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Almost odd random sum-free sets
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We show that if S1 is a strongly complete sum-free set of positive integers, and if
S0 is a finite sum-free set, then with positive probability a random sum-free set U
contains S0 and is contained in S0 ∪ S1. As a corollary we show that with positive
probability, 2 is the only even element of a random sum-free set.

1. Introduction

In this paper we shall extend the results of Cameron [5] and Calkin [1] on the structure
of a random sum-free set.

A set S of positive integers is sum-free if there do not exist x, y, z ∈ S with x + y = z.
We shall call a sum-free set ultimately complete if there exists n0 so that for all n > n0,
n ∈ S ∪ (S + S), that is, every sufficiently large integer not in S is a sum of elements in
S. We define

rS(n) = |{x : x ≤ n, x, n− x ∈ S}|
to be the number of distinct representations of n as a sum of elements of S. If

lim
n 6∈S

rS(n)
log(n)

= ∞

then we shall call S strongly complete. We note that there are no known examples of
sum-free sets for which rS(n) → ∞ but rS(n)/n → 0: modular complete sum-free sets
give rise to sets for which rS(n) grows linearly.

Cameron [6] introduced a probability measure µ on the set S of all sum-free sets as
follows: there is a natural bijection from the set 2IN to S which induces a probability
measure on S. This measure corresponds to the following construction of a random sum-
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free set U :
Set U = ∅: consider each integer n in order: if n ∈ U + U then increase n by one: if
n 6∈ U + U then toss a fair coin: if heads, then set U = U ∪ {n}, and increase n by one;
otherwise increase n by one.

Observe that if S ⊂ {1, 2, 3, . . . n} is a finite sum-free set, then

Prµ(U ∩ {1, 2, 3, . . . n} = S) = 2−n+t

where t = |(S + S)∩ {1, 2, 3, . . . n}|, since we have to prescribe the outcome of a cointoss
for exactly n− t integers.

2. The Main Result

Cameron [5] showed that if S is the sum-free set corresponding to a complete modular
sum-free set (modulo m) then Pr(U ⊂ S) > 0, and Calkin [1] showed that if S is a
strongly complete sum-free set then Pr(U ⊂ S) > 0. Cameron [6] asked whether the
probability that a random sum-free set contains 2 and no other even element is positive.
In this paper we prove a much stronger result, replacing 2 by an arbitrary finite sum-free
set S0, and the odd numbers by an arbitrary strongly complete sum-free set S1.

Theorem 2.1. Let S0 be a finite sum-free set, and S1 be a strongly complete sum-free
set: then Pr(S0 ⊂ U ⊂ S0 ∪ S1) > 0.

In our proof we shall assume that the least element of S1 is at least twice as large as the
largest element of S0: this is not a severe restriction, since in particular it implies the
theorem above.

Proof. Our proof will require a probability measure ν on the set F of all sum-free sets
lying between S0 and S0 ∪S1, defined in the following manner: set U = S0, and consider
the integers n ∈ S1 in order: if n ∈ U +S0, move to the next n ∈ S1; if n 6∈ U +S0, toss a
coin: if it is heads, then set U = U ∪ {n} and move to the next n ∈ S1; otherwise, move
to the next n ∈ S1.

In other words, we randomly construct a sum-free set U constrained to lie between S0

and S0 ∪ S1: whenever we have a choice of whether to add an element to U we toss a
coin to decide. Since the least element of S1 is greater than twice the largest element of
S0, and since S1 is sum-free, the only times we have to toss a coin correspond to values
in S0 + S1.

We shall denote by νn the measure obtained in this fashion after decisions have been
made for all elements less than or equal to n. Then if F is an event, we define Fn =
{F ∩ {1, 2, 3, . . . , n}|F ∈ F}. If F is the limit of Fn as n →∞ (in the sense that F ∈ F
if and only if F ∩ {1, 2, 3, . . . , n} ∈ Fn for all n, we have ν(F) = limn→∞ νn(Fn).

In particular, if F is an event which depends only on elements less than or equal to n,
then

ν(F) = νm(Fm) ∀m ≥ n
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since all decisions about elements less than n have been made before the decision about
m.

Observe that ν is not just the conditional measure given S0 ⊂ U ⊂ S0 ∪ S1: in the
conditional measure, sets for which only a few elements of IN \ (S0 ∪ S1) are not sums
are weighted more heavily than those having many elements not excluded as sums, since
the latter require more coin tosses: with ν this is not the case.

However, the measures µ and ν are related as follows:

Lemma 2.2. Let tn(U) = |{1, 2, 3, . . . , n} \ (S0 ∪ S1 ∪ (U + U))| be the number of
elements of {1, 2, 3, . . . , n} \ (S0 ∪ S1) not represented as a sum in U , that is the number
of extra coin-tosses used in the µ model over the ν model. Then

Prµ(S0 ⊂ U ⊂ S0 ∪ S1) = lim
n→∞

Eνn(2−tn(U)).

Proof. Let F be the event S0 ⊂ U ⊂ S0 ∪ S1. Then

Prµ(S0 ⊂ U ⊂ S0 ∪ S1) = lim
n→∞

Prµn
(S0 ⊂ U ∩ {1, 2, 3, . . . , n} ⊂ S0 ∪ S1)

= lim
n→∞

∑
F∈Fn

Prνn(U ∩ {1, 2, 3, . . . , n} = F )2−tn(F ) = lim
n→∞

Eνn(2−tn(U)).

as claimed.

