos(kθ/2), we
know that

2 cos

(
k

2

(
αk,n +

π

ck2

))
= −2 cos

(
k

2

(
αk,n −

π

ck2

))
,

and thus

Fk

(
αk,n +

π

ck2

)
Fk

(
αk,n −

π

ck2

)
< 0.

This implies that Fk changes signs on this interval, so there must exist an α′k,n satisfying

αk,n −
π

ck2
< α′k,n < αk,n +

π

ck2

and Fk(α′k,n) = 0. Now we recall from Rankin and Swinnerton-Dyer [RS70] that α∗k,n is the unique

zero in the interval (αk,n − π
k , αk,n + π

k ). Since c ≥ 1, we have that π
ck2 <

π
k . Thus we know that

α′k,n = α∗k,n, completing the proof. �
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Note that Kc increases only logarithmically with respect to c. For instance, K1 = 34,K2 =
44,K10 = 65,K103 = 120,K106 = 198, and so on. Thus, this is an efficient way to bound the error
between αk,n and α∗k,n for surprisingly small k. Additionally, the above proof makes it clear that

we could replace π
ck2 with the bound π

ck2 e
−dk for any d such that ed < 1.1 due to the dependence

on the exponential term 1.1k. However, this minor improvement is unnecessary for the proof of the
main theorem.

Remark. It is important for the proofs of Corollary 2.3 and Lemma 2.4 that Lemma 2.2 applies
to the zeros αk,1 for all k ≥ 34, and also applies to αk,2 for k ≥ 36 and k ≡ 0 (mod 4). Under these
conditions we may choose c ≥ 1 with corresponding Kc ≥ 34 (noting that K1 = 34), and for j = 1
or j = 2 we have

αk,j +
π

ck2
≤ π

(
1

2
+

3

k

)
+

π

k2
<

11π

18
.

Therefore, the condition αk,j+ π
ck2 ≤

11π
18 required for Lemma 2.2 is satisfied under these conditions.

Lemma 2.2 implies the following property of the zeros of Fk, which will aid in the proof of Lemma
2.4.

Corollary 2.3. The sequences
{α∗4j,1}j≥3, {α∗4j+2,1}j≥4

are each strictly decreasing to π
2 .

Proof. First, let k = 4j and k ≥ 36. We choose c = 1 and apply Lemma 2.2 to get

αk,1 −
π

k2
< α∗k,1 < αk,1 +

π

k2
.

This yields the relation

α∗k,1 − α∗k+4,1 > αk,1 − αk+4,1 − π
(

1

k2
+

1

(k + 4)2

)
= π

k + 4− k
k(k + 4)

− π (k + 4)2 + k2

k2(k + 4)2

= π
2k2 + 8k − 16

k2(k + 4)2
.

Therefore,

α∗k,1 > α∗k+4,1 if 2k2 + 8k − 16 > 0,

which is true for k ≥ 36. Likewise, for k = 4j + 2 and k ≥ 34,

α∗k,1 − α∗k+4,1 > π
2k + 8− 2k

k(k + 4)
− π (k + 4)2 + k2

k2(k + 4)2

= π
6k2 + 24k − 16

k2(k + 4)2
.

Therefore,

α∗k,1 > α∗k+4,1 if 6k2 + 24k − 16 > 0,

which is true for k ≥ 34. When k < 34, the relation α∗k,1 > α∗k+4,1 can be computationally verified

(see Table 4 and Table 5). �
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Remark. This corollary can be generalized to the statement that for any fixed m and for j suf-
ficiently large, the sequences {α∗4j,m} and {α∗4j+2,m} are each strictly decreasing to π

2 . However,
the exact formulation of this proof is tedious as it requires that k = 4j or 4j + 2 be large enough
relative to m to ensure that αk,m + π

ck2 <
11π
18 . In general, this will not happen for the first few k

for which Ek has an mth zero on A.

The following Lemma 2.4 is the key component in the proof of Theorem 1.1. The proof of Lemma
2.4 proceeds in a very similar fashion to that of Corollary 2.3.

