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Almost odd random sum-free sets
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We show that if S; is a strongly complete sum-free set of positive integers, and if
So is a finite sum-free set, then with positive probability a random sum-free set U
contains Sp and is contained in Sp U S1. As a corollary we show that with positive
probability, 2 is the only even element of a random sum-free set.

1. Introduction

In this paper we shall extend the results of Cameron [5] and Calkin [1] on the structure
of a random sum-free set.

A set S of positive integers is sum-free if there do not exist x,y,z € S with x +y = 2.
We shall call a sum-free set ultimately complete if there exists ng so that for all n > ng,
n € SU(S+Y9), that is, every sufficiently large integer not in S is a sum of elements in
S. We define

rs(n)=H{z:x <n,z,n—x¢c S}
to be the number of distinct representations of n as a sum of elements of S. If

rs(n)
im
ngs log(n)

then we shall call S strongly complete. We note that there are no known examples of
sum-free sets for which rg(n) — oo but rg(n)/n — 0: modular complete sum-free sets
give rise to sets for which rg(n) grows linearly.

Cameron [6] introduced a probability measure p on the set S of all sum-free sets as
follows: there is a natural bijection from the set 2V {6 S which induces a probability
measure on S. This measure corresponds to the following construction of a random sum-
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free set U:
Set U = (): consider each integer n in order: if n € U + U then increase n by one: if
n & U + U then toss a fair coin: if heads, then set U = U U {n}, and increase n by one;
otherwise increase n by one.

Observe that if S C {1,2,3,...n} is a finite sum-free set, then

Pr,(UN{1,2,3,...n} =8)=2""""

where t = |(S+5)N{1,2,3,...n}|, since we have to prescribe the outcome of a cointoss
for exactly n — t integers.

2. The Main Result

Cameron [5] showed that if S is the sum-free set corresponding to a complete modular
sum-free set (modulo m) then Pr(U C S) > 0, and Calkin [1] showed that if S is a
strongly complete sum-free set then Pr(U C S) > 0. Cameron [6] asked whether the
probability that a random sum-free set contains 2 and no other even element is positive.
In this paper we prove a much stronger result, replacing 2 by an arbitrary finite sum-free
set Sy, and the odd numbers by an arbitrary strongly complete sum-free set S;.

Theorem 2.1. Let Sy be a finite sum-free set, and Sy be a strongly complete sum-free
set: then Pr(So C U C SpUSy) > 0.

In our proof we shall assume that the least element of S is at least twice as large as the
largest element of Sp: this is not a severe restriction, since in particular it implies the
theorem above.

Proof. Our proof will require a probability measure v on the set F of all sum-free sets
lying between Sy and Sp U .S, defined in the following manner: set U = Sy, and consider
the integers n € S7 in order: if n € U 4 Sy, move to the next n € Sy;if n € U 4 S, toss a
coin: if it is heads, then set U = U U {n} and move to the next n € S;; otherwise, move
to the next n € 5.

In other words, we randomly construct a sum-free set U constrained to lie between Sy
and Sy U S1: whenever we have a choice of whether to add an element to U we toss a
coin to decide. Since the least element of 57 is greater than twice the largest element of
So, and since S is sum-free, the only times we have to toss a coin correspond to values
in S() + 51.

We shall denote by v, the measure obtained in this fashion after decisions have been
made for all elements less than or equal to n. Then if F is an event, we define F,, =
{FNn{1,2,3,...,n}|F € F}. If F is the limit of F,, as n — oo (in the sense that F' € F
if and only if £ N{1,2,3,...,n} € F, for all n, we have v(F) = lim,—.cc vn(Fn).

In particular, if F is an event which depends only on elements less than or equal to n,
then

V(F) = vm(Fm) Ym>n
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since all decisions about elements less than n have been made before the decision about
m.

Observe that v is not just the conditional measure given Sy C U C Sy U Si: in the
conditional measure, sets for which only a few elements of IV \ (Sp U S1) are not sums
are weighted more heavily than those having many elements not excluded as sums, since
the latter require more coin tosses: with v this is not the case.

However, the measures 1 and v are related as follows:

Lemma 2.2, Let t,(U) = [{1,2,3,...,n} \ (So U S1 U (U + U))| be the number of
elements of {1,2,3,...,n}\ (SoUS1) not represented as a sum in U, that is the number
of extra coin-tosses used in the . model over the v model. Then

Pr,(So cU C SoUSy) = lim E, (27),

n—oo

Proof. Let F be the event Sy C U C Sy U S;. Then
PIN(S() cUcSy USl) = lim PTH,L(SO cUn {1,2,3,...,”} C Sy USl)
n—oo

= lim > Pr, (UN{L,2,3,...,n} = F)27"") = lim E, (27").
n—oo FE]—‘TL n—oo

as claimed. ]

Hence, if we wish to show that Pr,(So C U C Sy U S1) > 0, it suffices to show that
there exists a ¢ > 0 so that for all n, E,, (27*(U)) > ¢ (independently of n).