Hence, if we wish to show that Prµ(S0 ⊂ U ⊂ S0 ∪ S1) > 0, it suffices to show that
there exists a c > 0 so that for all n, Eνn

(2−tn(U)) > c (independently of n).
We shall now show that with positive (ν) probability, tn(U) is bounded, independently

of n; more specifically, we show that if n ∈ S1 + S1 then Prνn(n 6∈ U + U) is small; in
fact, that ∑

n∈S1+S1

Prνn
(n 6∈ U + U) < ∞.

Then an effective version of Borel Cantelli will give us our result: indeed, if n0 is such
that ∑

n∈S1+S1,n>n0

Prνn
(n 6∈ U + U) < 1− ε,

then

Prνn(n ∈ U + U ∀n ∈ S1 + S1, n > n0) > ε,

and hence

E(2−tn(U)) > ε2−n0 > 0,

and our proof will be complete.
Let the largest element of S0 be k, and set l = drS(n)/(2k + 1)e − 1. Then we have

Lemma 2.3.

Prνn(n 6∈ U + U) ≤
(
1− 2−2(2k+1)

)l
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Proof. Since we have rS(n) pairs x, y ∈ S with x ≤ y, x + y = n, we can find
x1, x2, x3, . . . , xl, y1, y2, y3, . . . yl with xi + yi = n and xi+1 − xi > k, yl − xl > k: in-
deed, just pick every (k + 1)st pair and discard the pair closest to n/2.

The key here is that if we force xi−k, xi−k+1, . . . , xi−2, xi−1, xi +1, xi +2, . . . , xi +
k− 1, xi + k to be omitted from U (requiring at most 2k coin tosses to be specified) then
the other elements of U have no impact on whether xi is included in U : moreover, whether
or not xi ∈ U has no impact on other elements of U .

Now let Xi be 1 if xi ∈ U and xi−k, xi−k+1, . . . , xi−2, xi−1, xi +1, xi +2, . . . , xi +
k − 1, xi + k 6∈ U , and 0 otherwise, and define Yi similarly. Then

Prνn(Xi = 1 | X1, X2, . . . , Xi−1, Xi+1, . . . , Xl, Y1, Y2, . . . Yl) ≥ 2−(2k+1)

and similarly for Yi. Since n ∈ U + U can only happen if for each i, at least one of Xi, Yi

is equal to 0, we have

Prνn(X1Y1 = 0) ≤ (1− 2−(2k+1))

Prνn
(X2Y2 = 0|X1Y1 = 0) ≤ (1− 2−(2k+1))

.

.

.

Prνn(XlYl = 0|X1Y1 = 0, . . . Xl−1Yl−1 = 0) ≤ (1− 2−(2k+1))

and hence

Prνn(n 6∈ U + U) ≤ Prνn(X1Y1 = 0, X2Y2 = 0, . . . , XlYl = 0)

≤ (1− 2−(2k+1))l,

completing the proof of the lemma.

Since S1 is strongly complete,∑
n∈S1+S1

((
1− 2−2(2k+1)

)1/(2k+1)
)rS(n)

< ∞

and the proof of the theorem is complete.

We note that everything above is for a fair coin: however, the theorem remains true
for a coin with probability p of heads, and 1− p of tails, so long as p is strictly between
0 and 1: we omit the proof, as it is essentially the same as the above.

We also note that the proof of the theorem gives us a way to estimate the probability
that S0 ⊂ U ⊂ S0∪S1 rather more effectively than by randomly generating sum-free sets
with respect to the measure µ and counting the proportion that have the desired property,
namely by generating with respect to the measure ν and estimating the expected value
of the random variable 2−tn(U). Computer simulations of this type suggest that the
probability that a random sum-free set contains the element 2 and no other even element
is about 0.00016.
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3. Further Questions

1 It is natural to ask now whether this theorem covers almost all sum-free sets, that
is, is it true that with probability 1, a random sum-free set is only finitely far from
being contained in a strongly sum-free set?

2 One candidate for showing that the answer to Question 1 is false is the following: for
α ∈ (0, 1) \ lQ, define Sα = {n|{nα} ∈ ( 1

3 , 2
3 )} where {x} denotes the fractional part

of x. Calkin and Erdős [2] have shown that for each irrational α, Sα is incomplete.
What is

Prµ(U ⊂ Sα for some α ∈ (0, 1) \ lQ)?

3 An old conjecture of Dickson [7] is equivalent to the following: if S is complete then S

is ultimately periodic (i.e. there is a period m and an n0 so that from n0, S consists of
exactly the same elements modulo m): this would imply that rS(n) has linear growth
or has a bounded subsequence. There is evidence that Dickson’s conjecture may be
false [3, 4]: if so, do there exist sets with rS(n) →∞ but rS(n)/n → 0?

4 If we construct a random sum-free set using a coin with bias p, we have a new
measure Prµ,p on the set of all sum-free sets. Let Odd denote the set of all subsets
of the odd numbers: is it true that Prµ,p(Odd) is increasing in p? Given a pair S0, S1

of sum-free sets, with S0 finite and S1 strongly complete, for which value of p is
Prµ,p(S0 ⊂ U ⊂ S0 ∪ S1) maximized? It is clear that if S0 is non-empty then the
limiting value of this probability as p tends to 0 or 1 is 0 (since if p is small, so is the
probability that we include the elements of S0, and as p tends to 1, the probability
that U is contained in the odd numbers tends to 1).

5 It follows from the methods in this paper that, conditioned on the only even element
being 2, a random sum-free set almost surely has density 1/6. Moreover, in the case
where S1 comes from a modular complete sum-free set, the limiting density exists
and is rational. Is it true that almost surely a random sum-free set (constructed with
a fair coin) has a limiting density? If so, must the density be rational?
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