Lemma 2.4. If Ek has a nontrivial zero, then the nontrivial zero of Ek closest to i is distinct from
every zero of E` for all ` < k.

Proof. We carry out the proof in 6 cases according to the values of k and `.

Case 1.

Let k ≡ ` (mod 4) and suppose that ` < k. Then Corollary 2.3 tells us that

α∗k,1 < α∗`,1 < α∗`,m

for m > 1, completing the proof for this case.

Case 2.

Let k, ` ≥ 34, k ≡ 0 (mod 4), ` ≡ 2 (mod 4), and ` < k. We choose c = 1 and apply Lemma 2.2
to get

α∗`,1 − α∗k,1 > α`,1 − αk,1 − π
(

1

`2
+

1

k2

)
= π

2k − `
k`

− πk
2 + `2

(k`)2

= π
2k2`− `2k − k2 − `2

(k`)2
.

Thus,

α∗`,1 − α∗k,1 > 0 if 2k2`− `2k − k2 − `2 > 2k2`− (`+ 2)k2 > 0,

⇐⇒ `− 2 > 0.

So we have
α∗k,1 < α∗`,1 < α∗`,m

for m > 1, completing the proof for this case.

Case 3.

Let k, ` ≥ 38, k ≡ 2 (mod 4), ` ≡ 0 (mod 4), and ` < k/2. We choose c = 1.3, corresponding to
K1.3 = 38, and apply Lemma 2.2 to get

α∗`,1 − α∗k,1 > α`,1 − αk,1 − π
(

1

1.3`2
+

1

1.3k2

)
= π

k − 2`

k`
− π k

2 + `2

1.3(k`)2

= π
1.3k2`− 2.6`2k − k2 − `2

1.3(k`)2
.
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Thus,

α∗`,1 − α∗k,1 > 0 if 1.3k2`− 2.6`2k − k2 − `2 > 0,

i.e. −
(
k

`

)2

+ 1.3k

(
k

`

)
− (2.6k + 1) > 0.

The parabola −x2 + 1.3kx − (2.6k + 1) faces downwards. It can be checked that this parabola is

positive at x = k
(k−2)/2 and at x = k

2 when k ≥ 38, and thus it is positive on
[

k
(k−2)/2 ,

k
2

]
. This

tells us that
α∗k,1 < α∗`,1 < α∗`,m

for m > 1, completing the proof for this case.

Case 4.

Let k, ` ≥ 38, k ≡ 2 (mod 4), ` ≡ 0 (mod 4), and ` > k/2. We again choose c = 1.3 and apply
Lemma 2.2 to get

α∗`,1 − α∗k,1 < α`,1 − αk,1 + π

(
1

1.3`2
+

1

1.3k2

)
= π

k − 2`

k`
+ π

`2 + k2

1.3(k`)2

= π
1.3k2`− 2.6`2k + k2 + `2

1.3(k`)2
.

Thus,

α∗`,1 − α∗k,1 < 0 if 1.3k2`− 2.6`2k + k2 + `2 < 0,

i.e.

(
k

`

)2

+ 1.3k

(
k

`

)
− (2.6k − 1) < 0.

The parabola x2 +1.3kx−(2.6k−1) faces upwards. It can be checked that this parabola is negative

at x = k
(k+2)/2 and at x = k

k−2 for k ≥ 38. Thus it is negative on
[

k
k−2 ,

k
(k+2)/2

]
, implying that

α∗`,1 < α∗k,1.

Next, we revert to c = 1 from Lemma 2.2 and compute

α∗`,2 − α∗k,1 > α`,2 − αk,1 − π
(

1

`2
+

1

k2

)
= π

3k − 2`

k`
− π `

2 + k2

(k`)2

= π
3k2`− 2`2k − k2 − `2

(k`)2
.

Thus,

α∗`,2 − α∗k,1 > 0 if 3k2`− 2`2k − k2 − `2 > 3k2`− (2`+ 2)k2 > 0,

⇐⇒ `− 2 > 0.
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So we have
α∗`,1 < α∗k,1 < α∗`,2 < α∗`,m

for m > 2, completing the proof for this case.

Case 5.