We shall now show that with positive (v) probability, ¢,(U) is bounded, independently
of m; more specifically, we show that if n € S; + S then Pr, (n € U + U) is small; in
fact, that

Z Pr,,(n¢U+U) < 0.
n€S1+51
Then an effective version of Borel Cantelli will give us our result: indeed, if ng is such
that

Z Pr, (ngU+U)<1—g¢,
neS1+S1,n>ng
then

Pr, (neU+U VYneS+Si,n>ng) > e,
and hence
E@27 () > 270 > 0,

and our proof will be complete.
Let the largest element of Sy be k, and set | = [rg(n)/(2k + 1)] — 1. Then we have

Lemma 2.3.

l
Pr,,(n ¢ U +U) < (1-272C4+D)
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Proof. Since we have rg(n) pairs z,y € S with « < y, z + y = n, we can find
T1,T2, X3, ., T, Y1,Y2,Y3,...y With z; +y; = n and x;41 —x; > k, yp — x; > k: in-
deed, just pick every (k + 1)st pair and discard the pair closest to n/2.

The key here is that if we force z; —k,z; —k+1,...,2;—2,x; — L, z; + 1L, x;+2, ..., x;+
k—1,x; +k to be omitted from U (requiring at most 2k coin tosses to be specified) then
the other elements of U have no impact on whether z; is included in U: moreover, whether
or not z; € U has no impact on other elements of U.

Now let X; belifz; e U and x; —k,z; —k+1,...,20;,—2,x; — Lx; + 1,2, +2, ..., +
k—1,z; + k € U, and 0 otherwise, and define Y; similarly. Then

Pr, (Xi=1|X1, Xo,..., Xic1, Xit1,..., X1, Y1, Yo,... ;) > 27 (k+D)
and similarly for Y;. Since n € U + U can only happen if for each i, at least one of X;,Y;

is equal to 0, we have
Pr,, (X1Y; = 0) < (1 — 27 (@k+D)

Pr,, (XY =0|X1Y7 =0) < (1-— 2—(2k+1))

Pr, (X;Y; =0/X.Y; =0,... X;_1Y;_; = 0) < (1 — 27 @k+1)
and hence

Pr, (ngU+4+U) <Pr, (X1Y1 =0,X2Y>=0,...,X;Y; =0)

é (1 _ 2—(2k+1))l’

completing the proof of the lemma. ]

Since S; is strongly complete,

> ((1 - 2—2<2k+1>)1/<2k+1)>rs<n) .

nesS1+S1

and the proof of the theorem is complete. ]

We note that everything above is for a fair coin: however, the theorem remains true
for a coin with probability p of heads, and 1 — p of tails, so long as p is strictly between
0 and 1: we omit the proof, as it is essentially the same as the above.

We also note that the proof of the theorem gives us a way to estimate the probability
that So C U C SpU S rather more effectively than by randomly generating sum-free sets
with respect to the measure 1 and counting the proportion that have the desired property,
namely by generating with respect to the measure v and estimating the expected value
of the random variable 2~#(U) Computer simulations of this type suggest that the
probability that a random sum-free set contains the element 2 and no other even element
is about 0.00016.
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3. Further Questions

It is natural to ask now whether this theorem covers almost all sum-free sets, that
is, is it true that with probability 1, a random sum-free set is only finitely far from
being contained in a strongly sum-free set?

One candidate for showing that the answer to Question 1 is false is the following: for
a € (0,1)\ @, define S, = {n|{na} € (,2)} where {z} denotes the fractional part
of z. Calkin and Erdés [2] have shown that for each irrational «, S, is incomplete.
What is

Pr, (U C S, for some o € (0,1) \ )?

An old conjecture of Dickson [7] is equivalent to the following: if S is complete then S
is ultimately periodic (i.e. there is a period m and an ng so that from ng, S consists of
exactly the same elements modulo m): this would imply that rg(n) has linear growth
or has a bounded subsequence. There is evidence that Dickson’s conjecture may be
false [3, 4]: if so, do there exist sets with rg(n) — oo but rg(n)/n — 07

If we construct a random sum-free set using a coin with bias p, we have a new
measure Pr, , on the set of all sum-free sets. Let Odd denote the set of all subsets
of the odd numbers: is it true that Pr, ,(Odd) is increasing in p? Given a pair Sy, S1
of sum-free sets, with Sy finite and S; strongly complete, for which value of p is
Pr,,(So C U C Sy U Si) maximized? It is clear that if Sy is non-empty then the
limiting value of this probability as p tends to 0 or 1 is 0 (since if p is small, so is the
probability that we include the elements of Sy, and as p tends to 1, the probability
that U is contained in the odd numbers tends to 1).

It follows from the methods in this paper that, conditioned on the only even element
being 2, a random sum-free set almost surely has density 1/6. Moreover, in the case
where S; comes from a modular complete sum-free set, the limiting density exists
and is rational. Is it true that almost surely a random sum-free set (constructed with
a fair coin) has a limiting density? If so, must the density be rational?
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