Let k > 72, ` ≤ 36. We choose c = 1 and apply Lemma 2.2 to get

α∗k,1 < π

(
1

2
+

2

k

)
+

π

k2
< 1.657.

Then since 1.657 < α∗`,1 < α∗`,m for m > 1 when ` ≤ 36, the lemma is proven for k > 72, ` ≤ 36.

Case 6.

In the final remaining case, when k ≤ 72, ` ≤ 36, the relations αk,1 6= α`,1, αk,1 6= α`,2 can be
verified with the data in tables 1, 2, and 3. Note that we need not worry about α∗36,3 because the
closest zero of F36 to α∗k,1 must be α∗36,1 or α∗36,2. �

Remark. Using the same method shown above, the result of this lemma could easily be extended
to the case where ` > k, assuming ` is sufficiently close to k. In particular, this result is still true
if ` > k and dim(Mk) ≥ dim(M`), as when ` and k are sufficiently close, we have an interlacing
property whereby either α∗k,1 < α∗`,1 < α∗k,2 or α∗`,1 < α∗k,1 < α∗`,2 .

3. Conclusion and Discussion

We are now ready to present the following proof of Theorem 1.1.

Proof of Theorem 1.1. It is clear that if both sides can be written as the same product of powers
of E4 and E6 then the equation holds. Conversely, suppose

n∏
i=1

Eki =

m∏
j=1

E`j

for some Eisenstein series {Eki}ni=1, {E`j}mj=1 satisfying ki 6= `j for all i, j. Without loss of general-
ity, assume that kn ≥ ki and kn > `j for all i, j. Assume also that Ekn has at least one non-trivial
zero on the arc A, and let z0 be the nontrivial zero of Ekn closest to i. Then, from Lemma 2.4,

n∏
i=1

Eki(z0) = 0 6=
m∏
j=1

E`j (z0),

a contradiction, implying that ki, `j ≤ 14 for all i, j. Assume ki = 12 for some i. Since `j = 14 or
`j ≤ 10 for all j, this implies the same contradiction as above, and similarly if `j = 12 for some j.
Thus, every element of {Eki}ni=1 ∪ {E`j}mj=1 must also be an element of {E4, E6, E8, E10, E14}, and
can be written as products of powers of E4 and E6. Therefore we have

n∏
i=1

Eki =

m∏
j=1

E`j = Ea4E
b
6,

completing the proof of Theorem 1.1. �

Although computational difficulties have restricted our result to only the first zero of Ek, data
for small k, ` as well as the methods in [Noz08] suggest the following conjecture.

Conjecture 3.1. When k 6= `, every zero of Ek on A is distinct from every zero of E` on A.
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The methods of Lemma 2.4 could prove partial results towards this conjecture. However, these
techniques only work for zeros in the interval (π/2, 11π/18] due to Tk(θ) failing to have the same
exponential decay bound on (11π/18, 2π/3). Even on (π/2, 11π/18], note that when ` divides k,
the zeros of 2 cos(`θ/2) are all included in the zeros of 2 cos(kθ/2). This means that any argument
made with the bounding strategy presented above will not suffice, and a closer look is needed at
the exact behavior of Tk(θ).

This conjecture is closely related to the zero polynomials associated to each Ek.

Definition 3.2 (Zero Polynomial of Ek, [Gek01]). Let

ϕk(x) =

n∏
i=1

(x− j(zi))

where zi runs over zeros of Ek other than i or e
2πi
3 , and j(z) is the j-invariant function.

The truth of the following conjecture would then be sufficient to imply Theorem 1.1.

Conjecture 3.3 (Cornelissen [Cor99] and Gekeler [Gek01]). The zero polynomials ϕk(x) are irre-
ducible over Q.

It is not hard to show that distinct Eisenstein series have distinct zero polynomials, excluding
E4, E6, E8, E10, and E14, which all share the same trivial zero polynomial. Since no two distinct
irreducible polynomials share common zeros, Conjecture 3.3 implies Conjecture 3.1, which then
implies Theorem 1.1 analogously to the proof above.

Finally, let us discuss an application of Theorem 1.1 on the critical values of L-functions. Let
f ∈ Sk be a cuspform of weight k and level one, and let ` be even with 4 ≤ ` ≤ k − 4. The
Rankin-Selberg convolution yields the following identity [Gha00, Section 2]

〈f,E`Ek−`〉 = −Γ(k − 1)

(4π)k−1
· 2`

B`
· L(k − 1, f)L(k − `, f)

ζ(k − `)
,

where L(s, f) denotes the usual L-function associated to f .
If we write

E`Ek−` = Ek +
∑
f

c`,ff

as a linear combination over a basis of normalized Hecke eigenforms, then

c`,f =
〈f,E`Ek−`〉
〈f, f〉

.

Note that if σ ∈ Gal(C/Q) is an automorphism of C, then

c`,fσ = cσ`,f .

Now, suppose we are given two even numbers `1 and `2 with 4 ≤ `1 < `2 ≤ k−4 and `1 + `2 6= k.
By Theorem 1.1, the inequality

E`1Ek−`1 6= E`2Ek−`2
holds except for

(`1, `2, k) = (4, 8, 18), (4, 10, 18), (6, 10, 20).

Let us assume the inequality holds. Then there exists a normalized Hecke eigenform f of weight k
such that c`1,f 6= c`2,f , or equivalently

〈f,E`1Ek−`1〉 6= 〈f,E`2Ek−`2〉.
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Therefore,
2`1
B`1
· L(k − `1, f)

ζ(k − `1)
6= 2`2
B`2
· L(k − `2, f)

ζ(k − `2)
.

As

ζ(k) = − (2πi)k

2(k!)
Bk

the inequality can be further simplified as

`1 · (k − `1)!

B`1Bk−`1
· L(k − `1, f)

(2πi)k−`1
6= `2 · (k − `2)!

B`2Bk−`2
· L(k − `2, f)

(2πi)k−`2
.

If we assume Maeda’s conjecture (Conjecture 1.2 in [HM97]) on the simplicity of the Hecke algebra
on Sk, then the Galois group Gal(C/Q) acts transitively on the basis of normalized eigenforms.
Thus, if c`1,f 6= c`2,f for some f , then

c`1,f 6= c`2,f

for all eigenforms f .
The above discussion can be summarized as the following result.

Theorem 3.4. Suppose dim(Sk) ≥ 1. Let `1 and `2 be even numbers with 4 ≤ `1 < `2 ≤ k− 4 and
`1 + `2 6= k such that

(`1, `2, k) 6= (4, 8, 18), (4, 10, 18), (6, 10, 20).

Then there exists a normalized eigenform f of weight k such that

`1 · (k − `1)!

B`1Bk−`1
· L(k − `1, f)

(2πi)k−`1
6= `2 · (k − `2)!

B`2Bk−`2
· L(k − `2, f)

(2πi)k−`2
.

Furthermore, if the Hecke algebra on Sk is simple, then the above inequality holds for every nor-
malized eigenform of weight k.

See Table 6 for computational evidence of the above theorem for normalized eigenforms of weights
12, 16, · · · , 24 and 26.
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Appendix A. Tables

Tables 1, 2, and 3 complete the proof of Lemma 2.4 and were computed using the closed formula
given in [Koh04]. The α∗k,n and αk,n values follow the same notation of 2.1. Tables 4 and 5 complete
the proof of Corollary 2.3. For Table 6 let

γk,` =
` · (k − `)!
B`Bk−`

· L(k − `, f)

(2πi)k−`
,

so that the values can be used to verify Theorem 3.4 [LMFDB]. Calculations were computed with
1000 significant digits in Pari/GP [Bat+98]. See [Gri20] for source code.
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Table 1. First Zero of Fk with k ≡ 0 (mod 4)

k α∗k,1 αk,1 |α∗k,1 − αk,1|

12 1.824855600 1.832595715 0.007740115042

16 1.768610843 1.767145868 0.001464974861

20 1.727597772 1.727875959 0.0002781873219

24 1.701752889 1.701696021 5.686819194× 10−5

28 1.682984081 1.682996064 1.198326671× 10−5

32 1.668973688 1.668971097 2.591185736× 10−6

36 1.658062219 1.658062789 5.705771539× 10−7

40 1.649336271 1.649336143 1.274571294× 10−7

44 1.642196131 1.642196160 2.879756905× 10−8

48 1.636246180 1.636246174 6.567376166× 10−9

52 1.631211569 1.631211570 1.508052409× 10−9

56 1.626896196 1.626896196 3.753475860× 10−10

60 1.623156205 1.623156204 4.270295682× 10−10

64 1.619883716 1.619883712 3.720879568× 10−9

68 1.616996237 1.616996219 1.869869402× 10−8

72 1.614429460 1.614429558 9.808943303× 10−8
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Table 2. First Zero of Fk with k ≡ 2 (mod 4)

k α∗k,1 αk,1 |α∗k,1 − αk,1|

18 1.915434107 1.919862177 0.004428069756

22 1.857250367 1.856395659 0.0008547076081

26 1.812293607 1.812457300 0.0001636936144

30 1.780269358 1.780235837 3.352128264× 10−5

34 1.755588829 1.755595895 7.065884793× 10−6

38 1.736144836 1.736143309 1.526948311× 10−6

42 1.720395641 1.720395977 3.359360348× 10−7

46 1.707387387 1.707387312 7.496661428× 10−8

50 1.696460016 1.696460033 1.692060382× 10−8

54 1.687151614 1.687151610 3.854938813× 10−9

58 1.679127107 1.679127108 8.851164162× 10−10

62 1.672138026 1.672138025 2.045891951× 10−10

66 1.665996104 1.665996104 4.776831270× 10−11

70 1.660556117 1.660556117 1.832176137× 10−11

Table 3. Second Zero of Fk

k α∗k,2 αk,2 |α∗k,2 − αk,1|

24 1.960354810 1.963495408 0.003140598274

28 1.907999656 1.907395540 0.0006041163696

30 1.987251378 1.989675347 0.002423969265

32 1.865205828 1.865320638 0.0001148096729

34 1.940858142 1.940395463 0.0004626798557

36 1.832618984 1.832595715 2.326963148× 10−5
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Table 4. α∗k,1 Range for k ≡ 0 (mod 4)

k (αk,1 − π
k2 ) (αk,1 + π

k2 )

12 1.810779099 1.854412330

16 1.754874021 1.779417714

20 1.720021978 1.735729941

24 1.696241867 1.707150175

28 1.678988931 1.687003198

32 1.665903136 1.672039059

Table 5. α∗k,1 Range for k ≡ 2 (mod 4)

k (αk,1 − π
k2 ) (αk,1 + π

k2 )

14 2.003566743 2.035623811

18 1.910165904 1.929558451

22 1.849904765 1.862886553

26 1.807809974 1.817104627

30 1.776745179 1.783726496

34 1.752878254 1.758313535
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Table 6: γk,l-Values for Small k

k ` γk,`

4 55.61565697
12

6 -98.10601890

4 62.82185616

6 -146.9258242

8 181.7264369
16

10 -146.9258242

4 58.03385626

6 -109.4290547

8 58.03385626

10 58.03385626

18

12 -109.4290547

4 60.48221866

6 -130.6645810

8 142.2118725

10 -130.6645810

12 142.2118725

20

14 -130.6645810

4 59.91248008

6 -125.0255289

8 114.1435704

10 -42.34605190

12 -42.34605190

14 114.1435704

22

16 -125.0255289

4 59.77727589

6 −124.2114447

8 113.9746791
24.a

10 −57.30971502
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Table 6: γk,l-Values for Small k

k ` γk,`

12 28.89997856

14 −57.30971502

16 113.9746791
24.a

18 −124.2114447

4 60.29164885

6 −128.4638733

8 129.6435717

10 −89.53486445

12 69.51387145

14 −89.53486445

16 129.6435717

24.b

18 −128.4638733

4 59.99879213

6 -125.9822665

8 119.8374044

10 -64.87258915

12 17.70494990

14 17.70494990

16 -64.87258915

18 119.8374044

26

20 -125.9822665
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